合肥市2019年度高三三模理科数学试题及答案解析

合集下载

安徽省合肥市2019届高三第三次教学质量检测数学理科试题(解析版)

安徽省合肥市2019届高三第三次教学质量检测数学理科试题(解析版)

1.已知 R 是实数集,集合 A = {-1,0,1}, B = {x 2 x - 1 ≥ 0},则 A ( B )= (B. {1}C. ⎢ ,1⎥D. -∞, ⎪ 镲x 铪镲x 铪2.已知 i 是实数集,复数 z 满足 z + z ⋅ i = 3 + i ,则复数 z 的共轭复数为(合肥市 2019 高三第三次教学质量检测数学试题(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的 .R)A. {-1,0}⎡ 1 ⎤⎣ 2 ⎦ ⎛ 1 ⎫ ⎝ 2 ⎭【答案】A【解析】【分析】先求出集合 B 的补集再与集合 A 进行交集运算。

【详解】禳 1 B = 睚 | x ? 镲 2禳1 \ C B = 睚 | x < R 镲2即 A ? (C RB){- 1,0}故选 A 。

【点睛】考查描述法的定义,以及交集、补集的运算.在解题过程中,正确求出补集和交集是关键。

.. )A. 1+ 2i【答案】C【解析】【分析】B. 1- 2iC. 2 + iD. 2 - i将 z + z ⋅ i = 3 + i 化为 z = 3 + i 1 + i,对其进行化简得到 z = 2 - i ,利用共轭复数的性质得到 z = 2 + i 。

【详解】 z + z ⋅ i = 3 + i 可化 z =3 + i1 + iz = 3 + i 【详解】输入 x = -1 , y = ⨯ (-1)+ 1 = .3 74 4 3 19 74 16 16(3 + i )(1- i) 4 - 2i = = =2- i1+ i (1+ i )(1- i) 2∴ z 的共轭复数为 z = 2 + i故选 C 。

【点睛】在对复数的除法进行化简时,要采用分子分母同时乘以分母的共轭复数,使分母“实数化”。

3.执行如图所示 程序框图,若输入 x = -1 ,则输出的 y = ()的A.1 4B.3 4C.7 16D.19 16【答案】D【解析】【分析】按程序框图指引的顺序依次执行,写出各步的执行结果即可得到答案1 33 , | x - y |= -1 - = < 1 不成立, x = ;4 4 41 3 19 19 y = ⨯ + 1 = , | x - y |= - = < 1 成立,跳出循环,输出 y = .故选 D.4 4 16 16【点睛】本题考查循环结构程序框图的输出结果.当程序执行到判断框时要注意判断循环条件是否成立,是A. 149C.20D. 7⎪ 1⎪⎩ 6 2⎪⎪ 1 9 ⎪d = 2 . ⎪9a 12继续下一次循环,还是跳出循环.4.已知 S n 是等差数列{a n }的前 n 项和,若 a 1 + a 2 + a 3 = 4 , S 6 = 10 ,则 a 3 = ()9 B.163【答案】A【解析】【分析】列出关于 a 1,d 的方程组并解出,即可求得 a 3的值.【详解】设等差数列{a n}的公差为 d .⎧a + a + a = 3a + 3d = 4, 2 3 1 由题意得 ⎨ 6 ⨯ 5 S = 6a + d = 10, 1解得 ⎨ ⎩ 9⎧ 10a = ,所以 a = a + 2d = 1431.故选 A.【点睛】本题考查等差数列的通项公式和前 n 项和. a 1,d 等差数列的通项公式和前 n 项和公式中的基本量,等差数列的相关问题往往要通过列关于 a 1,d 的方程组来求 a 1,d .5.某企业的一种商品的产量与单位成本数据如下表:产量 x (万件) 1416 18 2022单位成本 y (元/件)1073若根据表中提供的数据,求出 y 关于 x 的线性回归方程为 y = -1.15x + 28.1,则 a 的值等于( )A. 4.5B. 5C. 5.5D. 6【详解】 x = 14 +16 +18 +20 +22 6.若直线 y = k (x + 1)与不等式组 ⎨3x - y ≤ 3 表示的平面区域有公共点,则实数 k 的取值范围是( )⎪2x + y ≥ 2 ˆ ˆx ,y ˆ ˆˆ画出不等式组 ⎨3x - y ≤ 3 表示的平面区域,直线 y = k (x + 1)过定点 A(-1,0) ,数形结合得出 0 #k ⎪2x + y ≥ 2【答案】B【解析】【分析】求出 x , y 将其代入线性回归方程 y = -1.15x + 28.1,即可得出 a 的值。

安徽省合肥市2019年高三第三次模拟考试理科综合试题及答案

安徽省合肥市2019年高三第三次模拟考试理科综合试题及答案

合肥市2019年高三第三次教学质量检测理科综合试题可能用到的相对原子质量:H:l B:11 C:l2 N:14 0:16 P:31 S:32 Fe:56 Ba:137第I卷一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞结构与功能共性的叙述错误的是A.遗传信息都贮存在DNA中B.都具有与细胞呼吸有关的酶C.都具有复杂的生物膜系统D.都存在ATP与ADP的相互转化2.下列实验与所用试剂对应正确的是A.检测尿糖的含量——双缩脲试剂B.检测酵母菌酒精的产生——溴麝香草酚蓝水溶液C.观察生活状态的线粒体形态和分布——健那绿染液D.观察DNA和RNA在细胞中的分布——龙胆紫或醋酸洋红溶液3.以下关于病毒的叙述,正确的是A.病毒增殖所需的能量来自自身的呼吸作用B.病毒的外壳蛋白在宿主细胞的核糖体上合成C.RNA病毒都能以RNA为模板合成DNA分子D.通常DNA病毒比RNA病毒更容易发生变异4.对野生型枯草杆菌进行紫外线照射,获得抗链霉素的突变型枯草杆菌。

分子水平的研究发现,突变型枯草杆菌的核糖体S12蛋白质第56位氨基酸与野生型不同,导致链霉素无法与突交型枯草杆菌的核糖体结合。

以下分析正确的是A.第56位氨基酸出现差异的原因可能是紫外线干扰翻译过程B.链霉素可与野生型枯草杆菌的核糖体结合,抑制其转录过程C.突变型枯草杆菌的变异类型可能是基因突变或者染色体变异D.链霉素可对枯草杆菌进行选择,提高链霉素抗性基因的频率5.科研人员分别使用不同浓度的IAA合成抑制剂处理豌豆茎切段得到茎的伸长量如下图所示。

下列相关叙述错误的是A.未添加抑制剂前,茎切段中内源IAA的浓度大于最适浓度B 20 mg.L-1的IAA合成抑制剂能直接促进茎切段生长C 40 mg.L-1的lAA合成抑制剂对茎切段的伸长生长无明显的作用D.160 mg.L-l的IAA合成抑制剂作用下,茎切段中IAA浓度低于最适浓度6.某坡耕地退耕还林后,经历了草地、灌木、森林阶段的演替。

