初中数学圆专题复习精心整理版

合集下载

初中数学圆专题复习(精心整理版)

初中数学圆专题复习(精心整理版)

圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于 .2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .3. 直径所对的圆周角是,90°所对的弦是 .知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 .知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分 .知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的 .知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。

②到圆心的距离等于的直线是圆的切线。

③经过半径的外端点并且于这条半径的直线是圆的切线。

切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。

知识点9:切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的 .知识点10:三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的 .课堂小结:一、这章有三条常用辅助线:一是圆心距,第二是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离。

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

圆的有关概念和性质-2024年中考数学考点总复习(全国通用)(解析版)

圆的有关概念和性质-2024年中考数学考点总复习(全国通用)(解析版)

【中考高分指南】数学(选择+填空)【备战2024年中考·数学考点总复习】(全国通用)圆的有关概念和性质一、圆的有关概念弦 连接圆上任意两点的线段叫做弦。

直径经过圆心的弦叫做直径。

弧 圆上任意两点间的部分叫做圆弧,简称弧。

优弧 大于半圆的弧叫做优弧。

劣弧小于半圆的弧叫做劣弧。

常用公式:Lr r n S r n L 213601802===π,π扇形三角形扇形弓形S S S ±=三、垂径定理1.定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.2.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2:圆的两条平行弦所夹的弧相等.注意:轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.二、弧、弦、圆心角、圆周角的关系定理1.弧、弦、圆心角的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也分别相等.2.圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角:顶点在圆上且角的两边和圆相交的角叫做圆周角.3.圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论:①同弧或等弧所对的圆周角相等.②半圆(或直径)所对的圆周角是直径,90°的圆周角所对的弦是圆的直径.③圆内接四边形的对角互补.【考点1】圆的相关概念⏜上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,【例1】(2023·江苏)如图,在扇形AOB中,D为AB∠O=75°,则∠A的度数为( )A. 35°B. 52.5°C. 70°D. 72°【答案】C【分析】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理、等腰三角形的性质.连接OD ,如图,设∠C 的度数为n ,由于CD =OA =OD ,根据等腰三角形的性质得到∠C =∠DOC =n ,则利用三角形外角性质得到∠ADO =2n ,所以∠A =2n ,然后利用三角形内角和定理得到75°+n +2n =180°,然后解方程求出n ,从而得到∠A 的度数. 【解析】解:连接OD ,如图,设∠C 的度数为n , ∵CD =OA =OD , ∴∠C =∠DOC =n ,∴∠ADO =∠DOC +∠C =2n , ∵OA =OD , ∴∠A =∠ADO =2n ,∵∠AOC +∠C +∠A =180°,∠AOC =75°, ∴75°+n +2n =180°, 解得n =35°, ∴∠A =2n =70°. 故选:C .【例2】(2024·全国模拟)如图,在△ABC 中,∠C =90°,AB =10.若以点C 为圆心,CA 长为半径的圆恰好经过AB 的中点D ,则⊙C 的半径为( ) A. 5√ 3 B. 8 C. 6 D. 5 【答案】D【解析】解:如图,连结CD , ∵CD 是直角三角形斜边上的中线, ∴CD =12AB =12×10=5. 故选:D .连结CD ,根据直角三角形斜边中线定理求解即可.本题考查了直角三角形斜边上的中线,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键. 【例3】(2024·江西模拟)一张直径为10cm 的半圆形卡纸,过直径的两端点剪掉一个三角形,以下四种裁剪图中,所标数据(单位:cm)长度不合理的是( )A.B.C.D.【答案】D【解析】解:A 、B 、C 图形中的三角形,满足三角形三边关系定理,且三角形三边长度合理,故A 、B 、C 不符合题意;D 、如图,过A 作AH ⊥BC 于H ,∵AB =AC ,∴BH =12BC =12×10=5(cm), ∴AH =√ AB 2−BH 2=√ 39, ∴AH >5, ∴A 在圆外,∴三角形三边长度不合理, 故D 不符合题意. 故选:D .由三角形三边关系定理,点和圆的位置关系即可判断.本题考查三角形三边关系,等腰三角形的性质,勾股定理,点和圆的位置关系,关键是由等腰三角形的性质,勾股定理求出AH 的长.1.(2024·湖北模拟)以下命题:(1)等弧所对的弦相等;(2)相等的圆心角所对的弧相等;(3)三点确定一个圆;(4)圆的对称轴是直径;(5)在同圆或等圆中,同一条弦所对的圆周角相等;(6)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.