线性方程组的矩阵求法
线性代数 第6章 矩阵运算法
![线性代数 第6章 矩阵运算法](https://img.taocdn.com/s3/m/50d23039f4335a8102d276a20029bd64793e620d.png)
介绍一下这种算法的基本思想.
6.1矩阵运算
6.1矩阵运算
在实际应用中,可以选择不同的可逆矩阵,不同的映射
关系,也可以把字母对应的数字进行不同的排列得到不同
的矩阵,这样就有多种加密和解密的方式,从而保证了传
递信息的秘密性.上述例子是矩阵乘法与逆矩阵的应用,将
数学与密码学紧密结合起来,用数学知识破译密码,进
0.3
4
1
0.5
0.8
0.4
表6-3 营养成分及单价表
要求既满足动物生长的营养需要,又使费用最省的选用饲料方案.
6.2 矩阵运算法求解线性方程组
求解线性方程组首先要
判断线性方程组是否有
解,若无解则结束;若
有解,则利用高斯消元
法化简方程组并求得全
体未知数的取值
6.2 矩阵运算法求解线性方程组
6.2 矩阵运算法求解线性方程组
回顾与小结
逆矩阵法求解线性方程组
第六章
矩阵运算法
第六章 第一节主要学习内容
矩阵的运算
矩阵运算法求解线性方程组
6.1矩阵运算
这一章主要介绍矩阵运算及矩阵运算法求解线性方程组.
6.1矩阵运算
一、引例
小王、小李在两次数学考试中答对题数如表6-1
考试情况所示:
某高校期中、期末考试有选择题、填空题、解答题三种类型
的题,小王期中、期末考试答对选择题分别为10题、6题,
6.1矩阵运算
二、矩阵的运算
6.1矩阵运算
现实生活中的许多问题都可以转化为相应的矩阵问题来处理,矩阵加减法、数乘、乘法、转置、矩阵的
逆等运算不仅符合数学逻辑,而且在现实生活中都有其实际意义.
6.1矩阵运算
线性方程组的求解方法
![线性方程组的求解方法](https://img.taocdn.com/s3/m/518feee46e1aff00bed5b9f3f90f76c661374c8d.png)
线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。
解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。
本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。
一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。
它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。
首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。
然后,通过行变换将增广矩阵化为阶梯形或行最简形。
最后,通过回代法求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现。
但是,当方程组的规模较大时,计算量会很大,效率较低。
二、矩阵法矩阵法是求解线性方程组的另一种常见方法。
它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,通过矩阵运算将方程组化为矩阵的乘法形式。
最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。
矩阵法的优点是计算效率高,适用于方程组规模较大的情况。
但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。
三、迭代法迭代法是求解线性方程组的一种近似解法。
它的基本思想是通过迭代计算逐步逼近方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。
最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。
迭代法的优点是计算过程简单,适用于方程组规模较大的情况。
但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。
综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。
在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。
线性微分方程组的解法
![线性微分方程组的解法](https://img.taocdn.com/s3/m/184954f868dc5022aaea998fcc22bcd126ff42aa.png)
线性微分方程组的解法线性微分方程组是由多个关于未知函数及其导数的线性方程组成的,可以用矩阵形式来表示。
解这类方程组的方法有很多种,例如矩阵法、特征方程法等。
下面将介绍线性微分方程组的解法。
一、线性微分方程组的矩阵法考虑一个n个未知函数的线性微分方程组:$\frac{d}{dt}\mathbf{y}=A\mathbf{y}$其中$\mathbf{y}=\begin{pmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix}$,A是一个$n \times n$的矩阵。
解法:1. 将线性微分方程组写成矩阵形式:$\frac{d}{dt}\mathbf{y}=A\mathbf{y}$2. 求出矩阵A的特征值和特征向量。
设特征值为$\lambda$,对应的特征向量为$\mathbf{v}$。
3. 根据特征值和特征向量,构造矩阵的对角形式:$D=\begin{pmatrix}\lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 &\cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\lambda_n \end{pmatrix}$4. 求出初值条件的向量$\mathbf{c}$,使得$\mathbf{y}(t=0) =\mathbf{c}$。
5. 利用变量分离法求出解向量$\mathbf{y}$:$\mathbf{y}=e^{At}\mathbf{c}$其中$e^{At}$表示矩阵的指数函数,它可以通过特征值和特征向量来计算,即:$e^{At}=P e^{Dt}P^{-1}$其中P是一个由特征向量组成的矩阵,$P^{-1}$是P的逆矩阵,$e^{Dt}$是一个由特征值构成的对角矩阵的指数函数:$e^{Dt}=\begin{pmatrix}e^{\lambda_1 t} & 0 & \cdots & 0\\ 0 &e^{\lambda_2 t} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{pmatrix}$6. 将解向量$\mathbf{y}$代入初值条件$\mathbf{y}(t=0) =\mathbf{c}$,求出常数向量$\mathbf{c}$的值。