2019-2020学年合肥市高考第三次教学质量检测数学模拟试题(理)有答案

2019-2020学年合肥市高考第三次教学质量检测数学模拟试题(理)有答案

合肥市高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z = A.3 B.2 C.3 D.22.已知集合{}220A x R x x =∈-≥,{}2210B x R x x =∈--=,则()C R A B =IA.∅B.12⎧⎫-⎨⎬⎩⎭C.{}1D.1 12⎧⎫-⎨⎬⎩⎭,3.已知椭圆2222:1y x E a b+=(0a b >>)经过点A()5 0,,()0 3B ,,则椭圆E 的离心率为 A.23B.5C.49 D.594.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是 A.-1,3B.13,3C.-1,13,3D.13,12,35.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()()*12nx n N -∈展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为A.64B.32C.1D.1-7.已知非零实数a b ,满足a a b b >,则下列不等式一定成立的是A.33a b >B.22a b >C.11a b < D.1122log log a b < 8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是A.3?k <B.4?k <C.5?k <D.6?k <9.若正项等比数列{}n a 满足()2*12n n n a a n N +=∈,则65a a -的值是A.2B.162-C.2D.16210.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有A.24B.48C.96D.12011.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.125B.40C.16123+D.16125+ 12.已知函数()22f x x x a =---有零点12x x ,,函数()2(1)2g x x a x =-+-有零点34x x ,,且3142x x x x <<<,则实数a 的取值范围是A.924⎛⎫-- ⎪⎝⎭,B.9 04⎛⎫- ⎪⎝⎭, C.(-2,0)D.()1 +∞,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡相应的位置.(13)若实数x y ,满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为.(14)已知()23 0OA =u u r ,,()0 2OB =uu u r ,,AC t AB t R =∈u u u r u u u r,,当OC uuu r 最小时,t =. (15)在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,.若45A =o ,2sin sin 2sin b B c C a A -=,且ABC ∆的面积等于3,则b =.(16)设等差数列{}n a 的公差为d ,前n 项的和为n S ,若数列{}n S n +也是公差为d 的等差数列,则=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知函数()13sin cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.(18)(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(19)(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB AC ⊥,AE BD ⊥,DE P 12AC ,AD=BD=1.(Ⅰ)求AB 的长;(Ⅱ)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.(20)(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F.若圆M 的面积最小值为π.EDCBA(Ⅰ)求p 的值;(Ⅱ)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA MB ,,且满足AMF BMF ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.(21)(本小题满分12分)已知函数()212x f x e x ax =--有两个极值点12x x ,(e 为自然对数的底数). (Ⅰ)求实数a 的取值范围; (Ⅱ)求证:()()122f x f x +>.请考生在第(22)、(23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于AB ,两点,求cos AOB ∠的值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (Ⅰ)解不等式()1f x x ≤+;(Ⅱ)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.合肥市高三第三次教学质量检测数学试题 (理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)4 (14)34(15)3 (16)1na=-或1524na n=-三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)(Ⅰ)()11cos cos22cos2234f x x x x x xπ⎛⎫=--=-⎪⎝⎭1sin226xπ⎛⎫=-⎪⎝⎭.令262x k k Zπππ-=+∈,,解得32kxππ=+.∴函数()f x图象的对称轴方程为32kx k Zππ=+∈,. …………………………5分(Ⅱ)易知()12sin223g x xπ⎛⎫=-⎪⎝⎭.∵02xπ⎡⎤∈⎢⎥⎣⎦,,∴222333xπππ⎡⎤-∈-⎢⎥⎣⎦,,∴2sin213xπ⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦,∴()121sin2232g x xπ⎡⎛⎫=-∈-⎢⎪⎝⎭⎣⎦,即当02xπ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦. …………………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人. ………………………8分(ⅱ)由题意可知,X的可能取值有0,1,2,3.()()302193933312128410801220220C C C CP X P XC C======,,()()1203939333121227123220220C C C C P X P X C C ======,, ∴X 的分布列是:X 0 1 23 P84220108220 272201220∴()84108271301232202202202204E X =⨯+⨯+⨯+⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE⊥平面ABD ,从而DE⊥BD .注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE ,于是,BD⊥AD . 而AD=BD=1,∴2AB =. ………………………5分(Ⅱ)∵AD=BD,取AB 的中点为O ,∴DO⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO⊥平面ABC.过O 作直线OY∥AC,以点O 为坐标原点,直线OB ,OY ,OD分别为x y z ,,轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤,22 0 0 0 0A B ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,, 22 2 00 0 C a D ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,20E a ⎛⎫- ⎪ ⎪⎝⎭,,,()2 2 0BC a =-,,u u u r ,22 0 BD ⎛⎫=- ⎪ ⎪⎝⎭,,u u u r . 令平面BCD 的一个法向量为()n x y z =,,r.由00BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r 得220220x ay x z ⎧-+=⎪⎨-+=⎪⎩.令2x =,得12 2n a ⎛⎫= ⎪⎝⎭,,r . 又∵()0 0DE a =-,,u u u r ,∴点E 到平面BCD 的距离2||14DE n d n a⋅==+u u u r rr . ∵12a ≤≤,∴当2a =时,d 取得最大值,max 217=144d =+.………………………12分(20)(本小题满分12分)(Ⅰ)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小,此时圆的半径为2p OF =,∴24P ππ=,解得2p =. ……………………4分(Ⅱ)依题意得,点M 的坐标为(1,2),圆M 的半径为2.由F (1,0)知,MF x ⊥轴.由AMF BMF ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴4422A A y y k k+==-,. 将k 换成k -,得42B y k=--, ∴22441444A B A B AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M2=,解得3m =±经检验3m =+3m =+.∴所求直线AB的方程为3y x =-+-. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--. 设()x g x e x a =--,则()1x g x e '=-. 令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分 (Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a e e x ---=+-=-+.设()2x x h x e e x -=-+,0x >,则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->.设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->,∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分 (Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=, 整理得2sin cos 3cos θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且tan =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+. (1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;(2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤.∴原不等式的解集为[]1 5,. …………………5分 (Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,, ()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}12M x x =-<<,{}13N x x =≤≤,则M N =(A)(]1,3- (B)(]1,2- (C)[)1,2 (D)(]2,3 (2)已知复数122iz i-=-(i 为虚数单位),则||z = (A)15 (B)35 (C)45(D)1(3)右图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.已知图中直角三角形两条直角边的长分别为2和3.若从右图内随机取一点,则该点取自阴影区域的概率为(A)23 (B)89(C)1213 (D)2425(4)已知实数x y ,满足条件00220x y x y x y -≤⎧⎪+≥⎨⎪+-≤⎩,则2z x y =-的取值范围是(A)26 3⎡⎤-⎢⎥⎣⎦, (B)20 3⎡⎤⎢⎥⎣⎦, (C)[)6 -+∞,(D)[)0 +∞, (5)已知直线:50l x y +-=与圆222:(2)(1)(0)C x y r r -+-=>相交所得的弦长为22,则圆C 的半径r =(A)2 (B)2 (C)22 (D)4(6)执行右面的程序框图,若输出的结果为15,则判断框中的条件是 (A)4?i < (B)5?i < (C)6?i < (D)7?i <(7)已知tan 3α=,则sin cos 22ππαα⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭的值为(A)310 (B)310- (C)35(D)35-(8)已知双曲线2222:1(00)x y M a b a b-=>>,的焦距为4,两条渐近线的夹角为60o ,则双曲线M 的标准方程是(A)2213x y -= (B)2213x y -=或2213y x -=(C)221124x y -= (D)221124x y -=或221412x y -=(9)已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于(A)488π+ (B)484π+ (C)648π+ (D)644π+(10)若将函数()()()2cos 1cos 1cos f x x x x =+-图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则函数()y g x =的单调递减区间为(A)()2k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (B)() 2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(C)()11 844k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (D)()11 484k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(11)已知函数()2cos x x f x e e x -=++,其中e 为自然对数的底数,则对任意a R ∈,下列不等式一定成立的是(A)()()212f a f a +≥ (B)()()212f a f a +≤ (C)()()211f a f a +≥+ (D)()()21f a f a +≤ (12)在ABC ∆中,90o CAB ∠=,1AC =,3AB =.将ABC ∆绕BC 旋转至另一位置P (点A 转到点P ),如图,D 为BC 的中点,E 为PC 的中点. 若32AE =,则AB 与平面ADE 所成角的正弦值是(A)38 (B)36 (C)34(D)33第Ⅱ卷二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上相应的位置.(13)若a 与b 的夹角为135o ,1a =,2b =,则a b +=__________.(14)已知数列{}n a 的前n 项和为n S ,11a =,()*12n n S S n N +=∈,则10a = .(15)将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在33⨯方格图所在正方形的同一条对角线上,则不同放法共有___________种.(16)已知()241x x x af x e x a ⎧-≤=⎨->⎩,,(其中0a <,e 为自然对数的底数),若()()g x f f x =⎡⎤⎣⎦在R 上有三个不同的零点,则a 的取值范围是___________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知等比数列{}n a 各项都是正数,其中3234 a a a a +,,成等差数列,532a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记数列{}2log n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .(18)(本小题满分12分)已知:在ABC ∆中,a b c ,,分别是角A B C ,,所对的边长,()0cos cos a bA C A+=+.(Ⅰ)判断ABC ∆的形状;(Ⅱ)若6C π=,62c =-,求ABC ∆的面积.(19)(本小题满分12分)统计学中,经常用环比、同比来进行数据比较.环比是指本期统计数据与上期比较,如2017年7月与2017年6月相比.同比是指本期数据与历史同时期比较,如2017年7月与2016年7月相比.=100%⨯数数环长数本期-上期比增率上期,=100%⨯数数长数本期-同期同比增率同期.下表是某地区近17个月来的消费者信心指数的统计数据:序号x 12345678时间2017年 1月 2017年 2月 2017年 3月 2017年 4月 2017年 5月 2017年 6月 2017年 7月 2017年8月消费者信心指数y107.2108.6 108.4 109.2 112.6 111 113.4 112 910111213141516172017年 9月 2017年 10月 2017年 11月 2017年 12月 2018年 1月 2018年 2月 2018年 3月 2018年 4月 2018年 5月 113.3114.6114.7118.6123.9121.3122.6122.3124(Ⅰ)(ⅰ)求该地区2018年5月消费者信心指数的同比增长率(百分比形式下保留整数); (ⅱ)除2017年1月以外,该地区消费者信心指数月环比增长率为负数的有几个月?(Ⅱ)由以上数据可判断,序号x 与该地区消费者信心指数y 具有线性相关关系,写出y 关于x 的线性回归方程ˆˆˆybx a =+(ˆˆa b ,保留2位小数),并依此预测该地区2018年6月的消费者信心指数(结果保留1位小数,参考数据与公式:17118068i i i x y =≈∑,17211785ii x==∑,9115x y =≈,,1221ˆni i i ni i x y n x yx nx b ==--∑=∑)(20)(本小题满分12分)如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,60ABE ∠=︒,G 为BE 中点.(Ⅰ)求证:平面ACG ⊥平面BCE ;(Ⅱ)若3AB BC =,求二面角B CA G --的余弦值.(21)(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)经过点M(2,1),且离心率32e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设A 、B 分别是椭圆C 的上顶点与右顶点,点P 是椭圆C 在第三象限内的一点,直线AP 、BP 分别交x 轴、y 轴于点M 、N ,求四边形AMNB 的面积.(22)(本小题满分12分)已知()()21axx f x e +=(其中a R ∈,e 为自然对数的底数).(Ⅰ)求()f x 的单调区间;(Ⅱ)若12x x ,分别是()f x 的极大值点和极小值点,且12x x >,求证:()()1212f x f x x x +>+.合肥市2019届高三调研性检测数学试题(理科)参考答案及评分标准题号 1 2 3 4 56 7 8 9 10 11 12 答案CDCABCBBDAAB二、填空题:本大题共4小题,每小题5分.(13)1 (14)256 (15)24 (16))2⎡-⎣,三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(Ⅰ)设等比数列{}n a 的公比为q ,由已知得233452()32a a a a a +=+⎧⎨=⎩,,,即2311141232.a q a q a q a q ⎧+=⎪⎨=⎪⎩,∵0n a >,∴0q >,解得12,2.q a =⎧⎨=⎩∴2n n a =. ……………………5分(Ⅱ)由已知得,21222(1)log log log 2n n n n S a a a +=+++=, ∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111122122311n n T n n n ⎡⎤⎛⎫⎡⎤⎛⎫=-+-++-=⎪ ⎪⎢⎥⎢⎥++⎝⎭⎣⎦⎝⎭⎣⎦.…………………10分(18)(本小题满分12分)(Ⅰ)()00cos cos cos cos cos cos a b a ba Ab B A C A B A+=⇒+=⇒=+-,∴sin2sin2A B =.∵A B ,是ABC ∆的内角,∴A B =,或2A B π+=,∴ABC ∆为等腰三角形或直角三角形. ………………………5分(Ⅱ)由(Ⅰ)及6C π=知,ABC ∆为等腰三角形,a b =.根据余弦定理2222cos a b ab C c +-=,得(223843a =-,解得24a =,∴2a =,∴ABC ∆的面积111sin 221222S ab C ==⨯⨯⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)(ⅰ)该地区2018年5月份消费者信心指数的同比增长率为124112.6100%10%112.6-⨯≈;(ⅱ)由已知环比增长率为负数,即本期数<上期数,从表中可以看出,2017年3月、2017年6月、2017年8月、2018年2月、2018年4月共5个月的环比增长率为负数. ……………………5分(Ⅱ)由已知计算得:17117221ˆ 1.16i ii ii x yn xy bxn x ==-=≈-⋅∑∑,ˆˆ104.56ay bx =-=,∴线性回归方程为ˆ 1.16104.56yx =+. 当18x =时,ˆ125.4y=,即预测该地区2018年6月份消费者信心指数约为125.4. ……………12分(20)(本小题满分12分)(Ⅰ)证明:∵平面ABCD ⊥平面ABEF ,CB AB ⊥,平面ABCD 平面ABEF AB =,∴CB ⊥平面ABEF ,∴CB AG ⊥. 在菱形ABEF 中,60ABE ∠=,可知ABE ∆为等边三角形,G 为BE 中点,∴AG BE ⊥.∵BE CB B =,∴AG ⊥平面BCE .∵AG ⊂平面ACG ,∴平面ACG ⊥平面BCE .…………5分 (Ⅱ)由(Ⅰ)知,AD ⊥平面ABEF ,AG BE ⊥,∴AG AF AD ,,两两垂直,以A 为原点,如图建立空间直角坐标系.设2AB =,则233BC =,()()()230 0 03 0 03131 03A G C B ⎛⎫-- ⎪ ⎪⎝⎭,,,,,,,,,,,. 设()m x y z =,,为平面ABC 的法向量,由00m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩得3023303x y x y z ⎧-=⎪⎨-+=⎪⎩, 取()1 3 0m =,,,同理可求平面ACG 的法向量()0 2 3n =,,, ∴2321cos 727m n m n m n⋅===⨯,,即二面角B CA G --的余弦值等于217.……………12分(21)(本小题满分12分)(Ⅰ)由椭圆的离心率为32得,32c a =,∴2a b =. 又∵椭圆C 经过点(2,1),∴224114b b+=,解得22b =,∴椭圆C 的方程为22182x y+=. ……………………5分(Ⅱ)由(Ⅰ)可知,A (0 2,),B (22 0,).设()00P x y ,,则 直线002:2y AP y x x -=+ ,从而002 02x M y ⎛⎫- ⎪ ⎪-⎝⎭,; 直线00:(22)22y BP y x x =--,从而00220 22y N x ⎛⎫- ⎪ ⎪-⎝⎭,. ∴四边形AMNB 的面积00002221122222222y x S AN BM x y ⎛⎫⎛⎫=⋅=+⋅+ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭()()()222000000000000022244428282224222x y x y x y x y x y x y xy+-++--+==--+--.∵2200182x y +=,∴00000000844282842224x y x y S x y x y +--+==--+. …………………12分(22)(本小题满分12分)(Ⅰ)⑴当0a =时,()()21f x x =+,()f x 的单调增区间是(1)-+∞,,单调减区间是(1)-∞-,;⑵当0a ≠时,()()211axa x x a f x e ⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦'=.①当0a <时,由()0f x '>解得1x >-或21x a <-;由()0f x '<解得211x a-<<-,∴()f x 的单调增区间是2 1a ⎛⎫-∞- ⎪⎝⎭,和(1)-+∞,,单调减区间是21 1a ⎛⎫-- ⎪⎝⎭,; ②当0a >时,由()0f x '>解得211x a-<<-;由()0f x '<解得21x a >-或1x <-,∴()f x 的单调增区间是21 1a ⎛⎫-- ⎪⎝⎭,,单调减区间是(1)-∞-,和21a ⎛⎫-+∞ ⎪⎝⎭,.………5分(Ⅱ)由已知和(Ⅰ)得,当0a >时满足题意,此时121x a=-,21x =-.()()1212f x f x x x +>+22422a e a a-⇔>-22422a e a a -⇔>-2220a e a a -⇔+->.令()222a g a e a a -=+-(0a >),则()2221a g a e a -'=+-.令()2221a h a e a -=+-(0a >),则()2220a h a e -'=+>恒成立, ∴()2221a h a e a -=+-(0a >)在(0 )+∞,上单调递增.∵()222132823212110102084422h h e e e e ⎡⎤⎛⎫⎛⎫=-<=->-=->⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,, ∴030 8a ⎛⎫∃∈ ⎪⎝⎭,,使()00h a =,即()020212 a e a -=-*.从而,当0(0)a a ∈,时,()0g a '<;当0()a a ∈+∞,时,()0g a '>,∴()g a 在0(0)a ,上单调递减,在0( )a +∞,上单调递增,∴()022000()2a g a g a e a a -≥=+-,将 (*)式代入得2000()()31g a g a a a ≥=-+.∵20031y a a =-+在30 8⎛⎫ ⎪⎝⎭,上单调递减,∴2200331313108864a a ⎛⎫-+>-⋅+=> ⎪⎝⎭,∴0()()0g a g a ≥> ,即2220a e a a --+>,∴1212()()f x f x x x +>+. ……………………12分合肥市2019届高三调研性检测数学试题(文科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABDCDCDBABCD二、填空题:本大题共4小题,每小题5分.(13)3 (14)2或-1 (15)(] 1-∞,(16)163π三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(Ⅰ)设等差数列{}n a 的公差为d ,由36a =,420S =得11262310a d a d +=⎧⎨+=⎩,解得12,2.d a =⎧⎨=⎩∴2n a n =. …………………………5分(Ⅱ)由(Ⅰ)得,()()2212n n n S n n +==+,从而()111111n S n n n n ==-++, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. …………………………10分(18)(本小题满分12分)(Ⅰ)由已知得 cos cos 2cos a C c A b B +=,由正弦定理得 sin cos sin cos 2sin cos A C C A B B +=, 即()sin 2sin cos A C B B +=.∵A C B π+=-,∴()sin sin A C B +=,∴sin 2sin cos B B B =. 由于sin 0B >,∴1cos 2B =. ∵B ∈(0π,),∴3B π=. ………………………5分(Ⅱ)由3ABC S B ∆=得1sin 32ac B B =, 由(Ⅰ)知,3B π=,代入上式得2ac =.由余弦定理得222222cos 3b a c ac B a c ac =+-=+-=,∴()2339a c ac +=+=,∴3a c +=,∴ABC ∆的周长为33………………………12分(19)(本小题满分12分)(Ⅰ)(ⅰ)月销售额在[14 16),内的频率为()120.030.120.180.070.020.020.12-⨯+++++=; (ⅱ)若70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据频率分布直方图知,[)12 14,和[)14 16,两组频率之和为0.18,月销售额目标应定为0.12162170.24+⨯=(万元); ………………………5分(Ⅱ)根据直方图可知,销售额为[)22 24,和[]24 26,的频率之和为0.08, 由500.084⨯=可知待选的推销员一共有4人,设这4人分别为1212A A B B ,,,,则4人依次有以下不同的选择:121112A A A B A B ,,;2122A B A B ,;12B B ,一共有6种不同的情况,每一种结果都是等可能的,而4人来自同一组的情况有2种,∴选定的推销员来自同一个小组的概率是2163P ==. ………………………12分(20)(本小题满分12分)(Ⅰ)∵平面ABCD ⊥平面ABEF ,DA AB ⊥,平面ABCD 平面ABEF AB =,∴DA ⊥平面ABEF ,∴DA EG ⊥.在菱形ABEF 中,60AFE ∠=︒,可知AEF ∆为等边三角形,G 为AF中点,∴AF EG ⊥. ∵DA AF A =, ∴EG ⊥平面DAF . ……………………5分(Ⅱ)如图,取AB 的中点为H ,连接EH ,易证EH AB ⊥.由面面垂直的性质可知,EH ⊥平面ABCD ,由(Ⅰ)知,EG ⊥平面DAF ,∴()1339363322BCE ADF E ABCD E ADF V V V ---=+=⨯⨯+=. ……………………12分(21)(本小题满分12分)(Ⅰ)由椭圆的离心率为32得,32c a =,∴2a b =.又∵椭圆C :22221x y a b +=(0a b >>)经过点13 2⎛⎫ ⎪⎝⎭,,∴2231144b b+=,解得21b =, ∴椭圆C 的方程为2214x y +=. ……………………5分(Ⅱ)设点()()000020 10P x y x y -<<-<<,,.由(Ⅰ)知,()()0 12 0A B ,,,, ∴直线AP 的方程为0011y y x x -=+. 令0y =得,001M xx y =-. 直线BP 的方程为()0022y y x x =--.令0x =得,0022N yy x =-. ∴00000222122y x y AN x x --=-=--,0000022211x x y BM y y --=-=--, ∴()()()200000000002222222121x y x y x y AN BM x y x y ------⋅=⋅=----()220000000000000000004224448442222x y x y x y x y x y x y x y x y x y --+++--+===--+--+,是一个确定的定值.…………………12分(22)(本小题满分12分)(Ⅰ)∵()()2322ln 13f x x x ax =--,∴()24ln 2f x x x ax '=-.由()126f a '=-=-,解得3a =. ………………………5分(Ⅱ)∵12x x ≠,不妨设12x x >,()()()()()()()121212112212202022f x f x f x f x x x f x x f x x x x -+<⇔-+-<⇔+<+-.设()()2g x f x x =+,则()g x 在()1+∞,单调递减,∴()0g x '≤在()1+∞,恒成立. 由(Ⅰ)知,()24ln 2f x x x ax '=-,()24ln 22g x x x ax '=-+,HGFED CB A∴22ln 1x a x x≥+在()1+∞,恒成立. 令()22ln 1x h x x x=+,则()()32ln 1x x x h x x --'=, 令()ln 1F x x x x =--,()ln F x x '=-,∴当()1 x ∈+∞,时,()0F x '<,即()F x 在()1+∞,单调递减,且()()10F x F <=, ∴()0h x '<在()1+∞,恒成立, ∴()h x 在()1+∞,单调递减,且()()11h x h <=, ∴1a ≥. ……………………12分。