其中正确的命题的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】A【分析】本题主要考查圆的相关概念和性质,深刻理解圆的相关性质是解题的关键.根据圆的相关概念和性质,对各个选项逐一分析判断即可得出答案.【解析】解:(1)等弧所对的弦相等;正确;(2)在同圆或等圆中,相等的圆心角所对的弧相等;故(2)错误;(3)不在同一直线上的三点确定一个圆;故(3)错误;(4)圆的对称轴是直径所在直线;故(4)错误;(5)在同圆或等圆中,同一条弦所对的弧有两条,每一条弧所对的圆心角不一定相等,则所对的圆周角也不一定相等;故(5)错误;(6)三角形三边的垂直平分线的交点即为其外接圆的圆心,外心到三角形三个顶点的距离相等.故(6)正确;综上所述,正确的有(1)(6),故选A.2.(2024·江苏模拟)下列说法中,正确的是①对角线垂直且互相平分的四边形是菱形;②对角线相等的四边形是矩形;③同弧或等弧所对的圆周角相等;④半圆是弧,但弧不一定是半圆.( )A. ①④B. ②③C. ①③④D. ②③④【答案】A【解析】解:①、对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形为菱形,故该项正确;②、对角线相等的平行四边形为矩形,故该选项错误;③、在同圆或等圆中,同弧或等弧所对的圆周角相等,故该选项错误;④、弧分为优弧、劣弧、半圆弧,则半圆是弧,但弧不一定是半圆,故该项正确;故选:A.根据对角线互相垂直的平行四边形为菱形,对角线相等的平行四边形为矩形,在同圆或等圆中,同弧或等弧所对的圆周角相等,弧分为优弧、劣弧、半圆弧分别判断即可.本题考查基本概念,熟记知识点是解题关键.3.(2023·全国模拟)下列说法中,不正确的是( )A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧【答案】D【分析】本题主要考查了圆的基本概念,解答此题的关键是正确理解弦,弧的定义,解答此题根据圆的基本概念判断即可.【解析】解:A.直径是最长的弦,正确;B.同一个圆的半径相等,正确;C.圆既是轴对称图形,也是中心对称图形,正确;D.长度相等的弧不一定是等弧,同圆或等圆中长度相等的弧才是等弧,故该选项的说法错误.故选D.4.(2024·广东模拟)如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )A. 38°B. 52°C. 76°D. 104°【答案】C【分析】本题考查了圆的认识:掌握与圆有关的概念.根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【解析】解:∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°−2×52°=76°.故选:C.【考点2】垂径定理【例1】(2023·四川)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=2√ 3,则OC=( )A. 1B. 2C. 2√ 3D. 4【答案】B【解析】解:连接OB,设OA交BC于E,如图:∵∠ADB=30°,∴∠AOB=60°,∵OA⊥BC,BC=2√ 3,BC=√ 3,∴BE=12,在Rt△BOE中,sin∠AOB=BEOB,∴sin60°=√ 3OB∴OB=2,∴OC=2;故选:B.连接OB,设OA交BC于E,由∠ADB=30°,得∠AOB=60°,根据OA⊥BC,BC=2√ 3,得BE=1BC=√ 3,2故sin60°=√ 3,从而OC=OB=2.OB本题考查垂径定理,圆周角定理及勾股定理的应用,解题的关键是掌握含30°角的直角三角形三边关系.【例2】(2024·湖南模拟)如图,AB是⊙O的直径,弦CD⊥OA于点E,连接OC,OD.若⊙O的半径为m,∠AOD=α,则下列结论一定成立的是A. OE=m·tanαB. CD=2m·sinαC. AE=m·cosαD. S△OCD=m2·sinα【答案】B【分析】本题考查了垂径定理,解直角三角形,解决本题的关键是掌握垂径定理,解直角三角形等知识.根据垂径定理和锐角三角函数计算则可进行判断.【解析】解:A.∵AB是⊙O的直径,弦CD⊥OA于点E,CD,∴DE=12在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=DEOE,∴OE=DEtanα=CD2tanα,故选项A错误不符合题意;B.∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD⋅sinα=m⋅sinα,∴CD=2DE=2m⋅sinα,故选项B正确符合题意;C.∵cosα=OEOD,∴OE=OD⋅cosα=m⋅cosα,∵AO=DO=m,∴AE=AO−OE=m−m⋅cosα,故选项C错误不符合题意;D.∵CD=2m⋅sinα,OE=m⋅cosα,∴S△COD=12CD×OE=12×2m⋅sinα×m⋅cosα=m2sinα⋅cosα,故选项D错误不符合题意;故选B.【例3】(2024·全国模拟)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为.( )A. 3√ 3B. 32C. 3√ 32D. 3【答案】C【解析】连接OC、OD,如图所示,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°.∵OC=OD,OG⊥CD,∴∠COG =30°. ∵⊙O 的周长等于6π,∴OC =3,∴CG =32,∴OG =3√ 32. 故选C .1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.根据垂径定理构造直角三角形,一般为过圆心作已知弦的弦心距,常用于求线段的长度.1.(2024·广东模拟)已知:如图,在⊙O 中,OA ⊥BC ,∠AOB =70°,则∠ADC 的度数为( )A. 30°B. 35°C. 45°D. 70°【答案】B【分析】本题考查的是垂径定理、圆周角定理、圆心角与弧的关系定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.先根据垂径定理得出AB ⏜=AC ⏜,再由圆周角定理即可得出结论. 【解析】解:如图,连接OC .∵OA ⊥BC , ∴AB⏜=AC ⏜, ∴∠AOC =∠AOB =70°,∴∠ADC =12∠AOC =35°. 故选B .2.