矩阵求方程的解
![矩阵求方程的解](https://img.taocdn.com/s3/m/774a93c370fe910ef12d2af90242a8956becaa35.png)
矩阵求方程的解
矩阵可以被用来求解线性方程组。
线性方程组可以表示为以下形式:
A * x = b
其中,A 是一个系数矩阵,x 是未知向量,b 是已知向量。
矩阵求解线性方程组主要有两种方法:逆矩阵法和高斯消元法。
1.逆矩阵法:如果矩阵A 是可逆的(即行列式不等于零),
则可以通过以下公式求解线性方程组的解:
x = A⁻¹ * b
其中,A⁻¹ 表示矩阵 A 的逆矩阵,* 表示矩阵的乘法运算。
2.高斯消元法:高斯消元法是通过变换线性方程组的形式,
将其转化为上三角形式或者简化行阶梯形式。
然后,可以
通过回代的方式求解线性方程组的解。
具体步骤如下:
•用初等行变换将矩阵A 转化为上三角形式(或简化行阶梯形式)。
•根据变换后的矩阵形式,可以直接得到解的结果或通过回代得到解。
需要注意的是,在实际应用中,矩阵方程的求解可能会遇到多解、无解或条件问题等情况。
因此,在使用矩阵求解线性方程组时,需要对方程组的性质进行仔细分析,并进行适当的处理。
线代矩阵求解题技巧
![线代矩阵求解题技巧](https://img.taocdn.com/s3/m/8c39d629876fb84ae45c3b3567ec102de2bddfda.png)
线代矩阵求解题技巧线性代数是数学中的一个重要分支,广泛应用于科学和工程学科中。
矩阵求解是线性代数中的一个基本概念,它是解线性方程组、求特征值和特征向量等问题的重要工具。
下面将介绍一些线性代数矩阵求解的基本技巧。
1. 高斯消元法高斯消元法是求解线性方程组的常用方法之一。
该方法的基本思想是通过矩阵变换将线性方程组化为上三角形方程组或者行最简形式,从而得到方程组的解。
高斯消元法具体步骤如下:(1)将线性方程组写成增广矩阵的形式;(2)选取一个主元(通常选取主对角线上的元素),并通过一个变换将该元素下面的所有元素置零;(3)对主元元素下面的行执行类似的操作,直到所有元素都变为零或者上三角矩阵形式;(4)回代求解未知数。
2. LU分解LU分解是将一个矩阵分解为下三角矩阵L和上三角矩阵U的乘积的方法。
这个方法通常用于解决多次使用相同矩阵求解线性方程组的场景。
LU分解的具体步骤如下:(1)设一个n阶方阵A,将其分解为A=LU;(2)通过高斯消元法将A化为上三角矩阵U;(3)构造下三角矩阵L,使得A=LU成立。
3. 矩阵的逆和伴随矩阵对于一个可逆矩阵A,可以通过求解逆矩阵来求解线性方程组。
设A为n阶可逆方阵,若存在一个n阶矩阵B,满足AB=BA=I,那么B称为A的逆矩阵,记作A^(-1)。
逆矩阵可以通过伴随矩阵来求解。
对于n阶矩阵A,它的伴随矩阵记作adj(A),它的定义为adj(A)=det(A)·A^(-1),其中det(A)是A的行列式。
逆矩阵的求解可以通过以下步骤:(1)求解矩阵A的行列式det(A);(2)求解矩阵A的伴随矩阵adj(A);(3)求解矩阵A的逆矩阵A^(-1),即A^(-1)=adj(A)/det(A)。
4. 特征值和特征向量特征值和特征向量在矩阵求解中起着重要作用。
设A 是一个n阶方阵,若存在一个非零向量X,满足AX=kX,其中k为常数,则k为A的一个特征值,X为对应的特征向量。
矩阵的求解方法和技巧
![矩阵的求解方法和技巧](https://img.taocdn.com/s3/m/5cb07dd4541810a6f524ccbff121dd36a32dc4ad.png)
矩阵的求解方法和技巧矩阵的求解是线性代数中的一个重要问题,涉及到矩阵的性质、运算和解析方法等多个方面。
下面将介绍一些矩阵求解的常用方法和技巧。
1. 高斯消元法:高斯消元法是一种常用的线性方程组求解方法,适用于任意大小的方阵。
该方法的基本思想是通过矩阵的初等行变换,将方程组化为行最简的形式,从而求解出未知数的值。
具体操作步骤如下:1) 将方程组转化为增广矩阵形式;2) 选择一个主元(通常选择第一列的第一个非零元素);3) 将该主元所在的行除以主元得到1;4) 用主元所在行乘以矩阵的某一行,再与原行相减,使得该行的主元所在列的其他元素都为0;5) 选择下一个主元,重复步骤3和4,直至将方程组化为行最简的形式(即上三角形矩阵);6) 回代求解每个未知数的值。
2. 克拉默法则:克拉默法则适用于求解n元线性方程组(n个方程、n 个未知数),它是一种基于行列式的方法。
具体操作步骤如下:1) 将方程组转化为增广矩阵形式;2) 求出系数矩阵的行列式D;3) 分别将方程组的等号右边替换为未知数列矩阵,并求出每个矩阵列的行列式Dj;4) 利用克拉默法则的公式,未知数xi的值等于Dj除以D的商。
克拉默法则的优点是理论简单,适用于少数方程未知数的求解,但对于大规模的方程组来说,计算量较大。
3. LU分解法:LU分解是将矩阵按照一定的规则分解为一个下三角矩阵L和一个上三角矩阵U的乘积。
LU分解法适用于求解一大类线性方程组,对于已经进行了LU分解的矩阵,可以节省计算量,提高计算效率。
具体操作步骤如下:1) 对矩阵进行LU分解,得到下三角矩阵L和上三角矩阵U;2) 利用前代法(也称为Ly=b法)求解方程Ly=b,求出向量y;3) 利用回代法(也称为Ux=y法)求解方程Ux=y,求出向量x。
4. 矩阵的逆:矩阵的逆是指如果一个方阵存在逆矩阵,那么它和它的逆矩阵相乘得到一个单位矩阵。
矩阵的逆可以用来求解线性方程组的解。
具体操作步骤如下:1) 对矩阵A进行LU分解;2) 利用前代法求解方程Ly=b,求出向量y;3) 利用回代法求解方程Ux=y,求出向量x;4) 得到矩阵的逆矩阵A^-1。
第1讲 用矩阵消元法求解线性方程组
![第1讲 用矩阵消元法求解线性方程组](https://img.taocdn.com/s3/m/b95798593b3567ec102d8a27.png)
a ____ , b ____ , c ____ ;
u 1 2 (2) 设 B x v 3 为反对称矩阵,则 y z w u ____ , v ____ , w ____ ; x ____ , y ____ , z ____ .
为(1)的一个解(向量). (1)的全体解向量形成的集合称为(1)的解(向量)集合. 在(1)中,将 n 个未知量 x1 , x2 , , xn 改为 y1 , y2 , , yn ,并不影响解向量集合. 所以
反映了(1)的所有本质特征. 说,增广矩阵 A
2、初等变换
-5-
定义 11
在线性方程组(1)中,
以 A [ aij ]mn 的第 j 列各元素次序不变排成新矩阵的第 j 行( j 1, 2, , n ),亦得
a11 a 12 T A a1n
显然,有
a21 am1 a22 am 2 . a2 n amn
ent ij A ent ji AT (i 1, 2, , m; j 1, 2, , n) ,
C A B .