2019年安徽省合肥市高考数学三模试卷(理科)含答案解析

2019年安徽省合肥市高考数学三模试卷(理科)含答案解析

2019年安徽省合肥市高考数学三模试卷(理科)一、选择题(每题5分)1.若集合M={x ∈R |x 2﹣4x <0},集合N={0,4},则M ∪N=( ) A .[0,4] B .[0,4) C .(0,4] D .(0,4)2.设i 为虚数单位,复数z=,则z 的共轭复数=( ) A .﹣1﹣3i B .1﹣3i C .﹣1+3iD .1+3i3.在正项等比数列{a n }中,a 1008•a 1009=,则lga 1+lga 2+…+lga 2019=( )A .2019B .2019C .﹣2019D .﹣20194.已知双曲线﹣=1的焦距为10,一条渐近线的斜率为2,则双曲线的标准方程是( )A .﹣=1 B .﹣=1C .﹣=1D .﹣=15.直线m :x +(a 2﹣1)y +1=0,直线n :x +(2﹣2a )y ﹣1=0,则“a=﹣3”是“直线m 、n 关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.执行如图的程序框图,若输入的m ,n 分别为204,85,则输出的m=( )A .2B .7C .34D .857.若等差数列{a n }的公差d ≠0,前n 项和为S n ,若∀n ∈N *,都有S n ≤S 10,则( ) A .∀n ∈N *,都有a n <a n ﹣1 B .a 9•a 10>0 C .S 2>S 17 D .S 19≥08.设不等式组表示的平面区域为Ω,则当直线y=k(x﹣1)与区域Ω有公共点时,k的取值范围是()A.[﹣2,+∞)B.(﹣∞,0]C.[﹣2,0] D.(﹣∞,﹣2]∪[0,+∞)9.(1﹣)(2+)6的展开式中,x项的系数是()A.58 B.62 C.238 D.24210.某品牌饮料瓶可以近似看作是由一个半球和一个圆台组成,其三视图如图所示,该饮料瓶的表面积为()A.81πB.125π C.(41+7)πD.(73+7)π11.甲、乙两名选手参加职工技能操作比赛,比赛项目由现场抽签决定,甲选手先从一个不透明的盒中摸出一小球,记下技能名称后放回盒中,再由乙选手摸球,若盒中4个小球分别贴了技能1号到4号的标签,则甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同的概率等于()A.B.C.D.12.关于x的不等式(x2+2x+2)sin≤ax+a的解集为[﹣1,+∞),实数a的取值范围是()A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)二、填空题(每题5分)13.已知=(1,t),=(t,4),若∥,则t=______.14.已知函数的部分图象如图所示,则函数的解析式为______.15.已知函数f(x)=,则不等式f(x)>2的解集是______.16.已知数列{a n}满足:a1=2,(4a n﹣5)(4a n﹣1)=﹣3,则+++1+…+=______.三、解答题17.如图,在△ABC中,∠B=,AC=2.(1)若∠BAC=θ,求AB和BC的长.(结果用θ表示);(2)当AB+BC=6时,试判断△ABC的形状.;(Ⅱ)由频数分布表可以认为,本次学科知识竞赛的成绩Z服从正态分布N(μ,196),其中μ近似为样本平均数.①利用该正态分布.求P(Z>74);②某班级共有20名同学参加此次学科知识比赛,记X表示这20名同学中成绩超过74分的人数,利用①的结果,求EX.附:若Z~N(μ,σ2),则P(μ﹣σ<Z<+σ)=0.6826,P (μ﹣2<Z<μ+2σ)=0.9544.19.如图,直角三角形ABC中,∠A=60°,∠ABC=90°,AB=2,E为线段BC上一点,且BE=BC,沿AC边上的中线BD将△ABD折起到△PBD的位置.(1)求证:PE⊥BD;(2)当平面PBD⊥平面BCD时,求二面角C﹣PB﹣D的余弦值.20.已知椭圆E: +=1(a>b>0)的离心率为,短轴长为2,过圆C:x2+y2=r2(0<r<b)上任意一点作圆C的切线与椭圆E交于A,B两点,O为坐标原点.(1)当r为何值时,OA⊥OB;(2)过椭圆E上任意一点P作(1)中所求圆的两条切线分别交椭圆于M,N,求△PMN 面积的取值范围.21.已知函数f(x)=+alnx有极值点,其中e为自然对数的底数.(1)求a的取值范围;(2)若a∈(0,],求证:∀x∈(0,2],都有f(x)<.[选修4-1几何证明选讲]22.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上的一点,=,DE交AB于点F.(1)求证:PF•PO=PA•PB;(2)若PD=4,PB=2,DF=,求弦CD的弦心距.[选修4-4:坐标系与参数方程]23.已知曲线C:(α为参数),直线l:(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程,直线l的普通方程;(2)点A在曲线C上,B点在直线l上,求A,B两点间距离|AB|的最小值.[选修4-5不等式选讲]24.已知函数f(x)=|x+m|+|2x+1|.(1)当m=﹣1时,解不等式f(x)≤3;(2)若m∈(﹣1,0],求函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积的最大值.2019年安徽省合肥市高考数学三模试卷(理科)参考答案与试题解析一、选择题(每题5分)1.若集合M={x∈R|x2﹣4x<0},集合N={0,4},则M∪N=()A.[0,4]B.[0,4)C.(0,4]D.(0,4)【考点】并集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:集合M={x∈R|x2﹣4x<0}=(0,4),集合N={0,4},则M∪N=[0,4],故选:A.2.设i为虚数单位,复数z=,则z的共轭复数=()A.﹣1﹣3i B.1﹣3i C.﹣1+3i D.1+3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,则z的共轭复数可求.【解答】解:z==,则=﹣1+3i.故选:C.3.在正项等比数列{a n}中,a1008•a1009=,则lga1+lga2+…+lga2019=()A.2019 B.2019 C.﹣2019 D.﹣2019【考点】等比数列的通项公式.【分析】由正项等比数列{a n}的性质可得:a1•a2019=a2•a2019=…=a1008•a1009,再利用对数的运算性质即可得出.【解答】解:由正项等比数列{a n}的性质可得:a1•a2019=a2•a2019=…=a1008•a1009=,则lga1+lga2+…+lga2019=lg(a1a2•…•a2019•a2019)==﹣2019.故选:D.4.已知双曲线﹣=1的焦距为10,一条渐近线的斜率为2,则双曲线的标准方程是()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【分析】由题意可得2c=10,即c=5,由一条渐近线的斜率为2,可得=2,可得a,b的方程组,解得a,b,即可得到所求双曲线的标准方程.【解答】解:由题意可得2c=10,即c=5,由一条渐近线的斜率为2,可得=2,又a2+b2=25,解得a=,b=2,即有双曲线的方程为﹣=1.故选:A.5.直线m:x+(a2﹣1)y+1=0,直线n:x+(2﹣2a)y﹣1=0,则“a=﹣3”是“直线m、n关于原点对称”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】在直线m:x+(a2﹣1)y+1=0上任取点P(x,y),则点P关于原点对称的点Q(﹣x,﹣y)在直线n上,代入比较即可得出.【解答】解:在直线m:x+(a2﹣1)y+1=0上任取点P(x,y),则点P关于原点对称的点Q(﹣x,﹣y)在直线n上,∴﹣x+(2﹣2a)(﹣y)﹣1=0,化为x+(2﹣2a)y+1=0,与x+(a2﹣1)y+1=0比较,可得:a2﹣1=2﹣2a,解得a=﹣3或a=1.则“a=﹣3”是“直线m、n关于原点对称”的充分不必要条件.故选:A.6.执行如图的程序框图,若输入的m,n分别为204,85,则输出的m=()A.2 B.7 C.34 D.85【考点】程序框图.【分析】执行程序框图,是利用辗转相除法求m,n的最大公约数,根据输入的m、n的值即可求出输出的值.【解答】解:执行如图的程序框图,是利用辗转相除法求m,n的最大公约数,当输入m=204,n=85时,输出的m=17.故选:B.7.若等差数列{a n}的公差d≠0,前n项和为S n,若∀n∈N*,都有S n≤S10,则()B.a9•a10>0A.∀n∈N*,都有a n<a n﹣1C.S2>S17D.S19≥0【考点】等差数列的前n项和;数列的函数特性.【分析】由∀n∈N*,都有S n≤S10,a10≥0,a11≤0,再根据等差数列的性质即可判断.【解答】解:∵∀n∈N*,都有S n≤S10,∴a10≥0,a11≤0,∴a9+a11≥0,∴S2≥S17,S19≥0,故选:D.8.设不等式组表示的平面区域为Ω,则当直线y=k(x﹣1)与区域Ω有公共点时,k的取值范围是()A.[﹣2,+∞)B.(﹣∞,0]C.[﹣2,0] D.(﹣∞,﹣2]∪[0,+∞)【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,结合函数的图象求出k的范围即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得B(2,0),显然y=k(x﹣1)恒过(1,0),k=0时,直线是AB,k>0时,k→+∞,k<0时,k的最大值是直线AC的斜率﹣2,故k∈(﹣∞,﹣2]∪[0,+∞),故选:D.9.(1﹣)(2+)6的展开式中,x项的系数是()A.58 B.62 C.238 D.242【考点】二项式系数的性质.==26﹣r.分别令=1,=3,【分析】(2+)6的展开式中,T r+1进而得出.==26﹣r.【解答】解:(2+)6的展开式中,T r+1分别令=1,=3,解得r=2或r=6.∴(1﹣)(2+)6的展开式中,x项的系数是×1﹣2×=238.故选;C.10.某品牌饮料瓶可以近似看作是由一个半球和一个圆台组成,其三视图如图所示,该饮料瓶的表面积为()A.81πB.125π C.(41+7)πD.(73+7)π【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由上下两部分组成,上面是一个半球,下面是一个圆台.利用表面积计算公式即可得出.【解答】解:由三视图可知:该几何体是由上下两部分组成,上面是一个半球,下面是一个圆台.该饮料瓶的表面积=++π×32=π.故选:C.11.甲、乙两名选手参加职工技能操作比赛,比赛项目由现场抽签决定,甲选手先从一个不透明的盒中摸出一小球,记下技能名称后放回盒中,再由乙选手摸球,若盒中4个小球分别贴了技能1号到4号的标签,则甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同的概率等于()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同包含的基本事件个数,由此能求出甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同的概率.【解答】解:甲、乙两名选手参加职工技能操作比赛,比赛项目由现场抽签决定,甲选手先从一个不透明的盒中摸出一小球,记下技能名称后放回盒中,再由乙选手摸球,若盒中4个小球分别贴了技能1号到4号的标签,则基本事件总数n=4×4=16,甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同包含的基本事件个数:m=1×3+2×2=7,∴甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同的概率p=.故选:D.12.关于x的不等式(x2+2x+2)sin≤ax+a的解集为[﹣1,+∞),实数a的取值范围是()A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)【考点】其他不等式的解法.【分析】根据极限的思想=1,分离参数,即可得到a≥2×,即可求出答案.【解答】解:由于=1,∵x2+2x+2≤ax+a的解集为[﹣1,+∞),∴a≥2×≥2,∴实数a的取值范围为[2,+∞),故选:B.二、填空题(每题5分)13.已知=(1,t),=(t,4),若∥,则t=±2.【考点】平行向量与共线向量;平面向量的坐标运算.【分析】根据平面向量的坐标表示与共线定理,列出方程即可求出结果.【解答】解:∵=(1,t),=(t,4),且∥,∴1×4﹣t2=0,解得t=±2.故答案为:±2.14.已知函数的部分图象如图所示,则函数的解析式为.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据已知中函数的图象,可分析出函数的最值,确定A的值,分析出函数的周期,确定ω的值,将(,)代入解析式,结合,可求出ϕ值,进而求出函数的解析式.