(2024·江苏模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD =2√3.则BC ⌒的长为( ) A. π3B.2π3C. √3π3D.2√3π3【答案】B【解析】解:连接AC 、OC , ∵AB 是⊙O 的直径,CD ⊥AB , ∴CE =ED =12CD =√3,BC ⌒=BD ⌒,∴AB 是线段CD 的垂直平分线, ∴AC =AD , ∵AD =CD , ∴AC =AD =CD , ∴△ACD 为等边三角形, ∴∠CAD =60∘, ∴∠COB =60∘,在Rt △COE 中,OC =CEsin∠COE =2, ∴BC ⌒的长=60π×2180=2π3, 故选:B.连接AC 、OC ,根据垂径定理得到CE =ED =12CD =√3,BC ⌒=BD ⌒,根据线段垂直平分线的性质得到AC =AD ,根据等边三角形的性质求出∠CAD =60∘,根据正弦的定义求出OC ,根据弧长公式计算,得到答案. 本题考查的是弧长的计算、垂径定理,掌握弧长公式:l =nπr180是解题的关键. 3.(2024·陕西模拟)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,且∠ACD =22.5°,CD =4,则⊙O 的半径长为( ) A. 2 B. 2√ 2 C. 4 D. 10【答案】B【解析】解:连接OD ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =4,∴CE =DE =12CD =2,∵∠ACD =22.5°,∴∠AOD =2∠ACD =45°,∴△DOE 为等腰直角三角形,∴OD =√ 2DE =2√ 2,即⊙O 的半径为2√ 2,故选:B .连接OD ,由圆周角定理得出∠AOD =45°,根据垂径定理可得CE =DE =2,证出△DOE 为等腰直角三角形,利用特殊角的三角函数可得答案.此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2023·江苏)如图,矩形内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是( )A. 414π−20B. 412π−20C. 20πD. 20【答案】D【解析】解:如图,连接BD ,则BD 过点O ,在Rt △ABD 中,AB =4,BC =5,∴BD 2=AB 2+AD 2=41,S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆=π×(42)2+π×(52)2+4×5−π×(BD 2)2 =41π4+20−41π4=20,故选:D .根据矩形的性质可求出BD ,再根据图形中各个部分面积之间的关系,即S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆进行计算即可.本题考查勾股定理,矩形的性质以及圆形面积的计算,掌握矩形的性质、勾股定理以及圆形面积的计算方法是正确解答的前提.5.(2023·内蒙古)如图,⊙O 是锐角三角形ABC 的外接圆,OD ⊥AB ,OE ⊥BC ,OF ⊥AC.垂足分别为D ,E ,F ,连接DE ,EF ,FD.若DE +DF =6.5,△ABC 的周长为21,则EF 的长为( )A. 8B. 4C. 3.5D. 3【答案】B【解析】解:∵OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,∴AD =BD ,AF =CF ,BE =CE ,∴DE ,DF ,EF 是△ABC 的中位线,∴DE =12AC,DF =12BC,EF =12AB ,∴DE +DF +EF =12(AB +BC +AC)=12×21=10.5,∵DE +DF =6.5,∴EF =10.5−6.5=4,故选:B .根据垂径定理得到AD =BD ,AF =CF ,BE =CE ,根据三角形的中位线定理得到DE +DF +EF =12(AB +BC +AC)=12×21=10.5,于是得到结论.本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.【考点3】垂径定理的应用【例1】(2023·湖北)如图,一条公路的转弯处是一段圆弧(AC⏜),点O 是这段弧所在圆的圆心,B 为AC ⏜上一点,OB ⊥AC 于D.若AC =300√ 3m ,BD =150m ,则AC⏜的长为( )A. 300πmB. 200πmC. 150πmD. 100√ 3πm【答案】B【解析】解:如图所示:∵OB ⊥AC ,∴AD =12AC =150√ 3m ,∠AOC =2∠AOB ,在Rt △AOD 中,∵AD 2+OD 2=OA 2,OA =OB ,∴AD 2+(OA −BD)2=OA 2,∴(150√ 3)2+(OA −150)2=OA 2解得:OA =300m ,∴sin∠AOB =AD OA =√ 32, ∴∠AOB =60°,∴∠AOC =120°,∴AC ⏜的长=120×300π180=200πm .故选:B .先根据垂径定理求出AD 的长,由题意得OD =OA −BD ,在Rt △AOD 中利用勾股定理即可求出OA 的值,然后再利用三角函数计算出AC⏜所对的圆心角的度数,由弧长公式求出AC ⏜的长即可. 本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD 的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.【例2】(2024·山东模拟)唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为( )A. 10mB. 8mC. 6mD. 5m【答案】A【解析】解:设半径为r m ,则OA =OC =r m ,∴OD =(r −2)m ,∵AB =8m ,∴AD =4m ,在Rt △ODA 中,有:OA 2=OD 2+AD 2,即:r 2=(r −2)2+42,解得r =5m ,则该桨轮船的轮子直径为10m .故选:A .设半径为r ,再根据圆的性质及勾股定理,可求出答案.本题考查垂径定理,勾股定理,关键在于知道OC 垂直平分AB 这个隐藏的条件.垂径定理及其推论方法技巧:1.圆中模型“知2得3”由图可得以下5点:①AB ⊥CD ;②AE=EB ;③AD 过圆心O ;④⋂⋂=BC AC ;⑤⋂⋂=BD AD ;以上5个结论,知道其中任意2个,剩余的3个都可以作为结论使用。