数与矩阵可以相乘. 定义 6 设 A [ aij ]mn ,则称矩阵 [kaij ]mn [ aij k ]mn 为数 k 与矩阵 A 的数量乘积(或
A 的 k 倍),记作 kA 或 Ak .
加法与数量乘法统称为矩阵的线性运算. 2、 m n 矩阵空间 数域 上的全体 m n 矩阵形成的集合可以表示为
(加法交换律) (加法结合律) (加法右单位元) (加法右逆元) ( 1 倍) (数乘结合律) (第一分配律) (第二分配律)
mn 关于矩阵的加法与数量乘法,称为数域 上的 m n 矩阵空间. 减法是加法的派生运算: A B A ( B ) .
矩阵的线性方程组解法
![矩阵的线性方程组解法](https://img.taocdn.com/s3/m/73f69b12ac02de80d4d8d15abe23482fb4da02af.png)
矩阵的线性方程组解法线性方程组是数学中的重要概念,它描述了一组线性方程之间的关系。
而求解线性方程组的方法之一就是利用矩阵的运算进行计算。
本文将介绍几种常见的矩阵解法,以帮助读者更好地理解线性方程组求解的过程。
一、高斯消元法高斯消元法是求解线性方程组的基本方法之一。
它通过矩阵的行变换来简化系数矩阵,并最终将线性方程组化简为上三角形式。
步骤如下:1. 构建增广矩阵:将系数矩阵和常数向量合并成一个增广矩阵。
2. 初等行变换:利用加减乘除的运算,将增广矩阵化为上三角矩阵。
3. 回代求解:从方程组的最后一行开始,依次求解每个变量。
二、矩阵的逆解法对于非奇异矩阵(可逆矩阵),可以利用矩阵的逆求解线性方程组。
设线性方程组为Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。
解法如下:1. 判断A是否可逆:计算矩阵A的行列式,若不为零,则A可逆。
2. 计算逆矩阵:利用伴随矩阵法或初等变换法,求解A的逆矩阵A^-1。
3. 求解线性方程组:利用逆矩阵的性质,有 x=A^-1b。
三、克拉默法则克拉默法则是一种求解线性方程组的特殊方法,它通过计算行列式的比值来求解每个未知数的值。
步骤如下:1. 列出增广矩阵:将线性方程组化为增广矩阵形式。
2. 计算行列式:利用增广矩阵的系数部分,计算系数矩阵A的行列式det(A)。
3. 计算未知数:利用克拉默法则,有 xi=det(Ai)/det(A),其中Ai是用b替换第i列得到的矩阵。
四、LU分解法LU分解法是一种将矩阵A分解为下三角矩阵L和上三角矩阵U的方法。
通过LU分解后,可以利用前代法和回代法求解线性方程组。
步骤如下:1. 进行LU分解:将系数矩阵A分解为下三角矩阵L和上三角矩阵U,有 A=LU。
2. 利用前代法求解Ly=b:先解 Ly=b 得到y的值。
3. 利用回代法求解Ux=y:再解 Ux=y 得到x的值。
总结:本文介绍了矩阵的线性方程组解法,包括高斯消元法、矩阵的逆解法、克拉默法则和LU分解法。
线性方程组的消元法与矩阵法
![线性方程组的消元法与矩阵法](https://img.taocdn.com/s3/m/8fbd22241fd9ad51f01dc281e53a580216fc509c.png)
线性方程组的消元法与矩阵法线性方程组是数学中的一个重要概念,它广泛应用于物理、经济、金融等领域中。
在解决实际问题中,我们通常采用消元法和矩阵法来求解线性方程组。
一、线性方程组消元法消元法是一种代数方法,可以用来解决线性方程组。
这种方法的基本思想是先通过一系列等式变形,消去某些未知数,以便求出其他未知数。
这样,我们就能逐步减少未知数的数量,最终得出一个或多个未知数的值。
以三元一次方程组为例:$$\begin{cases}2x+3y-4z=9\\3x-2y+z=-6\\x+4y-3z=5\end{cases}$$消元法的一般步骤如下:1. 将方程组写成增广矩阵的形式。
$$ \begin{bmatrix} 2 & 3 & -4 & | & 9 \\ 3 & -2 & 1 & | & -6 \\ 1 & 4 & -3 & | & 5 \end{bmatrix} $$2. 选取一行或一列作为基准行或基准列,并通过列运算或行运算将其他行或列化成与之相似的形式。
3. 重复第2步,逐步消去所有未知数。
在这个例子中,我们选取第一行第一列的元素2作为基准元。
我们可以将第二行的第一列元素3变为0,通过将第二行乘以$-\frac{3}{2}$,再加到第一行上。
$$ \begin{bmatrix} 2 & 3 & -4 & | & 9 \\ 0 & -\frac{13}{2} &\frac{11}{2} & | & -\frac{33}{2} \\ 1 & 4 & -3 & | & 5 \end{bmatrix} $$然后,我们可以选取第二行第二列的元素$-\frac{13}{2}$作为基准元,将第三行的第二列元素4变为0,通过将第三行乘以$-\frac{1}{13}$,再加到第二行上。
线性方程组的矩阵表示与应用
![线性方程组的矩阵表示与应用](https://img.taocdn.com/s3/m/083c6ed6dc88d0d233d4b14e852458fb760b3848.png)
线性方程组的矩阵表示与应用线性方程组是数学中重要且常见的概念,它可以通过矩阵的形式进行表示和求解。
本文将详细介绍线性方程组的矩阵表示方法以及其在实际应用中的意义。
一、线性方程组的矩阵表示线性方程组是由一组线性方程组成的数学模型。
通常情况下,线性方程组可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁、a₁₂、...、aₙₙ为已知系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为已知常数。
为了方便表示和计算,我们可以将线性方程组转化为矩阵的形式。
假设 A 是一个 m×n 的矩阵,其中 aᵢₙ表示线性方程组中第 i 个方程中未知数 xₙ 的系数。
并且,b 是一个 m 维列向量,表示线性方程组中的常数项。
则线性方程组可以表示为矩阵乘法的形式:Ax = b其中,x 是一个 n 维列向量,表示线性方程组的解。
二、线性方程组的矩阵应用1. 线性方程组的解线性方程组的矩阵表示使得求解过程更加简便。
通过将线性方程组表示为矩阵形式,可以利用矩阵的性质和运算方法求解方程组的解。
一般来说,我们可以使用高斯消元法、矩阵的逆等方法来求解线性方程组的解。
2. 线性方程组的唯一性线性方程组的解不一定存在,但如果线性方程组的系数矩阵 A 是满秩的,即矩阵 A 的秩等于其行数或列数,那么该线性方程组必然存在唯一解。