【解答】解:由图可得:函数函数y=Asin(ωx+ϕ)的最小值﹣|A|=﹣,令A>0,则A=又∵,ω>0∴T=π,ω=2∴y=sin(2x+ϕ)将(,)代入y=sin(2x+ϕ)得sin(+ϕ)=﹣1即+ϕ=+2kπ,k∈Z即ϕ=+2kπ,k∈Z∵∴∴故答案为:15.已知函数f(x)=,则不等式f(x)>2的解集是(﹣∞,﹣1)∪(3,+∞).【考点】分段函数的应用.【分析】根据分段函数的表达式,分别讨论x≥1和x<1,进行求解即可.【解答】解:若x≥1,由f(x)>2得log2(x+1)>2,得x+1>4,即x>3.若x<1,则﹣x>﹣1,2﹣x>1,则由f(x)>2得f(2﹣x)>2,即log2(2﹣x+1)>2,得log2(3﹣x)>2,得3﹣x>4,即x<﹣1.综上不等式的解为x>3或x<﹣1,即不等式的解集为(﹣∞,﹣1)∪(3,+∞),故答案为:(﹣∞,﹣1)∪(3,+∞)16.已知数列{a n}满足:a1=2,(4a n+1﹣5)(4a n﹣1)=﹣3,则+++…+=(3n﹣1)﹣2n.【考点】数列递推式;数列的求和.【分析】化简可得[4(a n+1﹣1)﹣1][4(a n﹣1)+3]=﹣3,从而可得16+﹣=0,即+2=3(+2),从而求得数列{+2}是以3为首项,3为公比的等比数列,从而求和即可.【解答】解:∵(4a n+1﹣5)(4a n﹣1)=﹣3,∴[4(a n+1﹣1)﹣1][4(a n﹣1)+3]=﹣3,∴16(a n+1﹣1)(a n﹣1)+12(a n+1﹣1)﹣4(a n﹣1)=0,∴16+﹣=0,∴+2=3(+2),又∵+2=3,∴数列{+2}是以3为首项,3为公比的等比数列,∴+2=3n,故=3n﹣2;故+++…+=3﹣2+9﹣2+…+3n﹣2=﹣2n=(3n﹣1)﹣2n;故答案为:(3n﹣1)﹣2n.三、解答题17.如图,在△ABC中,∠B=,AC=2.(1)若∠BAC=θ,求AB和BC的长.(结果用θ表示);(2)当AB+BC=6时,试判断△ABC的形状.【考点】三角形的形状判断.【分析】(1)根据正弦定理来求边AB、BC的长度;(2)由AB+BC=6得到:4sin(+θ)+4sinθ=6,结合和差化积公式得到θ的值,由此可以判定△ABC的形状为钝角三角形.【解答】解:(1)由正弦定理得:=,即=,所以BC=4sinθ.又∵∠C=π﹣﹣θ,∴sinC=sin(π﹣﹣θ)=sin(+θ).∴=即=,∴AB=4sin(+θ).(2)由AB+BC=6得到:4sin(+θ)+4sinθ=6,所以,8sin(+θ)×=6,整理,得sin(+θ)=.∵0<+θ<π,∴+θ=或+θ=,∴θ=,或θ=.∴△ABC是直角三角形.;(Ⅱ)由频数分布表可以认为,本次学科知识竞赛的成绩Z服从正态分布N(μ,196),其中μ近似为样本平均数.①利用该正态分布.求P(Z>74);②某班级共有20名同学参加此次学科知识比赛,记X表示这20名同学中成绩超过74分的人数,利用①的结果,求EX.附:若Z~N(μ,σ2),则P(μ﹣σ<Z<+σ)=0.6826,P (μ﹣2<Z<μ+2σ)=0.9544.【考点】正态分布曲线的特点及曲线所表示的意义;众数、中位数、平均数.【分析】(Ⅰ)利用同一组中的数据用该组区间的中点值作代表,即可求这50名同学成绩的样本平均数;(Ⅱ)①由(I)知,Z~N(60,196),从而P(60﹣14<Z<60+14)=0.6826,即可得出结论;②设依题意知X~B(20,0.1587),即可求得EX.【解答】解:(Ⅰ)由所得数据列成的频数分布表,得:样本平均数=×(35×3+45×10+55×12+65×15+75×6+85×2+95×2)=60;(Ⅱ)①由(I)知,Z~N(60,196),从而P(60﹣14<Z<60+14)=0.6826,∴P(Z>74)=(1﹣0.6826)=0.1587,②由①知,成绩超过74分的概率为0.1587,依题意知X~B(20,0.1587),∴EX=20×0.1587=3.174.19.如图,直角三角形ABC中,∠A=60°,∠ABC=90°,AB=2,E为线段BC上一点,且BE=BC,沿AC边上的中线BD将△ABD折起到△PBD的位置.(1)求证:PE⊥BD;(2)当平面PBD⊥平面BCD时,求二面角C﹣PB﹣D的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(1)取BD中点O,连结OE,PO,推导出OE⊥BD,PO⊥BD,从而BD⊥平面POE,由此能证明PE⊥BD.(2)以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣PB﹣D的余弦值.【解答】证明:(1)∵直角三角形ABC中,∠A=60°,∠ABC=90°,AB=2,E为线段BC上一点,且BE=BC,∴DC=PD=PB=BD=2,BC=2,取BD中点O,连结OE,PO,∵OB=1,BE=,∴OE=,∴OE⊥BD,∵PB=PD,O为BD中点,∴PO⊥BD,又PO∩OE=O,∴BD⊥平面POE,∴PE⊥BD.解:(2)∵平面PBD⊥平面BCD,∴PO⊥平面BCD,如图,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则B(0,1,0),P(0,0,),C(),=(0,﹣1,),=(),设平面PBC的法向量=(x,y,z),则,取y=,得=(3,),平面图PBD的法向量=(1,0,0),cos<>==,由图形知二面角C﹣PB﹣D的平面角是锐角,∴二面角C﹣PB﹣D的余弦值为.20.已知椭圆E: +=1(a>b>0)的离心率为,短轴长为2,过圆C:x2+y2=r2(0<r<b)上任意一点作圆C的切线与椭圆E交于A,B两点,O为坐标原点.(1)当r为何值时,OA⊥OB;(2)过椭圆E上任意一点P作(1)中所求圆的两条切线分别交椭圆于M,N,求△PMN 面积的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率为,短轴长为2,列出方程组,求出a,b,从而求出椭圆E的方程,当直线AB的斜率不存在时,直线AB:x=±r,得到当r=时,OA⊥OB;当直线l的斜率存在时,设l:y=kx+n,由,得(1+4k2)x2+8knx+4n2﹣4=0,由此利用韦达定理、向量的数量积、直线与圆相切,结合已知条件能求出r的值.(2)OP⊥OM,OP⊥ON,OP⊥MN,且MN过原点O,当MN的斜率存在且不为0时,设MN:y=k1x,(k1≠0),由,得|MN|=2OM=4,同理,|OP|=,由此能求出△PMN面积的取值范围.【解答】解:(1)∵椭圆E: +=1(a>b>0)的离心率为,短轴长为2,∴,解得a=2,b=1,∴椭圆E的方程为.设A(x1,y1),B(x2,y2),当直线AB的斜率不存在时,直线AB:x=±r,即x1=x2=±r,代入椭圆方程,得,=x1x2+y1y2==r2﹣(1﹣)=,∵0<r<1.∴当r=时,,即OA⊥OB,当直线l的斜率存在时,设l:y=kx+n,由,得(1+4k2)x2+8knx+4n2﹣4=0,则,,∴=x1x2+y1y2=x1x2+(kx1+n)(kx2+n)=(1+k2)x1x2+kn(x1+x2)+n2==,∵直线l与圆C相切,∴=r,即n2=r2(1+k2),∴=,∵0<r<1,∴当r=时,=0,即OA⊥OB,综上,r=.(2)由(1)知OP⊥OM,OP⊥ON,∴OP⊥MN,且MN过原点O,当MN的斜率存在且不为0时,设MN:y=k1x,(k1≠0),由,得,,∴|MN|=2OM=2=4,同理,|OP|=2=2,=|OP|•|MN|=4=4∈[,2),∴S△PMN=2,当MN与坐标轴垂直时,S△PMN∴△PMN面积的取值范围是[,2].21.已知函数f(x)=+alnx有极值点,其中e为自然对数的底数.(1)求a的取值范围;(2)若a∈(0,],求证:∀x∈(0,2],都有f(x)<.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,得到ae x﹣x2=0有解,显然a>0,令m(x)=ae x﹣x2,根据函数的单调性求出a的范围即可;(2)求出函数的导数,令h(x)=ae x﹣x2,根据函数的单调性得到f(x)在(a,1)内有唯一极大值点x0,从而f(x)max≤max{f(1),f(x0)},结合函数的单调性,证出结论即可.【解答】解:(1)f(x)=+alnx,f′(x)=,若函数f(x)=+alnx有极值点,则ae x﹣x2=0有解,显然a>0,令m(x)=ae x﹣x2,(a>0),则m′(x)=ae x﹣2x,m″(x)=ae x﹣2,令m″(x)>0,解得:x>ln,令m″(x)<0,解得:x<ln,∴m′(x)在(﹣∞,ln)递减,在(ln,+∞)递增,∴m′(x)min=m′(ln)=2﹣2ln<0,解得:a<,故0<a<;(2)f(x)=+alnx,f′(x)=,令h(x)=ae x﹣x2,则h′(x)=ae x﹣2x,0<x≤1时,h′(x)≤ae﹣2<0,由于h(a)=a(e a﹣a)>0,h(1)=ae﹣1≤0,∴f(x)在(a,1)内有唯一极大值点x0,当a=时,f(x)有极大值点x=1,∴x∈(0,2]时,f(x)max≤max{f(1),f(x0)},f(x0)=(a<x0<1),令ω(x)=,(a<x<1),则ω′(x)=﹣e﹣x(x﹣2)xlnx<0,∴ω(x)<ω(a)=<,又f(1)=,∴max{f(1),f(x0)}<.[选修4-1几何证明选讲]22.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上的一点,=,DE交AB于点F.(1)求证:PF•PO=PA•PB;(2)若PD=4,PB=2,DF=,求弦CD的弦心距.【考点】与圆有关的比例线段.【分析】(1)先证明△PDF ∽△POC ,再利用割线定理,即可证得结论;(2)设圆的半径为r ,由△PDF ∽△POC ,可得半径为5,由切割线定理可得,PD •PC=PB •PA •解得CD=2,再由垂径定理和勾股定理,计算可得弦CD 的弦心距.【解答】解:(1)证明:连接OC 、OE ,则∠COE=2∠CDE ,∵=,∴∠AOC=∠AOE ,∴∠AOC=∠CDE ,∴∠COP=∠PDF ,∵∠P=∠P ,∴△PDF ∽△POC∴=,∴PF •PO=PD •PC ,由割线定理可得PC •PD=PA •PB ,∴PF •PO=PA •PB .(2)设圆的半径为r ,PD=4,PB=2,DF=,由△PDF ∽△POC ,可得=, 即有PD •OC=PO •DF ,即4r=(2+r ),解得r=5. 由切割线定理可得,PD •PC=PB •PA •即为4(4+CD )=2(2+2r ),即有CD=r ﹣3=5﹣3=2,则弦CD 的弦心距为OH===2.[选修4-4:坐标系与参数方程]23.已知曲线C :(α为参数),直线l :(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)写出曲线C 的极坐标方程,直线l 的普通方程;(2)点A 在曲线C 上,B 点在直线l 上,求A ,B 两点间距离|AB |的最小值.【考点】参数方程化成普通方程.【分析】(1)曲线C:(α为参数),利用cos2α+sin2α=1可得直角坐标方程,.利用ρ2=x2+y2,y=ρsinθ,即可化为直角坐标方程.直线l:(t为参数),消去参数t可得普通方程.(2)利用点到直线的距离公式圆心C(0,2)到直线l的距离d.可得A,B两点间距离|AB|的最小值=d﹣r.【解答】解:(1)曲线C:(α为参数),可得直角坐标方程:x2+(y﹣2)2=4,展开可得:x2+y2﹣4y=0,可得极坐标方程:ρ2﹣4ρsinθ=0,即ρ=4sinθ.直线l:(t为参数),消去参数t可得普通方程:x﹣y﹣3=0.(2)圆心C(0,2)到直线l的距离d==.∴A,B两点间距离|AB|的最小值为﹣2.[选修4-5不等式选讲]24.已知函数f(x)=|x+m|+|2x+1|.(1)当m=﹣1时,解不等式f(x)≤3;(2)若m∈(﹣1,0],求函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积的最大值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,分类讨论解不等式f(x)≤3;(2)由题意,m=0时,函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积取得最大值.【解答】解:(1)当m=﹣1时,不等式f(x)≤3,可化为|x﹣1|+|2x+1|≤3,x时,﹣x+1﹣2x﹣1≤3,∴x≥﹣1,∴﹣1≤x;﹣时,﹣x+1+2x+1≤3,∴x≤1,∴﹣;x≥1时,x﹣1+2x+1≤3,∴x≤1,∴x=1;综上所述,﹣1≤x≤1;(2)由题意,m=0时,函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积取得最大值.图象最低点的坐标是(﹣,),f(x)=1时,x=0或﹣,f(x)=3时,x=﹣或,∴函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积的最大值为=.2019年10月4日。