中考复习--圆专题(所有知识点和题型(大全),全)

中考复习--圆专题(所有知识点和题型(大全),全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有( )A。

1个B.2个C。

3个D。

4个2.下列命题是假命题的是( )A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形.3。

下列命题正确的是( )A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D。

一个圆只有一个外接三角形4.下列说法正确的是()A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5。

下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22。

如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C。

58°D。

32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44。

如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5。

如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。

8。

若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=。

9。

中考数学圆知识点归纳

中考数学圆知识点归纳

中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。

2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。

二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。

2.圆内外的点与圆心之间的关系:内接圆和外接圆。

三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。

2.圆的直径是两个切点。

3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。

4.圆上的切线与半径垂直,且只有一条。

(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。

(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。

2.圆的面积:S=πr²(其中r为半径)。

3.弧长:L=2πr(对应圆心角为360°的弧)。

4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。

2.提取关键信息,运用圆的性质和公式进行计算。

3.运用切线的特性求解问题。

4.运用弧的性质,求解弧长、弦长、圆心角等问题。

5.运用角平分线和垂直平分线的性质,求解相关问题。

六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。

2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。

3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。

4.利用圆内切四边形的特性解决问题。

以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。

中考圆知识点总结复习(经典推荐)打印版

中考圆知识点总结复习(经典推荐)打印版

中考圆知识点总结复习(经典推荐)打印版初中数学——《圆》一、圆及与圆相关的概念圆是由平面上所有与给定点距离相等的点组成的图形。

在圆的概念中,我们还需要了解圆心、半径、直径、弦、弧等相关概念。

二、圆的对称性圆具有轴对称和中心对称的性质。

圆的对称轴是直径所在的直线,对称中心是圆心。

三、垂径定理及推论垂径定理指出,垂直于弦的直径平分弦且平分弦所对的弧。

由此推论出,平分弦的直径垂直于弦,并且平分弦所对的两条弧相等;圆的两条平行弦所夹的弧相等。

四、圆心角定理圆心角定理指出,同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

五、圆周角定理圆周角定理指出,同弧所对的圆周角等于它所对的圆心的角的一半。

由此推论出,同弧或等弧所对的圆周角相等;半圆或直径所对的圆周角是直角;若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