这是因为满秩的矩阵 A 能够通过初等行变换得到行最简形式的矩阵,从而唯一确定解的值。
3. 线性方程组与向量空间线性方程组的解空间与矩阵的零空间有密切关系。
线性方程组的所有解构成一个向量空间,称为齐次方程组的解空间。
这个解空间是由零空间中的一个特解加上齐次方程组的基础解系所张成的。
4. 线性方程组的应用线性方程组的矩阵表示在许多实际问题中具有广泛的应用。
矩阵求方程组的解
![矩阵求方程组的解](https://img.taocdn.com/s3/m/0f60f13ea7c30c22590102020740be1e650ecceb.png)
要求解一个线性方程组,可以使用矩阵来表示。
假设我们有以下形式的线性方程组:
Ax = b
其中A是一个m×n的系数矩阵,x是一个n维列向量(未知数向量),b是一个m维列向量(常数向量)。
要求解这个方程组,可以采用以下步骤:
1.确定系数矩阵A和常数向量b的维度。
2.如果A是一个方阵且可逆,即det(A) ≠0,则可以通过求解x = A^(-1) b来计算未知数
向量x。
其中A^(-1)是A的逆矩阵。
3.如果A不是方阵或不可逆,那么可以使用线性代数的其他方法来求解方程组,如高斯
消元法、LU分解、QR分解等。
●高斯消元法:通过将方程组转化为上三角矩阵形式,然后回代求解未知数。
●LU分解:将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,然后利用
LU分解的性质求解方程组。
●QR分解:将系数矩阵A分解为一个正交矩阵Q和一个上三角矩阵R,然后通过QR
分解的性质求解方程组。
这些方法可以根据具体的情况和计算要求选择使用。
需要注意的是,当方程组存在无穷多解或没有解时,矩阵求解可能会得到特殊结果,如最小二乘解等。
总之,通过将线性方程组转化为矩阵形式,并应用逆矩阵、高斯消元法、LU分解、QR分解等方法,我们可以求解线性方程组并得到未知数向量x的解。
矩阵与方程组的解法
![矩阵与方程组的解法](https://img.taocdn.com/s3/m/9a6d899585254b35eefdc8d376eeaeaad1f316f9.png)
矩阵与方程组的解法在线性代数中,矩阵与方程组是重要的研究对象。
矩阵可以被用来表示一组线性方程,而方程组则是由多个线性方程组成的系统。
解决方程组的一个基本方法是使用矩阵运算。
本文将介绍几种常见的矩阵与方程组的解法。
一、高斯消元法高斯消元法是一种基本的线性方程组求解方法。
它通过一系列的行变换将方程组转化为简化行阶梯形式。
具体步骤如下:1. 将方程组的系数矩阵与常数矩阵合并为增广矩阵。
2. 通过行变换,将矩阵转化为上三角形矩阵,即每一行从左至右的第一个非零元素为1,其它元素均为0。
3. 从最后一行开始,逐行用“倍加”法将每一行的首个非零元素化为1,同时将其它行的相应元素消为0。
通过高斯消元法,可以得到简化行阶梯形矩阵,从而求得方程组的解。
二、矩阵求逆法对于方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵,如果A可逆,则可以通过以下公式求解:X = A^-1 * B其中A^-1为A的逆矩阵。
为了求得逆矩阵,可以使用伴随矩阵法或初等变换法。
伴随矩阵法:1. 求得矩阵A的伴随矩阵Adj(A),即将A中每个元素的代数余子式按一定次序排成一个矩阵。
2. 计算A的行列式det(A)。
3. 若det(A)不等于0,则A可逆,将伴随矩阵Adj(A)除以det(A),即可得到逆矩阵A^-1。
初等变换法:1. 构造一个n阶单位矩阵I,将A和I相连接成增广矩阵(A|I)。
2. 通过初等行变换将矩阵A转化为上三角矩阵。
3. 继续进行初等行变换,将上三角矩阵转化为单位矩阵。
4. 此时,矩阵I右侧的矩阵即为矩阵A的逆矩阵A^-1。
三、克拉默法则对于n个未知数和n个线性方程的齐次线性方程组,克拉默法则提供了一种求解方法。
该方法通过计算每个未知数的系数矩阵的行列式来求解。
设方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。
如果矩阵A的行列式det(A)不为0,则可以通过以下公式求解:X_i = det(A_i) / det(A)其中X_i为方程组的第i个未知数,A_i是将A矩阵中第i列替换为常数矩阵B后得到的矩阵。
矩阵解方程组的方法
![矩阵解方程组的方法](https://img.taocdn.com/s3/m/e17a8c7b30126edb6f1aff00bed5b9f3f90f72ed.png)
矩阵解方程组的方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的重要概念,而矩阵解方程组也是线性代数中的基础内容之一。
在实际应用中,往往会遇到包含多个未知数和多个方程的方程组,如何通过矩阵的方法来高效地解决这些方程组成了一项重要的技能。
本文将介绍矩阵解方程组的方法,包括高斯消元法、矩阵求逆法以及克拉默法则等。
一、高斯消元法高斯消元法是解线性方程组的一种基本方法。
它的基本思想是通过对方程组进行一系列的行变换,将其转化为简化的阶梯形或行最简形,从而得到方程组的解。
下面通过一个具体的例子来说明高斯消元法的应用。
考虑如下的线性方程组:\begin{cases}2x + 3y - z = 1 \\3x + 2y + z = 3 \\x - y + 2z = 9\end{cases}首先将上述的方程组写成增广矩阵的形式:然后通过一系列的行变换,将增广矩阵转化为简化的阶梯形:\begin{bmatrix}1 & -1 &2 & | & 9 \\0 & 5 & -5 & | & -10 \\0 & 0 & 1 & | & 0\end{bmatrix}最后通过反向代入法,可以求得方程组的解为x=2, y=-2, z=0。
二、矩阵求逆法A = \begin{bmatrix}1 &2 \\2 & 1\end{bmatrix},X = \begin{bmatrix}x \\y\end{bmatrix},B = \begin{bmatrix}3 \\4\end{bmatrix}然后求解系数矩阵A 的逆矩阵A^{-1}:最后通过矩阵乘法,可以求得方程组的解为X = A^{-1}B =\begin{bmatrix}1 \\1\end{bmatrix}。