2019年安徽省合肥市高考数学三模试卷(理科)(有答案解析)

2019年安徽省合肥市高考数学三模试卷(理科)(有答案解析)

2019年安徽省合肥市高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.已知R是实数集,集合A={-1,0,1},B={x|2x-1≥0},则A∩(∁R B)=()A. B. C. {1} D. {-1,0}2.已知i是实数集,复数z满足z+z•i=3+i,则复数z的共轭复数为()A. 1+2iB. 1-2iC. 2+iD. 2-i3.执行如图所示的程序框图,若输入x=-1,则输出的y=()A.B.C.D.4.已知S n是等差数列{a n}的前n项和,若a1+a2+a3=4,S6=10,则a3=()A. B. C. D.5.某企业的一种商品的产量与单位成本数据如表:产量x(万件)1416182022单位成本y(元/件)12107a3若根据表中提供的数据,求出y关于x的线性回归方程为,则a的值等于()A. 4.5B. 5C. 5.5D. 66.若直线y=k(x+1)与不等式组表示的平面区域有公共点,则实数k的取值范围是()A. (-∞,1]B. [0,2]C. [-2,1]D. (-2,2]7.为了得到函数y=sin x的图象,只需将函数的图象()A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移个单位B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移个单位C. 横坐标缩短为原来的,纵坐标不变,再向右平移个单位D. 横坐标缩短为原来的,纵坐标不变,再向左平移个单位8.若a,b是从集合{﹣1,1,2,3,4}中随机选取的两个不同元素,则使得函数f(x)=x5a+x b是奇函数的概率为()A. B. C. D.9.已知直线与圆交于点M,N,点P在圆C上,且,则实数a的值等于()A. 2或10B. 4或8C.D.10.已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C上动点A,B满足,若A,B的准线上的射影分别为M,N且△MFN的面积为5,则|AB|=()A. B. C. D.11.若存在两个正实数x,y使得等式x(1+ln x)=x ln y -ay成立(其中ln x,ln y是以e为底的对数),则实数a的取值范围是()A. (0,]B. (0,]C. (-∞,]D. (-∞,]12.如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A-BCD,则当三棱锥A-BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.已知,,若,则k=______.14.在的展开式中,x4的系数为______.15.已知函数,若对任意实数x,恒有f(a1)≤f(x)≤f(a2),则cos(a1-a2)=______.16.如图是数学家Ger min alDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O1,球O2的半径分别为3和1,球心距离|O1O2|=8,截面分别与球O1,球O2切于点E,F,(E,F是截口椭圆的焦点),则此椭圆的离心率等于______.三、解答题(本大题共7小题,共84.0分)17.已知数列{a n}满足a1=1,a n=2a n-1+2n-1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人.在这些居民中,经常阅读的城镇居民100人,农村居民24人.(Ⅰ)填写下面列联表,并判断是否有97.5%的把握认为,经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10024不经常阅读合计200(Ⅱ)从该地区居民城镇的居民中,随机抽取4位居民参加一次阅读交流活动,记这4位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:,其中n=a+b+c+dP(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.82819.已知:在四棱锥P-ABCD中,AD∥BC,,G是PB的中点,△PAD是等边三角形,平面PAD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P-AG-C的余弦值.20.已知直线l经过椭圆的右焦点(1,0),交椭圆C于点A,B,点F为椭圆C的左焦点,△ABF的周长为8.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线m与直线l的倾斜角互补,且交椭圆C于点M、N,|MN|2=4|AB|,求证:直线m 与直线l的交点P在定直线上.21.已知函数f(x)=x2-ax lnx+a+1(e为自然对数的底数)(Ⅰ)试讨论函数f(x)的导函数y=f'(x)的极值;(Ⅱ)若∀x∈[1,e](e为自然对数的底数),f(x)>0恒成立,求实数a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,α∈[0,π]).在以直角坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线E的方程为ρ2(1+3sin2θ)=4.(1)求曲线C的普通方程和曲线E的直角坐标方程;(2)若直线l:x=t分别交曲线C、曲线E于点A,B,求△AOB的面积的最大值.23.设f(x)=3|x-1|+|x+1|的最小值为k.(1)求实数k的值;(2)设m,n∈R,m≠0,m2+4n2=k,求证:+≥.-------- 答案与解析 --------1.答案:D解析:解:因为,所以∁R B={x|x<}.又A={-1,0,1},所以A∩(∁R B)={-1,0}.故选:D.先解不等式得出集合B,再求B的补集,最后与A求交集.本题考查集合交、并、补的运算,考查对基本概念和运算的掌握.利用集合补集和交集的定义是解决本题的关键.2.答案:C解析:【分析】本题考查复数运算,对复数的除法进行化简时,要采用分子分母同时乘以分母的共轭复数,使分母“实数化”,属于基础题.将z+z•i=3+i化为,对其进行化简得到z,利用共轭复数的性质得到.【解答】解:z+z•i=3+i可化为z====2-i∴z的共轭复数为=2+i.故选C.3.答案:D解析:解:输入x=-1,,不成立,;,成立,跳出循环,输出.故选:D.按程序框图指引的顺序依次执行,写出各步的执行结果即可得到答案.本题考查循环结构程序框图的输出结果.当程序执行到判断框时要注意判断循环条件是否成立,是继续下一次循环,还是跳出循环.4.答案:A解析:【分析】本题考查了等差数列的通项公式和前n项和、方程组的解法,考查了推理能力与计算能力,属于中档题.列出关于a1,d的方程组并解出,即可求得a3的值.【解答】解:设等差数列{a n}的公差为d.∵a1+a2+a3=4,S6=10,∴3a1+3d=4,6a1+d=10,联立解得:a1=,d=∴.故选:A.5.答案:B解析:解:由标准数据,计算=×(14+16+18+20+22)=18,=×(12+10+7+a+3)=;由点(,)在线性回归方程=-1.15x+28.1上,∴=-1.15×18+28.1,则32+a=7.4×5,解得a=5.故选:B.求出,将其代入线性回归方程=-1.15x+28.1中,即可得出a的值.本题考查了样本中心点(,)在线性回归方程上的应用问题,是基础题.6.答案:B解析:【分析】画出不等式组表示的平面区域,直线y=k(x+1)过定点A(-1,0),数形结合得出k>0,求出k AC,得出实数k的取值范围.对于求斜率的范围的线性规划,过定点作直线与不等式组表示的平面的区域有公共点,从而确定斜率的范围.【解答】解:画出不等式组表示的平面区域,如下图所示直线y=k(x+1)过定点A(-1,0),直线y=k(x+1)与不等式组表示的平面区域有公共点则k>0,k AC==2,∴k∈[0,2].故选:B.7.答案:A解析:解:将函数的图象横坐标伸长为原来的两倍,纵坐标不变,可得y=sin(x+)的图象;再把它的图象再向右平移个单位,可得y=sin x的图象,故选:A.由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.8.答案:B解析:【分析】本题考查概率的求法,考查古典概型、列举法等基础知识,对于古典概型求概率:可用事件A包含的基本事件的个数和基本事件的总数之比得出事件A的概率.考查运算求解能力,是基础题.利用古典概型概率公式即可得出函数f(x)=x5a+x b是奇函数的概率.【解答】解:从集合{-1,1,2,3,4}中随机选取的两个不同元素共有 =20种,要使得函数f(x)=x5a+x b是奇函数,必须a,b都为奇数共有=6 种,则函数f(x)=x5a+x b是奇函数的概率为P==.故选:B.9.答案:B解析:解:由可得.在△MCN中,CM=CN=2,,可得点到直线MN,即直线的距离为.所以,解得a=4或8.故选:B.由圆的性质可得出圆心C到直线l的距离,再由点到直线的距离公式可求出实数a的值.本题考查直线与圆的位置关系,点到直线的距离.在直线与圆的问题中,结合相关的几何性质求解可使解题更简便.10.答案:D解析:解:过点A作x轴的垂线,垂足为C,交NB的延长线于点D.设A(,y1),B(,y2),则MN=y1-y2.∵S△MFN=5,∴,即(y1-y2)p=10,①∵,∴,即,∴y1=-4y2,②∵AF=AM=,,∴,③联立①②③解得y1=4,y2=-1,p=2.∴|AB|=.故选:D.过点A作x轴的垂线,垂足为C,交NB的延长线于点D.设A(,y1),B(,y2),分别利用△MFN的面积为5,及抛物线过焦点的弦长公式联立求解即可得到.本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查数学转化思想方法,考查计算能力,是中档题.11.答案:C解析:【分析】本题考查函数与方程,考查函数的单调性,属于中档题.对x(1+ln x)=x ln y-ay进行变形,将求a的取值范围转化为求f(t)=-t-t lnt的值域,利用导数即可得出实数a的取值范围.【解答】解:x(1+ln x)=x ln y-ay可化为a=,令,则t>0,f(t)=-t-t lnt,∵f′(t)=-2-ln t,∴函数f(t)在区间上单调递增,在区间上单调递减.即==,则a∈.故选:C.12.答案:B解析:【分析】本题考查异面直线所成角的余弦值的求法,属于较难题.菱形ABCD中,∠DAB=60°,△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折过程中,点A在底面BDC的投影在∠DCB的平分线上,三棱锥的高最大时,平面ABD⊥平面BCD.【解答】解:△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折形成三棱锥A-BCD如图:点A在底面BDC的投影在∠DCB的平分线CE上,则三棱锥A-BCD的高为△AEC过A点的高;所以当平面ABD⊥平面BCD时,三棱锥A-BCD的高最大,体积也最大,此时AE⊥平面BCD;求异面直线AD与BC所成的角的余弦值:平移BC到DC′位置,|cos∠ADC′|即为所求,AD=DC=1,AE=,EC′=,AC′=|cos∠ADC′|=||=,所以异面直线AD与BC所成的角的余弦值为,故选:B.13.答案:8解析:【分析】本题考查了平面向量共线定理的坐标表示与运算问题,是基础题.由向量平行的坐标运算即可得出.【解答】解:+2=(9,2+2k),3-=(-1,6-k);∵(+2)∥(3-),∴9(6-k)-(-1)(2+2k)=0,解得k=8.故答案为8.14.答案:-解析:解:通项公式T k+1=(x3)8-k(-)k=(-)k x24-4k,由题意可知24-4k=4,解得k=5则x4的系数为(-)5=-,故答案为:-.由二项式展开的通项公式确定k的值,即可得到x4的系数.本题主要考查二项式定理的应用,求二项展开式中的指定项,一般是利用通项公式进行,化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出r,代回通项即可.15.答案:-解析:解:∵=2cos[+(x-)]cos(x-)+sin x=cos2x+sin x=-2sin2x+sin x+1,∵sin x∈[-1,1],∴f(x)∈(-2,),对任意实数x,恒有f(a1)≤f(x)≤f(a2),则f(a1)=-2,f(a2)=,即sin a1=-1,sin a2=,cos a1=0,∴cos(a1-a2)=cos a1cos a2+sin a1sin a2=0+=-.对f(x)进行化简得到f(x)=-2sin2x+sin x+1,根据正弦函数和二次函数的单调性得到f(a1)=-2,f(a2)=,进而确定sin a1=-1,sin a2=,cos a1=0,利用两角差的余弦公式得到cos(a1-a2).本题主要考查了三角函数的求值,本题的关键在于“变角”将cos(x+)变为cos[+(x-)]结合诱导公式,从而变成正弦的二倍角公式,考查了转化思想和函数思想,属于中档题.16.答案:解析:解:如图,圆锥面与其内切球O1、O2分别相切与B,A,连接O1B,O2A,则O1B⊥AB,O2A⊥AB,过O1作O1D⊥O2A于D,连接O1F,O2E,EF交O1O2于点C.设圆锥母线与轴的夹角为α,截面与轴的夹角为β.在Rt△O1O2D中,DO2=3-1=2,O1D==2.∴cosα===.∵O1O2=8,CO2=8-O1C,∵△EO2C∽△FO1C,∴=,解得O1C=2.∴CF===.即cosβ==.则椭圆的离心率e===.故答案为:.利用已知条件和几何关系找出圆锥母线与轴的夹角为α,截面与轴的夹角为β的余弦值,即可得出椭圆离心率.本题考查了“双球模型”椭圆离心率等于截面与轴的交角的余弦cosβ与圆锥母线与轴的夹角的余弦cosα之比,考查了推理能力与计算能力,属于难题.17.答案:解:(Ⅰ)证明:当n=1时,a1=1,故b1=6.当n≥2时,a n=2a n-1+2n-1,则b n=a n+2n+3=2a n-1+2n-1+2n+3=2[a n-1+2(n-1)+3],∴b n=2b n-1,∴数列列{b n}是等比数列,首项为6,公比为2.(Ⅱ)由(Ⅰ)得b n=3×2n,∴a n=b n-2n-3=3×2n-2n-3,∴S n=3×(2+22+……+2n)-[5+7+……+(2n+3)]=3×-=3×2n+1-n2-4n-6.解析:本题考查了数列递推关系、等差数列与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.(Ⅰ)利用等比数列的定义结合a1=1,a n=2a n-1+2n-1(n≥2),b n=a n+2n+3.得出数列{b n}是等比数列.(Ⅱ)数列{a n}是“等比-等差”的类型,利用分组求和即可得出前n项和S n.18.答案:解:(Ⅰ)由题意得:城镇居民农村居民合计经常阅读100 24 124不经常阅读50 26 76合计150 50 200则K2==≈5.546>5.024,所以,有97.5%的把握认为经常阅读与居民居住地有关.(Ⅱ)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且x~B(4,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,所以X的分布列为:X0 1 2 3 4P∴E(X)==.解析:(Ⅰ)根据题意填写列联表,利用公式求出K2,比较K2与5.024的大小,即可得出有97.5%的把握认为,经常阅读与居民居住地有关.(Ⅱ)根据题意得X的可能取值为0,1,2,3,4,利用二项分布公式求出相应的概率,即可得出X 的分布列和期望.本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.19.答案:(Ⅰ)证明:取AD的中点为O,连结OP,OC,OB,设OB交AC于H,连结GH.∵AD∥BC,,∴四边形ABCD与四边形OBCD均为菱形∴OB⊥AC,OB∥CD,则CD⊥AC,∵△PAD为等边三角形,O为AD的中点,∴PO⊥AD,∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD.PO⊂平面PAD且PO⊥AD,∴PO⊥平面ABCD,∵CD⊂平面ABCD,∴PO⊥CD,∵H,G分别为OB,PB的中点,∴GH∥PO,∴GH⊥CD.又∵GH∩AC=H,AC,GH⊂平面GAC,∴CD⊥平面GAC;(Ⅱ)解:取BC的中点为E,以O为空间坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系O-xyz.设AD=4,则P(0,0,2),A(0,-2,0),C(,1,0),D(0,2,0),G(,,).=(0,2,2),=(,,).设平面PAG的一法向量=(x,y,z).由,得,即.令z=1,则=(1,,1).由(Ⅰ)可知,平面AGC的一个法向量.∴二面角P-AG-C的平面角θ的余弦值cosθ=.解析:(Ⅰ)分别证明CD⊥AC和GH⊥CD,即可得出CD⊥平面GAC;(Ⅱ)以O为空间坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系O-xyz.分别求出平面PAG、平面AGC的法向量、,利用cosθ=得出二面角P-AG-C的余弦值.本题考查线线、线面、面面垂直的判定定理,考查二面角的平面角的求法,考查空间想象能力,是中档题.20.答案:解:(Ⅰ)由已知,得,∴,∴b2=3,∴椭圆C的标准方程.(Ⅱ)若直线l的斜率不存在,则直线m的斜率也不存在,这与直线m与直线l相交于点P矛盾,所以直线l的斜率存在.令l:y=k(x-1),(k≠0),m:y=-k(x+t),A(x1,y1),B(x2,y2),M(x M,y M),N(x N,y N).将直线m的方程代入椭圆方程得:(3+4k2)x2+8k2tx+4(k2t2-3)=0,∴x M+x N=-,x M x N=,|MN|2=(1+k2).同理|AB|==.由|MN|2=4|AB|得t=0,此时,△=64k4t2-16(3+4k2)(k2t2-3)>0,∴直线m:y=-kx,∴,即点P的定直线x=上.解析:(Ⅰ)根据椭圆的性质及已知条件求出a,b,即可得出椭圆C的标准方程.(Ⅱ)设出直线l和直线m的直线方程,分别代入椭圆C的标准方程,利用弦长公式和韦达定理得出|MN|,|AB|,根据|MN|2=4|AB|确定l的值,联立直线l和直线m的方程得到点P的坐标,从而确定点P在定直线上.本题考查了椭圆方程、直线与椭圆的位置关系,属于中档题.21.答案:解:(Ⅰ)f(x)的定义域为(0,+∞).g(x)=f'(x)=2x-a ln x-a,g'(x)=2-当a≤0时,g'(x)>0,函数y=g(x)在(0,+∞)单调递增,函数y=g(x)没有极值.当a>0时,由g'(x)=0,得x=,函数y=g(x)在(0,)上单调递减,在(,+∞)上单调递增.函数y=g(x)的极小值为,没有极大值.(Ⅱ)对∀x∈[1,e],f(x)>0恒成立,即对∀x∈[1,e],x2-ax lnx+a+1>0,∴对∀x∈[1,e],x-a ln x+>0.令h(x)=x-a ln x+,则h'(x)=1-=.①当a+1≤1,即a≤0时,对∀x∈[1,e],h'(x)≥0,∴h(x)在[1,e]上单调递增,∴h(x)min=h(1)=1-0+>0,解得a>-2,∴-2<a≤0满足题意.②当a+1≥qe时,即a≥qe-1,对∀x∈[1,e],h'(x)≤0,∴h(x)在[1,e]上单调递减,h(x)min=h(e)=e-a+>0,解得a<∴e-1满足题意.③当1<a+1<e,即0<a<e-1时,对于x∈[1,a+1],h'(x)<0;对于x∈[a+1,e],h'(x)>0.∴h(x)在[1,a+1]上单调递减,在[a+1,e]上单调递增,∴.即1+-ln(a+1)>0设H(a)=1+-ln(a+1),由于H(a)在(0,e-1)单调递减,∴H(a)>1->0,即h(x)min=aH(a)>0,∴0<a<e-1满足题意.综上①②③可得,a的取值范围为:.解析:(Ⅰ)由导数的求导法则得出g(x)=2x-a ln x-a,利用导数求极值的步骤得出极值.(Ⅱ)构造函数令,求导得到,利用导数求最值的方法对a的值进行分类讨论,即可得出实数a的取值范围.本题在求a的取值范围时,直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式从而求出参数的取值范围,属较难题.22.答案:解:(1)由(α为参数,α∈[0,π]).消去参数α,可得曲线C的普通方程为x2+y2=4(y≥0).由ρ2(1+3sin2θ)=4,可得ρ2+3(ρsinθ)2=4,则x2+y2+3y2=4,则曲线E的直角坐标方程为.(2)设A(2cosα,2sinα),α∈[0,π],其中t=2cosα,则B(2cosα,±sinα),要使得△AOB面积的最大,则B(2cosα,-sinα),∴==,∵2α∈[0,2π],∴sin2α∈[-1,1],当,即时,△AOB的面积取最大值.解析:(1)消去参数α可得曲线C的普通方程;由ρ2=x2+y2,ρsinθ=y可把曲线E的极坐标方程化为直角坐标方程.(2)利用参数方程求出A,B的坐标,再求△AOB的面积及其最大值.本题考查参数方程与普通方程、极坐标方程与直角坐标方程的转化,考查坐标系与参数方程的综合应用,是中档题.23.答案:解:(1)f(x)=3|x-1|+|x+1|=,当x=1时,f(x)取得最小值,即k=f(1)=2;(2)证明:依题意,m2+4n2=2,则m2+4(n2+1)=6.所以==,当且仅当,即m2=2,n2=0时,等号成立.所以.解析:(1)将函数表示为分段函数,再求其最小值;(2)利用已知等式构造出可以利用均值不等式的形式.本题考查求含绝对值函数的最值,由均值不等式求最值.含绝对值的函数或不等式问题,一般可以利用零点分类讨论法求解.已知或pa+qb(m,n,p,q是正常数,a,b∈R+)的值,求另一个的最值,这是一种常见的题型,解题方法是把两式相乘展开再利用基本不等式求最值.。