六、圆内接四边形圆的内接四边形定理指出,圆的内接四边形的对角互补,外角等于它的内对角。

七、点与圆的位置关系点与圆的位置关系有相交、相切、相离、内含、外切、外离等情况。

我们可以利用反证法来判断点与圆的位置关系。

直线和圆的位置关系也有相交、相切、相离三种情况,其中相切的性质比较重要。

除了以上知识点外,我们还需要掌握圆的计算方法,如半径、边心距、中心角、正多边形的计算,以及圆的面积、扇形、组合图形的面积计算等。

此外,还需要了解圆柱和圆锥的侧面展开图、侧面积、全面积计算方法,以及正多边形与圆的周长、弧长、组合图形周长计算方法等。

1.点在圆内的情况下,距离d小于半径r,因此点C在圆内;2.点在圆上的情况下,距离d等于半径r,因此点B在圆上;3.点在圆外的情况下,距离d大于半径r,因此点A在圆外。

八、三点定圆定理——三角形外接圆1.三点定圆是指不在同一直线上的三个点可以确定一个圆;2.三角形的外接圆是指经过三角形三个顶点的圆;3.三角形的外心是指三角形三条边的垂直平分线的交点,它是这个三角形外接圆的圆心。

中考圆的复习资料(经典+全)

中考圆的复习资料(经典+全)

圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。

3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。

CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。

知识点2 圆心角:顶点在圆心的角叫做圆心角。

弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。

题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。

2024 圆全章复习 正式稿

2024 圆全章复习 正式稿

于弦,并且平分弦所对的两条弧.
M
A
B
D
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
重点回顾
• 弧、弦、圆心角之间的关系: 在同圆或等圆中,两个圆心角、两条弧(优弧或劣弧)、 两条弦中如果有一组量相等,则它们所对的其余各组量都 相等.
知识梳理
∴DE是⊙O的切线.
综合运用
• 方法2:连接OD,OC.
你能完成后面 的证明吗?
E C
D 3
A
12
O
BF
综合运用
例 如图,AB为⊙O的直径,C为⊙O上
一点,D为BC的中点. 作DE⊥AC交AC
E C
的延长线于E,延长ED,AB交于F.
(1)直线DE与⊙O有怎样的位置关
系?请说明理由;
A O
(2)若AB=10,DE=4,求AC的长.
∴半径OB= 2 3 cm.
C O
B
综合运用
• 小结:
C
O
A
D
B
C E
O
A
B
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
正多边形和圆
弧长和扇形面积
弧长 扇形面积
圆锥的侧面 积和全面积
知识梳理
点、直线和圆的位置关系
圆全章复习
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系

初三数学圆知识点复习专题经典

初三数学圆知识点复习专题经典

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒ d r < ⇒点C 在圆内;2、点在圆上⇒ d r = ⇒点B 在圆上;3、点在圆外⇒ d r > ⇒点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离⇒ d r > ⇒无交点;2、直线与圆相切⇒ d r = ⇒有一个交点;3、直线与圆相交⇒ d r < ⇒有两个交点;drd=rrd五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1平分弦(不是直径的直径垂直于弦,并且平分弦所对的两条弧; (2弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧r dd CBAO以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD例题1、基本概念1.下面四个命题中正确的一个是(A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( .A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1求证:四边形OEHF 是正方形. (2若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.例题3、度数问题1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.O EDCBAOCDABOAB D E F C2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。