三、克拉默法则首先求解系数矩阵A 的行列式|A|:然后求解系数矩阵A 分别替换成结果矩阵B 的行列式|B_x| 和|B_y|:最后通过克拉默法则,可以求得方程组的解为x = \frac{|B_x|}{|A|} = \frac{-5}{-3} = \frac{5}{3},y = \frac{|B_y|}{|A|} = \frac{-2}{-3} = \frac{2}{3}。
线性代数方程组求解
![线性代数方程组求解](https://img.taocdn.com/s3/m/256dbdbef71fb7360b4c2e3f5727a5e9856a27a7.png)
线性代数方程组求解线性代数方程组是线性代数中一个重要的概念,它描述了一组线性方程的集合。
求解线性代数方程组是线性代数中的一项基本任务,它对于解决实际问题和数学推理都具有重要意义。
本文将介绍线性代数方程组的求解方法,包括矩阵消元法和矩阵的逆。
矩阵消元法矩阵消元法是求解线性代数方程组的一种常用方法。
它通过消元和回代两个步骤来求解方程组。
具体步骤如下:1.构造增广矩阵:将线性方程组的系数矩阵和常数向量按列合并,得到增广矩阵。
2.初等行变换:对增广矩阵进行初等行变换,将其转化为阶梯形矩阵或行最简形矩阵。
3.回代求解:从最后一行开始,逐步代入求解未知数,得到方程组的解。
矩阵消元法的优点是简单直观,容易理解和实现。
然而,当矩阵的行数和列数较大时,矩阵消元法的计算复杂度会很高,需要消耗大量的时间和计算资源。
矩阵的逆除了矩阵消元法,我们还可以使用矩阵的逆来求解线性代数方程组。
矩阵的逆是一个与原矩阵相乘后得到单位矩阵的矩阵。
对于给定的线性方程组Ax=b,我们可以通过以下步骤求解:1.计算矩阵A的逆矩阵A^-1。
2.将方程组转化为x=A^-1b。
3.计算x的值。
求解矩阵的逆的方法有多种,包括伴随矩阵法和初等变换法等。
其中,伴随矩阵法是一种常用的求解逆矩阵的方法。
它通过求解伴随矩阵和矩阵的行列式来计算矩阵的逆。
使用矩阵的逆求解线性代数方程组的优点是计算速度快,尤其适用于行数和列数较大的情况。
然而,矩阵的逆并不是所有矩阵都存在,如果矩阵不存在逆矩阵或逆矩阵存在但计算困难,则无法使用矩阵的逆求解方程组。
小结线性代数方程组的求解是线性代数中的一个重要问题,涉及到实际问题的解决和数学推理。
本文介绍了两种求解线性代数方程组的方法:矩阵消元法和矩阵的逆。
矩阵消元法通过消元和回代的过程来求解方程组,简单直观但计算复杂度较高;矩阵的逆通过求解矩阵的逆矩阵来求解方程组,计算速度快但存在逆矩阵不存在的情况。
根据具体问题的需求和矩阵性质的条件,选择合适的方法来求解线性代数方程组是十分重要的。
用矩阵求解线性方程组
![用矩阵求解线性方程组](https://img.taocdn.com/s3/m/d2d2afa8846a561252d380eb6294dd88d1d23d67.png)
用矩阵求解线性方程组在数学中,线性方程组是描述多个未知量和它们之间关系的方程组。
如果未知量数目等于方程数目,并且每个方程都是线性的,则方程组称为“线性方程组”。
解决线性方程组的常用方法之一是使用矩阵。
在本文中,我们将讨论使用矩阵求解线性方程组的方法。
1. 线性方程组和矩阵线性方程组可以用矩阵形式表示。
例如,以下线性方程组:2x + 3y - z = 1x - y + 2z = 3x + 2y - z = 0可以表示为矩阵方程:\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}其中,矩阵\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}称为系数矩阵,向量\begin{bmatrix} x \\ y \\ z \end{bmatrix}称为未知向量,向量\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}称为常向量。
2. 矩阵求解线性方程组的基本思路将线性方程组转换为矩阵方程后,可以使用矩阵的逆来求解未知向量。
具体来说,对于实数域上的矩阵方程AX = B如果矩阵A可逆,则可以将等式两边左乘A的逆矩阵A^-1,得到X = A^(-1)B其中,X和B都是列向量,A^-1是A的逆矩阵。
逆矩阵的定义是,如果存在一个矩阵A^-1,使得A^-1A = I其中,I是单位矩阵,则称A是可逆的,A^-1是A的逆矩阵。
对于实数域上的矩阵,如果矩阵的行列式不为0,则该矩阵可逆。
矩阵解方程组
![矩阵解方程组](https://img.taocdn.com/s3/m/e013af73bf23482fb4daa58da0116c175f0e1ea5.png)
矩阵解方程组矩阵解方程组1. 什么是矩阵解方程组?矩阵解方程组是一种通过用矩阵代数来简化n个线性方程求解的方法。
它们是用等式状态矩阵的形式来表示的,而变量的值则由未知矩阵X来决定。
与普通的线性解法相比,该方法能够更加快速地解决任何形式的n元线性方程组,并且能够解决任何情况的线性方程求解问题,比如有限及无线性个数的方程组。
2. 矩阵解方程组的步骤(1) 以向量形式总结出方程组中各等式:用矩阵解方程组所需要做的第一步是将n个线性等式以向量形式表述出来,即将方程组公式:a1X1+a2X2+…+anXn=bb1X1+b2X2+…+bnXn=cc1X1+c2X2+…+cnXn=d…变成矩阵的格式:[a1 a2 a3 … anb1 b2 b3 … bnc1 c2 c3 … cn]*[x1x2x3…xn]=[bcd](2) 构造方程组的增广矩阵:构造方程组的增广矩阵的下一步是将上述n个等式形式的矩阵扩展成一个n+1行的矩阵,即加入与未知变量数相同的那一列,这一列就是待求解的值向量。
(3) 用矩阵求解出该方程组:此时所得到的矩阵即为方程组的增广矩阵,可通过运用矩阵代数计算得出矩阵的逆矩阵,即求得X的值,从而求解出该线性方程组的解。
3. 矩阵解方程组的优势(1) 简化了求解复杂方程的步骤:由于矩阵解法大大简化了求解复杂方程的步骤,它能够通过多次分解矩阵实现“一步到位”式的求解。
(2) 适用范围广:矩阵解法不但能够解决任何情况的线性方程求解问题,而且它还可以用来解决同阶方程非线性方程组,甚至是高阶方程组。
(3) 更易于实现:矩阵运算使用向量计算的特定算法可以有效地减少计算步骤,从而可以更快速、更简单地实现。
4. 结论矩阵解法是用矩阵代数来解决任何形式的n元线性方程求解问题的一种高效有力的算法。
它大大简化了复杂方程的求解过程,不但可以解决线性方程组,还可以解决非线性方程组等复杂方程组,并且容易实现。
因此,矩阵解方程组受到众多学者的关注,在解决复杂方程组中也有着广泛的应用。