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题-理科含答案

立的是
(A) f a2 1 f 2a (B) f a2 1 f 2a (C) f a2 1 f a 1 (D) f a2 1 f a
(12)在 ABC 中, CAB 90o , AC 1 , AB 3 .将 ABC 绕 BC 旋转至另一位置 P (点 A 转到点 P ),
………………………5 分
解得 a2 4 ,∴ a 2 ,
∴ ABC 的面积 S 1 ab sin C 1 2 2 1 1 .
2
2
2
……………………12 分
(19)(本小题满分 12 分)
124 112.6 100% 10%
(Ⅰ)(ⅰ)该地区2018年5月份消费者信心指数的同比增长率为 112.6
17
17
小数,参考数据与公式: xi yi 18068 , xi2 1785 , x 9上
i 1
i 1
n
bˆ y 115 ,
xi yi n x y
i1
n
xi2 nx 2
)
i1
(20)(本小题满分 12 分) 如图,矩形 ABCD 和菱形 ABEF 所在的平面相互垂直, ABE 60 , G 为 BE 中点. (Ⅰ)求证:平面 ACG 平面 BCE ; (Ⅱ)若 AB 3BC ,求二面角 B CA G 的余弦值.

的前
n
项和
Tn
.
(18)(本小题满分 12 分)
已知:在 ABC 中, a,b,
c 分别是角 A,B,
C
所对的边长,
cos
a
A

C


b cos
A

0

合肥市2019高三三模理科数学试题及答案

合肥市2019高三三模理科数学试题及答案

合肥市2019年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)—、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)1. 设集合M={R x ∈|x 2<4},N={-1,1,2},则M I N =( )A{-1,1,2} B.{-1,2} C.{1,2} D{-1,1}2. 已知(1+i)(a-2i)= b-ai(其中a,b 均为实数,i 为虚数单位),则a+b =( )A. -2 .43. 等比数列{a n }中,a 2=2,a 5 =41,则a 7 =( ) A. 641 B. 321 C. 161 D. 81 4. “ m < 1 ”是“函数f(x) = x 2-x+41m 存在零点”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件5. 右边程序框图,输出a 的结果为( )A.初始值aB.三个数中的最大值C. 二个数中的最小值D.初始值c6. 已知⎪⎩⎪⎨⎧≥+-≤--≥+033206322y x y x y x ,且z=x 2+y+,则z 的最小值是( ) B.1 C. 187. P 是正六边形ABCDEF 某一边上一点,AF y AB x AP +=,则x+y 的最大值为( ).58. 右图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面 积为( )+ 17π + 16πC. 16 + 17πD. 16 + l6π9. 五个人负责一个社团的周一至周五的值班工作, 每人一天,则甲同学不值周一,乙同学不值周五,且甲,乙不相邻的概率是( ) A. 103 B. 207 C. 52 D. 3013 10.定义域为R 的函数f(x)的图像关于直线x= 1对称,当a ∈[0,l]时,f(x) =x,且对任意R x ∈只都有f(x+2) = -f(x),g(x)= ⎩⎨⎧<--≥)0)((log )0)((2013x x x x f ,则方程g(x)-g(-x) =0实数根的个数为( ) A. 1006 B. 1007 C. 2018第II 卷(满分100分) 二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.已知抛物线的准线方程是x=21,则其标准方程是______12.关于x 的不等式log 2|1-x| > 1的解集为_______13.曲线C 的极坐标方程为: θρcos 2=,曲线T 的参数 方程为⎩⎨⎧+=+-=121t y t x (t 为参数),则曲线C 与T 的公共点有______个.14.如图,一栋建筑物AB 高(30-103)m ,在该建筑 物的正东方向有一个通信塔CD.在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处 测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m.15.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P ,Q,R 分 别是棱BC,CD,DD 1的中点.下列命题: ①过A 1C 1且与CD 1平行的平面有且只有一个;②平面PQR 截正方体所得截面图形是等腰梯形;③AC 1与平面PQR 所成的角为60°;④线段EF 与GH 分别在棱A 1B 1和CC 1上运动,且EF + GH = 1,则三棱锥E - FGH 体积的最大值是121 ⑤线段MN 是该正方体内切球的一条直径,点O 在正 方体表面上运动,则ON OM .的取值范围是[0,2].其中真命题的序号是______(写出所有真命题的序号).三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知函数f(x)=Asin())2,0(,0,0(),πϕωϕω∈>>+A x 部分图像如图所示.(I)求函数f(x)的解析式;(II)已知)2,0(π∈a ),且32cos =a ,求f(a).17.(本小题满分13分)如图BB 1,CC 1 ,DD 1均垂直于正方形AB 1C 1D 1所在平面A 、B 、C 、D 四点共面.(I)求证:四边形ABCD 为平行四边形;(II)若E,F 分别为AB 1 ,D 1C 1上的点,AB 1 =CC 1 =2BB 1 =4,AE =D 1F =1.(i)求证:CD 丄平面DEF;(ii)求二面角D-EC 1-D 1的余弦值.18.(本小题满分12分)已知f(x) = log a x- x +1( a>0,且 a ≠ 1).(I)若a=e,求f(x)的单调区间;(II)若f(x)>0在区间(1,2)上恒成立,求实数a 的取值范围.19.(本小题满分13分)根据上级部门关于开展中小学生研学旅行试点工作的要求,某校决定在高一年级开展中小学生研学旅行试点工作.巳知该校高一年级10个班级,确定甲、乙、丙三 条研学旅行路线.为使每条路线班级数大致相当,先制作分别写有甲、乙、丙字样的签 各三张,由高一(1)〜高一(9)班班长抽签,再由高一(10)班班长在分别写有甲、乙、 丙字样的三张签中抽取一张.(I)设“有4个班级抽中赴甲路线研学旅行”为事件A ,求事件A 的概率P(A);(II )设高一(l)、高一(2)两班同路线为事件B,高一(1)、高一(10)两班同路线为事 件C ,试比较事件B 的概率P(B)与事件C 的概率P( C)的大小;(III)记(II)中事件B 、C 发生的个数为ξ,求随机变量ξ的数学期望E ξ20.(本小题满分12分)平面内定点财(1,0),定直线l:x=4,P 为平面内动点,作PQ 丄l ,垂足为Q ,且||2||PM PQ =.(I)求动点P 的轨迹方程;(II )过点M 与坐标轴不垂直的直线,交动点P 的轨迹于点A 、B ,线段AB 的垂直平分 线交x 轴于点H ,试判断||||AB HM -是否为定值.21.(本小题满分13分)设数列{a n }的前n 项和为S n ,且对任意的*N n ∈,都有a n >0,S n =33231...n a a a +++ (I)求a 1,a 2的值;(II)求数列{a n }的通项公式a n(III)证明:ln2≤a n ·ln(1+)1na <ln3。