圆整理和复习经典实用

圆整理和复习经典实用
•《圆》整理和复习
• o
在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
•《圆》整理和复习
你能换一种数学语言
来说说半径和直径的
r
关系吗?
d• o
d=r+r
r
d=2
r r= 2d
在同一个圆里,直径是半径的2倍,半径是直径的一半.
•《圆》整理和复习
·O
·O
等圆的半径(相等),直径 相等 ( ).
C:πr+2r
D:πr2÷2
3. 一个环形铁片,内圆直径是4分米,环宽是1分米,求这个环形铁片的面
积列式为( D ): A:3.14×(42-12)
B:3.14 ×(22-12)
C:3.14 ×(2.52-22)
D:3.14 ×(32-22)
4. 大小不同的两个圆,它们的半径各增加2厘米,谁的周长增加得多一些。
一个直径为1米的圆形洞口,一个身高为1.45米的小女孩不能直身通过, 如果将洞口周长增加1.57米,请你计算她现在能否直身通过?
•《圆》整理和复习
(1)求周长:3.14×2 = 6.28(m) (2)求面积:3.14×(2÷2)2 = 3.14(m2) (3)求能坐几人:6.28÷0.5 ≈ 12(人) 答:它的周长是6.28m,•《面圆》积整理是和复3习.14m2,大约能坐12人。
•《圆》整理和复习
圆的面积 将圆分成若干等分
4 3 2
1
56 7 8
16
9
15 14
13 12
10 11
•《圆》整理和复习
圆的面积
将圆分成若干等分
1
2
3
4C 2
5
6
7

初中圆复习-已经整理

初中圆复习-已经整理

初中圆复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线〔也叫中垂线〕;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离〔图1〕⇒无交点⇒d R r>+;外切〔图2〕⇒有一个交点⇒d R r=+;相交〔图3〕⇒有两个交点⇒R r d R r-<<+;内切〔图4〕⇒有一个交点⇒d R r=-;内含〔图5〕⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:〔1〕平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧;〔2〕弦的垂直平分线经过圆心,并且平分弦所对的两条弧;〔3〕平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②ABCD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

(完整版)初三数学圆知识点复习专题经典

(完整版)初三数学圆知识点复习专题经典
∴ PA2 PC PB
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结

初中数学圆专题复习(精心整理版)

初中数学圆专题复习(精心整理版)

圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于.2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.3. 直径所对的圆周角是,90°所对的弦是.知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的.知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。

②到圆心的距离等于的直线是圆的切线。

③经过半径的外端点并且于这条半径的直线是圆的切线。

切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。

知识点9:切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的.知识点10:三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的.知识点11:圆和圆的位置关系设两圆半径分别为R和r。

初三数学圆知识点归纳实用精选

初三数学圆知识点归纳实用精选

初三数学圆知识点归纳实用精选初三数学圆知识点归纳1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.初三数学圆知识点总结初中数学知识点总结:圆与圆的位置关系圆与圆的位置关系,我们做下面的知识点总结学习。

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

2024年中考数学复习-圆知识点复习讲义

2024年中考数学复习-圆知识点复习讲义

圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


一、知识点梳理
知识点1:圆的定义:
1. 圆上各点到圆心的距离都等于.
2. 圆是对称图形,任何一条直径所在的直线都是它的;
圆又是对称图形,是它的对称中心.
知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念
1.在同圆或等圆中,相等的弧叫做
2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.
3. 直径所对的圆周角是,90°所对的弦是.
知识点3:圆心角、弧、弦、弦心距之间的关系
在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.
知识点4:垂径定理
垂直于弦的直径平分,并且平分;
平分弦(不是直径)的垂直于弦,并且平分.
知识点5:确定圆的条件
三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的.
知识点6:点与圆的位置关系
(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.
其中r为圆的半径,d为点到圆心的距离,
知识点7:直线与圆的位置关系
直线与圆的位置关系有三种:相交、相切、相离.
设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:
位置关系相离相切相交
公共点个数0 1 2
数量关系 d r d r d r
知识点8:切线的判定与性质
判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。

②到圆心的距离等于的直线是圆的切线。

③经过半径的外端点并且于这条半径的直线是圆的切线。

切线的五个性质:①切线与圆只有公共点;
②切线到圆心的距离等于圆的;
③切线垂直于经过切点的;
④经过圆心垂直于切线的直线必过;
⑤经过切点垂直于切线的直线必过。

知识点9:切线长定理
经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的.
知识点10:三角形内切圆
和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的.
知识点11:圆和圆的位置关系
设两圆半径分别为R和r。

圆心距为d。

(R>r)
1. 两圆外离_____________;
2.两圆外切_____________;
3. 两圆相交______________;
4. 两圆内切_____________;
5. 两圆内含______________.
课堂小结:
一、这章有三条常用辅助线:一是圆心距,第二是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离。

二、有几个分析题目的思路,在圆中有一个非常重要,就是弧、弦与圆周角互相转换,那么怎么去应用,就根据题目条件而定。

相关文档
最新文档