如何用矩阵解决线性方程组
![如何用矩阵解决线性方程组](https://img.taocdn.com/s3/m/c6406162182e453610661ed9ad51f01dc28157f6.png)
如何用矩阵解决线性方程组矩阵是解决线性方程组的强大工具,其在数学和工程领域中被广泛应用。
本文将介绍如何使用矩阵解决线性方程组的步骤和方法,以及说明其在实际问题中的应用。
一、什么是线性方程组线性方程组是由多个线性方程组成的方程系统。
一个线性方程的一般形式可以表示为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b。
其中,a₁, a₂, ...,aₙ是常数,x₁, x₂, ..., xₙ是待解变量,b是常数项。
二、使用矩阵表示线性方程组为了使用矩阵求解线性方程组,我们可以将线性方程组的系数矩阵、变量矩阵和常数矩阵表示为如下形式:[A] * [X] = [B]其中,[A]是一个m×n的矩阵,[X]是一个n×1的列向量,[B]是一个m×1的列向量。
m代表方程的个数,n代表变量的个数。
三、高斯消元法高斯消元法是解决线性方程组的一种常用方法。
它通过矩阵的行变换来化简方程组,使得方程组的解更易求得。
1. 构建增广矩阵为了使用高斯消元法,我们需要将线性方程组的系数矩阵和常数矩阵合并成一个增广矩阵。
增广矩阵的形式如下:[A | B]2. 初等行变换通过初等行变换,我们可以将增广矩阵化简为一个上三角矩阵或者行最简形矩阵。
初等行变换包括以下三种操作:a) 交换两行b) 用一个非零常数乘以某一行c) 将某一行的倍数加到另外一行上通过不断进行初等行变换,我们可以将增广矩阵化简为上三角矩阵。
上三角矩阵的解非常容易求得。
3. 回代求解根据上三角矩阵的特点,我们可以从最后一行开始,逐个求解变量的值。
通过回代法,我们可以求得线性方程组的解。
四、使用逆矩阵求解除了高斯消元法,我们还可以使用逆矩阵来求解线性方程组。
逆矩阵的定义为:若矩阵A与其逆矩阵A⁻¹相乘后等于单位矩阵I,则称A 为可逆矩阵。
使用逆矩阵求解线性方程组的步骤如下:1. 求解逆矩阵首先,我们需要求解系数矩阵[A]的逆矩阵[A⁻¹]。
线性方程组的矩阵求法
![线性方程组的矩阵求法](https://img.taocdn.com/s3/m/a45e093408a1284ac9504378.png)
线性方程组的矩阵求法摘要:关键词:第一章引言矩阵及线性方程组理论是高等代数的重要内容,用矩阵方法解线性方程组又是人们学习高等代数必须掌握的基本技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。
第二章用矩阵消元法解线性方程组第一节预备知识定义1: 一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。
定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。
定义2:定义若阶梯形矩阵满足下面两个条件:(1)B的任一非零行向量的第一个非零分量(称为的一个主元)为1;(2)B中每一主元是其所在列的唯一非零元。
则称矩阵为行最简形矩阵。
第二节1.对一个线性方程组施行一个初等变换,相当于对它的增广矩a in X nb 1,(1) a 2n X nb 2, LLLLLLLLLLLLa m1X 1 a m2X 2 La mn X nb m.a m1阵施行一个对应的行初等变换,而化简线性方程组相当于用行初 等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论 化简线性方程组的问题。
这样做不但讨论起来比较方便,而且能 给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方 程组,而不必每次都把未知量写出来。
下面以一般的线性方程组为例,给出其解法:根据方程组可知其系数矩阵为:a mn其增广矩阵为:根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程 组,并很容易得到其解。
定理2:设A 是一个m 行n 列矩阵a ii a i2La in a 2ia 22La 2n(2)LLLLLLLLLa 11a i2L a i nb i a 21 a 22L a 2nb 2L LL L L L L L L L L La m1a m2La mnb m(3)a 〔i X ia 〔2 X 2a11 耳2 L a1na21 a22 L a2nA= L L L L L L L L La m1 a m2 L a mn通过行初等变换和第一种列初等变换能把A化为以下形式1 * i If L * * L * 1 0 0 L 0 C1,r 1 L C1n0 1 ' * L * * L * 0 1 0 L 0 C2,r 1 L C2nL L L L L L L L L L L L L L L L L L L L L L ⑷00 0 L 1 * L * 进而化为(5)00 0 L 1 C r,r 1 L C rn0L L L L L L L L L 0 0L L L L L L L L L L L 0 L L L L L L L L L L L L L L L L L L L L L L OLLLLLLLLLO OLLLLLLLLLLLO这里r 0,r m, r n ,表示矩阵的元素,但不同位置上的表示的元素未必相等。
矩阵与线性方程组的基本概念与求解方法
![矩阵与线性方程组的基本概念与求解方法](https://img.taocdn.com/s3/m/200cca35f56527d3240c844769eae009591ba270.png)
矩阵与线性方程组的基本概念与求解方法矩阵与线性方程组是线性代数中的重要概念,它们在数学、物理、计算机科学等众多领域中都有广泛的应用。
本文将介绍矩阵的基本概念、线性方程组的表示和求解方法,并对其应用进行简要讨论。
一、矩阵的基本概念矩阵是由数个数按照矩形排列而成的矩形数组。
通常用大写字母表示矩阵,例如A、A、A。
一个A×A的矩阵有A行A列。
矩阵中的每个数叫作元素,元素常用小写字母表示,例如A11、A12、A21。
元素 aij 表示矩阵中第A行第A列的元素。
二、线性方程组的表示线性方程组是由多个线性方程联立而成的方程组。