合肥市2019年高三第三次教学质量检测

合肥市2019年高三第三次教学质量检测

合肥市2019年高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}2|20,1,0,1,2A x x x B =-≤=-,则A B =( )A .[]0,2B .{}0,1,2C .()1,2-D .{}1,0,1- 2. 已知复数z 满足iz 1i =-,则z =( )A .1i --B .1i -C .1i -+D .1i + 3.函数3y =的图象大致是( )A .B .C .D .4. 已知等差数列{}n a 的前n 项和为n S ,且满足6924,63S S ==,则4a = ( ) A .4 B .5 C.6 D .75. 如图所示的程序框图中 ,如输入4,3m t ==,则输出y = ( )A .61B .62 C.183 D .184 6. 平行四边形ABCD 中,2,1,1AB AD AB AD ===-,点M 在边CD 上,则MA MB 的最大值为 ( )A .2B .1 C.5D 17. 在射击训练中 ,某战士射击了两次 ,设命题p 是“ 第一次射击击中目标”,命题q 是“ 第二次射击击中目标 ”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 ( )A .()()p q ⌝∨⌝ 为真命题B .()p q ∨⌝ 为真命题 C. ()()p q ⌝∧⌝ 为真命题 D .p q ∨ 为真命题8. 已知双曲线()22210y x b b-=>,以原点O 为圆心 , 双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于,,,A B C D 四点 ,四边形ABCD 的面积为b ,则双曲线的离心率为( )A .2 C.3D .9. 已知函数()()21cos 0,R 222xf x x x ωωω=+->∈.若函数 ()f x 在区间(),2ππ内没有零点 , 则ω的取值范围是( )A .50,12⎛⎤ ⎥⎝⎦B .55110,,12612⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭ C.50,6⎛⎤ ⎥⎝⎦ D .55110,,12612⎛⎤⎡⎤⎥⎢⎥⎣⎦⎝⎦10. 已知函数()1x f x x a e ⎛⎫=- ⎪⎝⎭,曲线()y f x =上存在两个不同点 ,使得曲线在这两点处的切线都与 y 轴垂直 ,则实数a 的取值范围是( )A .()2,e -+∞B .()2,0e - C.21,e ⎛⎫-+∞ ⎪⎝⎭D .21,0e ⎛⎫- ⎪⎝⎭11. 如图 ,网格纸上小正方形的边长为 1,粗实线画出的是某四棱锥的三视图 ,则该几何体的体积为 ( )A .15B .16 C.503D .53312. 数列{}n a 是以a 为首项,q 为公比的等比数列,数列{}n b 满足()121...1,2,...n n b a a a n =++++=,数列{}n c 满足()122...1,2,...n n c b b b n =++++=,若{}n c 为等比数列,则a q +=( )A .3D .6二、填空题已知函数,则=.14.在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为.15.已知点G是△ABC的重心,内角A、B、C所对的边长分别为a、b、c,且,则角B的大小是.16.直线l过抛物线C:y2=2px(p>0)的焦点F,与抛物线C交于A、B两点,与其准线交于点D,若|AF|=6,,则p=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)数列{a n}的前n项和S n满足,且a1,a2+6,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.18.(12分)如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H 是FG的中点.(Ⅰ)证明:OB⊥EH;(Ⅱ)若直线BH与平面EFG所成的角的正弦值为,求二面角D﹣AC﹣H 的余弦值.19.(12分)某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的3个好友参与此活动,以此下去.(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少? (Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:①根据表中数据,是否有99%的把握认为“表演节目”与好友的性别有关? ②将此样本的频率视为总体的概率,随机调查3名男性好友,设X 为3个人中选择表演的人数,求X 的分布列和期望. 附:K 2=;20.(12分)已知椭圆,焦距为2,离心率e 为.(Ⅰ)求椭圆C 的标准方程; (Ⅱ)过点作圆的切线,切点分别为M 、N ,直线MN与x 轴交于点F ,过点F 的直线l 交椭圆C 于A 、B 两点,点F 关于y 轴的对称点为G,求△ABG的面积的最大值.21.(12分)设函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若函数f(x)存在极值,对于任意的0<x1<x2,存在正实数x0,使得f (x1)﹣f(x2)=f'(x0)•(x1﹣x2),试判断x1+x2与2x0的大小关系并给出证明.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线(t为参数,t∈R),曲线(θ为参数,θ∈[0,2π]).(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣2|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣1时,不等式lnf(x)>1成立;(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.合肥市2019年高三第三次教学质量检测参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1-5: BCABC 6-10: AABDD 11-12:CB二、填空题(2017•宿州一模)已知函数,则=1.【考点】函数的值.【分析】由函数的解析式、特殊角的三角函数值先求出的值,再求出的值.【解答】解:由题意知,,则===1,所以f(1)==1,即=1,故答案为:1.【点评】本题考查分段函数的函数值,对于多层函数值应从内到外依次求值,注意自变量的范围,属于基础题.14.在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为8π.【考点】球的体积和表面积.【分析】利用三棱锥侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,从而求出对角线长,即可求解外接球的体积.【解答】解:三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,设长方体的三度为a,b,c,则由题意得:ab=4,ac=4,bc=4,解得:a=2,b=2,c=2,所以球的直径为:=2所以球的半径为,所以三棱锥A﹣BCD的外接球的体积为=8π故答案为:8π.【点评】本题考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.15.已知点G是△ABC的重心,内角A、B、C所对的边长分别为a、b、c,且,则角B的大小是.【考点】平面向量的基本定理及其意义.【分析】点G是△ABC的重心,可得:,由题意,可得a=5,b=7,c=8,根据余弦定理可得角B的大小.【解答】解:由题意:点G是△ABC的重心,可得:,∵,∴可得a=5,b=7,c=8,由余弦定理可得:cosB=,∵0<B<π,∴B=.故答案为【点评】本题考查重心的性质,是基础题,解题时要认真审题.16.直线l过抛物线C:y2=2px(p>0)的焦点F,与抛物线C交于A、B两点,与其准线交于点D,若|AF|=6,,则p=3.【考点】抛物线的简单性质.【分析】过A,B,F向准线作垂线,利用抛物线的定义得出直线AB的斜率,计算|AD|可得F为AD的中点,利用中位线定理得出p的值.【解答】解:过A,B,F作准线的垂线,垂足分别为A′,B′,F′,则|AA′|=|AF|=6,|BB′|=|BF|,|FF′|=p.∵,∴|DB|=2|BF|=2|BB′|,∴直线l的斜率为,∴|AD|=2|AA′|=12,∴F是AD的中点.∴|FF′|=|AA′|=3,即p=3.故答案为:3.【点评】本题考查了抛物线的定义与性质,直线与抛物线的位置关系,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•宿州一模)数列{a n}的前n项和S n满足,且a1,a2+6,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)由,再写一式,两式相减,可得a n=a n﹣a n﹣1,即a n=3a n﹣1.由a1,a2+6,a3成等差数列,得2(a2+6)=a1+a3,解得a1=3,即可求数列{a n}的通项公式;(Ⅱ)设b n=,确定通项,利用裂项法求数列{b n}的前n项和T n.【解答】解:(Ⅰ)由,再写一式,两式相减,可得a n=a n﹣a n﹣1,即a n=3a n﹣1.由a1,a2+6,a3成等差数列,得2(a2+6)=a1+a3,解得a1=3.故数列{a n}是以3为首项,3为公比的等比数列,所以a n=3n.(Ⅱ)a n+1=3n+1,S n=,则S n+1=.b n==(﹣),所以数列{b n}的前n项和T n= [(﹣)+(﹣)+…+(﹣)]=(﹣).【点评】本题考查的知识要点:利用递推关系式求数列的通项公式,利用裂项相消法求数列的和.18.(12分)(2017•宿州一模)如图所示,四边形AMNC为等腰梯形,△ABC 为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.(Ⅰ)证明:OB⊥EH;(Ⅱ)若直线BH与平面EFG所成的角的正弦值为,求二面角D﹣AC﹣H 的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)由题意知等腰梯形AMNC与直角△ABC所成二面角的平面角为∠BOC,则∠BOC=.得OB⊥平面AMNC.又平面AMNC∥平面EFG,则OB⊥平面EFG即可.(Ⅱ)以O为原点,分别以,,为x轴、y轴、z轴的正方向,建立空间直角坐标系,如图所示.设OA=a,OB=b,则O(0,0,0),A(a,0,0),B(0,a,0),D(0,0,b),C(﹣a,0,0).利用向量法求解.【解答】解:(Ⅰ)证明:因为点O、D分别是等腰梯形AMNC两底AC、MN 的中点,所以OD⊥OC.又AB=BC,则OB⊥AC.于是等腰梯形AMNC与直角△ABC所成二面角的平面角为∠BOC,则∠BOC=.即OB⊥OD,得OB⊥平面AMNC.又平面AMNC∥平面EFG,则OB⊥平面EFG.因为EG⊂平面EFG,所以OB⊥EH.(Ⅱ)以O为原点,分别以,,为x轴、y轴、z轴的正方向,建立空间直角坐标系,如图所示.设OA=a,OB=b,则O(0,0,0),A(a,0,0),B(0,a,0),D(0,0,b),C(﹣a,0,0).所以E(,F(0,),G(﹣,H(﹣),有,平面EFG的一个法向量为.设直线BH与平面EFG所成的角为α,则sinα=|cos<|=,得a=b.设平面HAC的法向量为,由,取y=1,得,所以cos<>=,因为二面角D﹣AC﹣H为锐二面角,所以二面角D﹣AC﹣H的余弦值为.【点评】本题考查了空间线线、线面位置关系,即向量法求空间角,属于中档题.19.(12分)(2017•宿州一模)某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的3个好友参与此活动,以此下去.(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少?(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:①根据表中数据,是否有99%的把握认为“表演节目”与好友的性别有关?②将此样本的频率视为总体的概率,随机调查3名男性好友,设X为3个人中选择表演的人数,求X的分布列和期望.附:K2=;【考点】独立性检验的应用;列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)利用列举法,确定基本事件的个数,即可求出概率;(Ⅱ)①根据2×2列联表,得到K2=≈8.9>6.635,即可得出结论;②由题意,每名男性选择表演的概率为,则X~B(3,),可得X的分布列和期望.【解答】解:(Ⅰ)这3位好友选择表演分别记为A,B,C,则,,分别表示这3位好友拒绝表演.这3位好友参与该活动的可能结果为{A,B,C},{,B,C},{A,,C},{A,B, },{,,C},{A,, },{,B, },{,, }共有8种.其中3位好友不少于3位好友选择表演的可能结果有4种.根据古典概型公式,所求概率为P==;(Ⅱ)①根据2×2列联表,得到K2=≈8.9>6.635,所以有99%的把握认为“表演节目”与好友的性别有关.②由题意,每名男性选择表演的概率为,则X~B(3,),所以随机变量X的概率分布列为:故随机变量X的期望为EX=3×=.【点评】本题考查概率的计算,考查X的分布列和期望,考查独立性检验知识的运用,属于中档题.20.(12分)(2017•宿州一模)已知椭圆,焦距为2,离心率e为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点作圆的切线,切点分别为M、N,直线MN 与x轴交于点F,过点F的直线l交椭圆C于A、B两点,点F关于y轴的对称点为G,求△ABG的面积的最大值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的焦距为2,离心率e为.求出a,b,由此能求出椭圆的标准方程.(Ⅱ)由题意,得O、M、P、n四点共圆,该圆的方程为(x﹣)2+(y﹣)2=,圆O的方程为x2+y2=,直线MN的方程为x+2y﹣1=0,设A(x,y1),1B(x2,y2),则|GF||y1﹣y2|=|y1﹣y2|,从而S△ABG最大,|y1﹣y2|就最大.可设直线l的方程为x=my+1,由,得(3m2+4)y2+6my﹣9=0,由此利用根的判别式、韦达定理、弦长公式,能求出△ABG的面积的最大值.【解答】解:(Ⅰ)∵椭圆,焦距为2,离心率e为.∴由题意,2c=2,解得c=1,由e=,解得a=2.∴b=.∴椭圆的标准方程为=1.(Ⅱ)由题意,得O、M、P、n四点共圆,该圆的方程为(x﹣)2+(y﹣)2=,又圆O的方程为x2+y2=,∴直线MN的方程为x+2y﹣1=0,令y=0,得x=1,即点F的坐标为(1,0),则点F关于y轴的对称点为G(﹣1,0).设A(x1,y1),B(x2,y2),则|GF||y1﹣y2|=|y1﹣y2|,最大,|y1﹣y2|就最大.∴S△ABG由题意知,直线l的斜率不为零,可设直线l的方程为x=my+1,由,得(3m2+4)y2+6my﹣9=0,∴,.又∵直线l与椭圆C交于不同的两点,∴△>0,即(6m)2+36(3m2+4)>0,m∈R,=|GF||y1﹣y2|=|y1﹣y2|==,则S△GAB===.令t=,则t≥1,S△GAB令f(t)=t+,则函数f(t)在[,+∞)上单调递增,即当t≥1时,f(t)在[1,+∞)上单调递增,∴f(t)≥f(1)=,∴S≤3.△GAB故△ABG的面积的最大值为3.【点评】本题考查椭圆方程的求法,考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意椭圆、直线方程、根的判别式、韦达定理、弦长公式等知识点的合理运用.21.(12分)(2017•宿州一模)设函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若函数f(x)存在极值,对于任意的0<x1<x2,存在正实数x0,使得f(x1)﹣f(x2)=f'(x0)•(x1﹣x2),试判断x1+x2与2x0的大小关系并给出证明.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)分别计算f′(x0)和f′(),作差得到f′(x0)﹣f′()=,设t=,则t>1,得到关于t的函数,根据函数的单调性判断即可.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=﹣ax+(4﹣a)=﹣,当a≤0时,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.当a>0时,则由f′(x)=0得,x=,x=﹣1(舍去);当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减;综上所述,当a≤0时,f(x)在(0,+∞)上单调递增.当a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.(Ⅱ)由(Ⅰ)知,当a>0时,f(x)存在极值.f(x1)﹣f(x2)=4(lnx1﹣lnx2)﹣a(x1+x2)(x1﹣x2)+(4﹣a)(x1﹣x2),由题设得f′(x0)==﹣a(x1+x2)+(4﹣a),又f′()=﹣a•+4﹣a,所以f′(x0)﹣f′()=,设t=,则t>1,则=lnt﹣(t>1),令g(t)=lnt﹣(t>1),则g′(t)=>0,所以g(t)在(1,+∞)上单调递增,所以g(t)>g(1)=0,故>0,又因为x2﹣x1>0,因此f′(x0)﹣f′()>0,即f′()<f′(x0),又由f′(x)﹣ax+(4﹣a)知f′(x)在(0,+∞)上单调递减,所以>x0,即x1+x2>2x0.【点评】本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,考查计算能力,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)(2017•宿州一模)在直角坐标系xOy中,曲线(t 为参数,t∈R),曲线(θ为参数,θ∈[0,2π]).(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.【考点】参数方程化成普通方程.【分析】(Ⅰ)消去参数后得到其普通方程,把x=ρcosθ,y=ρsinθ代入可得曲线C2的极坐标方程;(Ⅱ)法一:利用弦长公式直接求解,利用参数的几何意义求解.法二、运用直线的参数方程求解.【解答】解(Ⅰ)由消去参数后得到其普通方程为x2﹣4x+y2=0,把x=ρcosθ,y=ρsinθ代入可得ρ=4cosθ.∴曲线C2的极坐标方程为ρ=4cosθ.(Ⅱ)由消去参数后得到其普通方程为x+y﹣3=0,由曲线C2可知:以(2,0)为圆心,以2为半径的圆.那么:圆心到直线C1的距离为,∴弦长.解法2:把代入x2﹣4x+y2=0得8t2﹣12t+1=0,则有:,,则,根据直线方程的参数几何意义知.【点评】本题考查了直角坐标方程与极坐标、参数方程之间的转换,考查了参数方程的几何意义.属于中档题.[选修4-5:不等式选讲]23.(2017•宿州一模)设函数f(x)=|x﹣2|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣1时,不等式lnf(x)>1成立;(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论x的范围,得到f(x)的分段函数的形式,求出f(x)的最小值,从而证出结论即可;(Ⅱ)求出f(x)的最小值,得到关于a的不等式,解出即可.【解答】解:(Ⅰ)证明:当a=﹣1时,,故f(x)的最小值为3,则lnf(x)的最小值为ln3>lne=1,所以lnf(x)>1成立.(Ⅱ)由绝对值不等式可得:f(x)=|x﹣2|+|x﹣a|≥|(x﹣2)﹣(x﹣a)|=|a﹣2|,再由不等式f(x)≥a在R上恒成立,可得|a﹣2|≥a,解得a≤1,故a的最大值为1.【点评】本题考查了求分段函数的最值问题,考查绝对值的性质,是一道中档题.。