一般形式为:A11A1 + A12A2 + ⋯ + A1AAA = A1A21A1 + A22A2 + ⋯ + A2AAA = A2⋮AA1A1 + AA2A2 + ⋯ + AAAAA = AA其中,A1、A2、⋯、AA是未知数,A1、A2、⋯、AA是已知常数,A11、A12、⋯、AAA是已知系数。
我们可以使用矩阵的形式来表示线性方程组,将未知数和常数分别组成矩阵A和A,并将系数矩阵A表示为:[A11 A12 ⋯A1A ][A21 A22 ⋯A2A ][⋮⋮⋱⋮ ][AA1 AA2 ⋯AAA ]则线性方程组可以表述为AA = A。
三、求解线性方程组的方法1. 列主元消去法列主元消去法是一种利用矩阵的行变换来求解线性方程组的方法。
基本步骤如下:(1)选取系数矩阵的第一行的绝对值最大的元素所在的列,将该列的元素作为主元所在列。
(2)通过行变换,将主元所在列的其他元素变为零。
(3)选取剩余未使用的行中,同样以列主元消去法进行操作,直到得到一个上三角矩阵。
(4)通过回代法求解得到线性方程组的解。
2. 克拉默法则克拉默法则是一种通过行列式的计算来求解线性方程组的方法。
该法则适用于方程个数与未知数个数相等的线性方程组。
基本步骤如下:(1)由系数矩阵的行列式计算出其值。
(2)分别用已知常数替换掉系数矩阵的第A列,并计算出新的系数矩阵的行列式值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性方程组的矩阵求法摘要:关键词:第一章引言矩阵及线性方程组理论是高等代数的重要内容, 用矩阵方法解线性方程组又是人们学习高等代数必须掌握的基本技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。
第二章用矩阵消元法解线性方程组第一节预备知识定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。
定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。
定义2:定义若阶梯形矩阵满足下面两个条件:(1)B的任一非零行向量的第一个非零分量(称为的一个主元)为1;(2)B中每一主元是其所在列的唯一非零元。
则称矩阵为行最简形矩阵。
第二节1.对一个线性方程组施行一个初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。
这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。
下面以一般的线性方程组为例,给出其解法:(1)11112211 211222221122,,.n nn nm m mn n m a x a x a x ba x a x a x ba x a x a x b+++=+++=+++=LLL L L L L L L L L L L LL根据方程组可知其系数矩阵为:(2)111212122212nn m m mna a aa a aa a a⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭LLL L L L L L L L LL其增广矩阵为:(3)11121121222212nnm m mn m a a a ba a ab a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭LLL L L L L L L L L L L LL根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。
定理2:设A是一个m行n列矩阵A=111212122212n nm m mn a a a a a a a a a ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭L L L L L L L L L L L L通过行初等变换和第一种列初等变换能把A 化为以下形式(4)1*****01****0001**0000⎛⎫⎪ ⎪⎪⎪⎪ ⎪ ⎪⎪⎪⎝⎭L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L 进而化为(5)1,112,12,11000010000010000r n r n r r rn c c c c c c +++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L这里r ≥0,r ≤m, r ≤n , *表示矩阵的元素,但不同位置上的*表示的元素未必相等。
即任何矩阵都可以通过初等变换化为阶梯形,并进而化为行最简形现在考察方程组(1)的增广矩阵(3),由定理2我们可以对(1)的系数矩阵(2)施行一次初等变换,把它化为矩阵(5),对增广矩阵(3)施行同样的初等变换,那么(3)可以化为以下形式:(6)1,1112,122,111000010000010000r nr n r r rnr r m c c d c c d c c d d d ++++⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L 与(6)相当的线性方程组是:(7)112111,1112,122,11,,,0,0,r n r n rr n i r i n i i r i n i i r r i rn i r r m x c x c x d x c x c x d x c x c x d d d ++++++++++=+++=+++===L L L L L L L L L L L L L L L L L L L L L L L L L这里1i ,2i ,…,n i 是1,2,…,n 的一个排列,由于方程组(7)可以由方程组(1)通过方程组的初等变换以及交换未知量的位置而得到,所以由定理1,方程组(7)与方程组(1)同解。
因此,要求方程组(1),只需解方程组(7),但方程组(7)是否有解以及有怎样的解很容易看出:情形(1),r<m,而1r d +,…, m d 不全为零,这时方程组(7)无解,因为它的后m-r 个方程中至少有一个无解。
因此方程组(1)也无解。
情形(1),r=m 或r<m 而1r d +,…, m d 全为零,这时方程组(7)与方程组(8) 112111,1112,122,1,,r n r n r r n i r i n i i r i n i i r r i rn i rx c x c x d x c x c x d x c x c x d +++++++++=+++=+++=L L L L L L L L L L L L L LL 同解。
当r=n 时,方程组(8)有唯一解,就是ti x =td ,t=1,2,…,n.这也是方程组(1)的唯一解当r<n 时方程组(8)可以改写为(9)1121111,1122,12,1,,r n r n r r ni r i n i i r i n i i r r r i rn i x d c x c x x d c x c x x d c x c x ++++++=---=---=---L L L L L L L L L L L L L LL于是,给予未知量1r i x +,…,ni x 以任意一组数值1r i k +,…ni k ,就得到(8)的一个解:1111111,11,1,,,.r n r r n r r n n i r i n i i r r r i rn i i i i i x d c k c k x d c k c k x k x k ++++++=---=---==L L L L L L L L L L L L L L L L L这也是(1)的一个解。
由于1r i k +,…ni k 可以任选,用这一方法可以得到(1)的无穷多解。
另一方面,由于(8)的任一解都必须满足(9),所以(8)的全部解,亦即(1)的全部解都可以用以上方法得到。
例1:解线性方程组123412412341234235,243,2328,29521.x x x x x x x x x x x x x x x +++=+-=---++=+--=-解:方程组的增广矩阵是123152401312328129521⎛⎫⎪-- ⎪⎪--⎪---⎝⎭ 进行初等行变换可得到矩阵最简形131222113001260000000000⎛⎫-- ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ 0 对应的线性方程组是124341322211326x x x x x +-=-+=把移到右边作为自由未知量,得原方程组的一般解12434312,22131.62x x x x x =--+=-第三章 用初等变换解线性方程组定义2:设B 为m ⨯n 行最简形矩阵, 按以下方法作s ⨯n 矩阵C:对任一i : 1i s ≤≤, 若有B 的某一主元位于第i 列, 则将其所在行称为C 的第i 行, 否则以n 维单位向量(0,,0,1,0,0)i e =-L L 作为C 的第i 行, 称C 为B 的s ⨯n 单位填充矩阵(其中1i s ≤≤).显然, 单位填充矩阵的主对角线上的元素只能是“1”或“ -1” , 若主对角线上某一元素为“-1” , 则该元素所在列之列向量称为C 的“ J 一列向量” 。
定义3:设B 为行最简形矩阵, 若B 的单位填充矩阵C 的任一“ J 一列向量”均为以B 为系数矩阵的齐次线性方程组:(1)1111221211222211220,0,0.n nn nm m mn nb x b x b xb x b x b xb x b x b x+++=+++=+++=LLL L L L L L L L L L L LL(1)的解向量,则陈C与B是匹配的(也说B与C是匹配的)。
引理1:设B为行最简形矩阵,若将B的第i列与第j列交换位置所得矩阵仍为行最简形矩阵,则:(Ⅰ)将的单位填充矩阵的第行与第行交换位置,第列与第列交换位置所得矩阵为单位填充矩阵,其中(Ⅱ)若C与B是匹配的,则'C与'B也是匹配。
证明:结论(Ⅰ)显然成立,下证(Ⅱ),因为C与B是匹配的,故C只能是n⨯n矩阵, 从而'C也是n⨯n矩阵, 设以B为系数矩阵的方程组为(1), 以'B为系数矩阵的方程组为(1),以'B为系数矩阵的方程组为:'''1111221'''2112222'''11220,0,0.n nn nm m mn nb x b x b xb x b x b xb x b x b x+++=+++=+++=LLL L L L L L L L L L L LL(2)则由B与'B的关系可知对方程组(1)进行变量代换。
11,,j j n nx y x y x y===L L就得到方程组(2), 于是方程组(1)的任一解向量交换i、j两个分量的位置后就是方程组(2)的一个解向量, 又从C与'C的关系可知, 'C的任一“J一列向量”均可由C的某一“J一列向量”交换i、j 两个分量的位置后得到, 从而由C与B匹配知'C与'B也是匹配的。
引理2:任一m⨯n行最简形矩阵与其n⨯n单位填充矩阵C是匹配的。
证明:1设1,11,212,12,22,1,2100010010********00r r n r r n r r r r rn n nb b b b b b B b b b ++++++⨯⎛⎫⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭L L L L L LL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L LL L L L(3) 则以为系数矩阵的齐次线性方程组为:11,111,22122,112,222,11,220,0,0r r r r n n r r r r n n r r r r r r r mn n x b x b x b x x b x b x b x x b x b x b x ++++++++++++++++=++++=++++=L L L L L L L L L L L L L L L LL (4)而B 的单位填充矩阵为:1,11,212,12,22,1,2100010010********01r r n r r n r r r r rn n nb b b b b b C b b b ++++++⨯⎛⎫⎪ ⎪ ⎪⎪= ⎪ ⎪- ⎪ ⎪⎪ ⎪-⎝⎭L L L L L LL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L LL L L L(5) 其所有J 一列向量为11,1,121,2,21,,(,,1,0,0)(,,0,1,0)(,,0,0,1)r r r r r r r r n n r n b b b b b b ηηη++++++=-=-=-L L L L L L L L L L L L L L L L L L L LL L L显然它们都是方程组(4)的解, 即B 与C 是匹配的.2,一般形式的行最简形矩阵B 显然总可以通过一系列的第二类初等列变换(变换两列的位置)化为(3)的形式, 从而B 的单位填充矩阵C 通过相应的初等行、列变换就变成矩阵(5), 由于这种变换是可递的,据引理2及引理1(Ⅱ) 知B 与C 是匹配的。