合肥市2019高三三模理科数学试题及答案

合肥市2019高三三模理科数学试题及答案

合肥市2019年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)―、选择题(本大题共 10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)_ 21. 设集合 M={xR |x <4},N={-1,1,2}, 贝UM N=() A{-1 , 1, 2} B.{-1 , 2} C.{1 , 2} D{-1 , 1}2. 已知(1+i)(a-2i)= b-ai(A.-2 .43. 等比数列{a n }中,a 2=2, a s = 1,则 a ?=()4C.必要不充分条件D.既不充分也不必要条件5. 右边程序框图,输出 a 的结果为() A.初始值a B.三个数中的最大值 C.二个数中的最小值 D.初始值cx 2y 26. 已知 3x y 60,且z=x 2+y+,则z 的最小值是( 2x 3y 3B. 1C. 187. P 是正六边形 ABCDEF 某一边上一点,其中a,b 均为实数,i 为虚数单位),则a+b =()1 111 A.B.C. D.64321684.”是 “函数f(x) = x1m < 1 -x+ m 存在零点的4A.充分不必要条件B.充要条件AP xAB yAF,则x+y的最大值为().58. 右图为一个简单组合体的三视图,其中正视图由一个半+ 17 C. 16 + 17D. 16 + 169. 五个人负责一个社团的周一至周五的值班工作, 同学不值周五,且甲,乙不相邻的概率是()10.定义域为R 的函数f (x )的图像关于直线 x= 1对称,当a € [0,1]时,f (x ) =x,且对任意 x R 只都有 f(x+2) = -f(x),g(x)=根的个数为()A. 1006B. 1007C. 2018第II 卷(满分100分)二、填空题(本大题共 5小题,每小题5分,共25分,把答案填在答题卡的相应位置)111.已知抛物线的准线方程是 x=丄,则其标准方程是212. 关于x 的不等式log 2|1-x| > 1 的解集为 ________13. 曲线C 的极坐标方程为: 2COS ,曲线T 的参数x t 1方程为(t 为参数),则曲线 C 与T 的公共点有y 2t 1______ 个.14. 如图,一栋建筑物 AB 高(30-103 )m ,在该建筑 物的正东方向有一个通信塔 CD •在它们之间的地面 皿点(B 、M D 三点共线)测得对楼顶 A 、塔顶C 的仰角分别是15°和60 ° 仰角为30。

合肥市 2019 年高三第三次教学质量检测2019三模理科综合(理化生),答案(终)

合肥市 2019 年高三第三次教学质量检测2019三模理科综合(理化生),答案(终)
设男演员对女演员的平均作用力大小为 , 取竖直向上方向为正方向,对女演员,由动量定理:
。 (1 分)
( − ) = 0 − (− ) , 解得 = + = +
(3 分)
根据牛顿第三定律,女演员对男演员的平均作用力大小为 +
,方向竖直向下。
(1 分) 注:其它解法合理也可得分。 25.(18 分) (1)粒子自坐标原点 O 由静止释放,设 1s 末其速度大小为 v1,由
(1 分)
粒子自坐标原点 O 由静止释放,在 y 轴正半轴方向做匀加速直线运动时间为 3s,通过的位
移:
y1

1 2
v3

3t

45m

0~6s
内粒子运动至最高点的位置纵坐标为
y

y1

r3

(45
15)m
(2 分) (1 分)
可见,则 0~6s 内粒子运动至最高点的位置坐标为[ 15 m , (45 15)m ] (1 分)
高三理科综合试题答案 第 3 页(共 6 页)
28.(14 分) (1)HCHO (1 分)
−470 kJ⋅mol−1
(2 分)
(2)① 放热 (1 分) < (1 分) ② 2.7 (3 分)
(3)碱性 (2 分)
(4)2HSO3- + 2e- + 2H+ = S2O42- + 2H2O (2 分)
共同速度大小也应该为 vc。男演员接住女演员的过程水平方向动量守恒;
以水平向右为正方向,
+2 =3
高三理科综合试题答案 第 1 页(共 6 页)
代入数据得
cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市2019年高三第三次教学质量检测
数学试题(理)
(考试时间:120分钟满分:150分)
第I 卷(满分50分)
—、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)
1. 设集合M={R x ∈|x 2<4},N={-1,1,2},则M I N =( ) A{-1,1,2} B.{-1,2} C.{1,2} D{-1,1}
2. 已知(1+i)(a-2i)= b-ai(其中a,b 均为实数,i 为虚数单位),则a+b =( ) A. -2
B.4
C.2
D.0
3. 等比数列{a n }中,a 2=2,a 5 =4
1
,则a 7 =( ) A.
641 B. 321 C. 16
1 D. 81 4. “ m < 1 ”是“函数f(x) = x 2-x+4
1
m 存在零点”的( ) A.充分不必要条件 B.充要条件
C.必要不充分条件
D.既不充分也不必要条件 5. 右边程序框图,输出a 的结果为( ) A.初始值a B.三个数中的最大值 C. 二个数中的最小值 D.初始值c
6. 已知⎪⎩

⎨⎧≥+-≤--≥+033206322y x y x y x ,且z=x 2+y+,则z 的最小值是( )
A.4
B.1
C. 18
D.y
7. P 是正六边形ABCDEF 某一边上一点,AF y AB x AP +=, 则x+y 的最大值为( )
A.4
B.5
C.6
D.7
8. 右图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面 积为( )
A.20 + 17π
B.20 + 16π
C. 16 + 17π
D. 16 + l6π
9. 五个人负责一个社团的周一至周五的值班工作, 每人一天,则甲同学不值周一,乙同学不值周五,且甲,乙不相邻的概率是( )
A.
103 B. 207 C. 52 D. 30
13
10.定义域为R 的函数f(x)的图像关于直线x= 1对称,当a ∈[0,l]时,f(x) =x,且对任意
R x ∈只都有f(x+2) = -f(x),g(x)= ⎩

⎧<--≥)0)((log )
0)((2013x x x x f ,则方程g(x)-g(-x) =0实数根的个数为( )
A. 1006
B. 1007
C. 2018
D.2018
第II 卷(满分100分)
二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.已知抛物线的准线方程是x=2
1
,则其标准方程是______
12.关于x 的不等式log 2|1-x| > 1的解集为_______ 13.曲线C 的极坐标方程为: θρcos 2=,曲线T 的参数
方程为⎩
⎨⎧+=+-=121t y t x (t 为参数),则曲线C 与T 的公共点有
______个.
14.如图,一栋建筑物AB 高(30-103)m ,在该建筑 物
的正东方向有一个通信塔CD.在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处 测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m.
15.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P ,Q,R 分 别是棱BC,CD,DD 1的中点.下列命题:
①过A 1C 1且与CD 1平行的平面有且只有一个; ②平面PQR 截正方体所得截面图形是等腰梯形; ③AC 1与平面PQR 所成的角为60°;
④线段EF 与GH 分别在棱A 1B 1和CC 1上运动,且EF + GH = 1,则三棱锥E - FGH 体积的最大值是
12
1 ⑤线段MN 是该正方体内切球的一条直径,点O 在正 方体表面上运动,则
ON
OM .的取值范围是[0,2].
其中真命题的序号是______(写出所有真命题的序号).
三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分12分)
已知函数f(x)=Asin())2
,0(,0,0(),π
ϕωϕω∈>>+A x 部
分图像如图所示.
(I)求函数f(x)的解析式; (II)已知)2
,0(π
∈a ),且3
2
cos =
a ,求f(a).
17.(本小题满分13分)
如图BB1,CC1,DD1均垂直于正方形AB1C1D1所在平
面A、B、C、D四点共面.
(I)求证:四边形ABCD为平行四边形;
(II)若E,F分别为AB1,D1C1上的点,AB1=CC1=2BB1
=4,AE = D1F =1.
(i)求证:CD丄平面DEF;
(ii)求二面角D-EC1-D1的余弦值.
18.(本小题满分12分)
已知f(x) = log a x- x +1( a>0,且a ≠1).
(I)若a=e,求f(x)的单调区间;
(II)若f(x)>0在区间(1,2)上恒成立,求实数a的取值范围.
19.(本小题满分13分)
根据上级部门关于开展中小学生研学旅行试点工作的要求,某校决定在高一年级开展中
小学生研学旅行试点工作.巳知该校高一年级10个班级,确定甲、乙、丙三 条研学旅行路线.为使每条路线班级数大致相当,先制作分别写有甲、乙、丙字样的签 各三张,由高一(1)〜高一(9)班班长抽签,再由高一(10)班班长在分别写有甲、乙、 丙字样的三张签中抽取一张.
(I)设“有4个班级抽中赴甲路线研学旅行”为事件A ,求事件A 的概率P(A);
(II )设高一(l)、高一(2)两班同路线为事件B,高一(1)、高一(10)两班同路线为事 件C ,试比较事件B 的概率P(B)与事件C 的概率P( C)的大小;
(III)记(II)中事件B 、C 发生的个数为ξ,求随机变量ξ的数学期望E ξ
20.(本小题满分12分)
平面内定点财(1,0),定直线l:x=4,P 为平面内动点,作PQ 丄l ,垂足为Q ,且
||2||PM PQ =.
(I)求动点P 的轨迹方程;
(II )过点M 与坐标轴不垂直的直线,交动点P 的轨迹于点A 、B ,线段AB 的垂直平分 线交x 轴于点H ,试判断
|
||
|AB HM -是否为定值.
21.(本小题满分13分)
设数列{a n }的前n 项和为S n ,且对任意的*N n ∈,都有a n >0,S n = 3
3231...n a a a +++
(I)求a 1,a 2的值; (II)求数列{a n }的通项公式a n
(III)证明:ln2≤a n ·ln(1+)1n
a <ln3。

相关文档
最新文档