江苏省淮安市2019-2020学年高二数学上学期期末考试试题 (含解析)
江苏省淮安市2019-2020学年数学高二下期末质量检测试题含解析
江苏省淮安市2019-2020学年数学高二下期末质量检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.—个盒子里装有相同大小的红球、白球共30个,其中白球4个.从中任取两个,则概率为1102264264230C C C C C +的事件是( ). A .没有白球 B .至少有一个白球 C .至少有一个红球D .至多有一个白球【答案】B 【解析】1122644230C C C C +表示任取的两个球中只有一个白球和两个都是白球的概率,即至少有一个白球的概率.故选B.点睛:古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员( ) A .3人 B .4人C .7人D .12人【答案】B 【解析】 【分析】根据分层抽样原理求出应抽取的管理人数. 【详解】根据分层抽样原理知,应抽取管理人员的人数为:16010424204160--⨯=故选:B 【点睛】本题考查了分层抽样原理应用问题,是基础题. 3.下列命题中正确的是( )A .1y x x=+的最小值是2 B .2y =的最小值是2C .()4230y x x x =-->的最大值是2-D .()4230y x x x=-->的最小值是2-【答案】C 【解析】 因为A.1y x x=+的最小值是2,只有x>0成立。
B.2y =的最小值是2 ,取不到最小值。
C.()4230y x x x =-->的最大值是2-D.()4230y x x x=-->的最小值是2-,不成立。
2019-2020学年江苏省淮安市高二下学期期末数学试题(解析版)
2019-2020学年江苏省淮安市高二下学期期末数学试题一、单选题1.若复数z 满足()121-=i z (i 为虚数单位),则z 为( )A .BC .5D .15【答案】B【解析】利用复数的除法可算出z 的值,再利用公式计算其模. 【详解】()()11+212+12121+255i z i i i i ===--,故||z ==.故选:B. 【点睛】本题考查复数的除法以及复数的模,属于基础题.2.设随机变量()~,0.2X B n ,且() 1.6E X =,则n 为( ) A .4 B .6C .8D .10【答案】C【解析】由二项分布的均值公式()E X np =即可求得n 的值. 【详解】()~,0.2X B n()0.2 1.6E X np n ∴===8n ∴=故选:C 【点睛】本题考查二项分布的均值,属于简单题. 3.函数()()922f x x x x =+>-的最小值为( ) A .5 B .3C .8D .6【答案】C【解析】对()f x 进行配凑可得()99(2)222f x x x x x =+=-++--,再利用基本不等式求解即可.因为2x >,所以20x ->,所以()99(2)22822f x x x x x =+=-++≥=--, 当且仅当922x x -=-,即5x =时等号成立. 所以()f x 的最小值为8. 故选:C 【点睛】本题主要考查了利用基本不等式求和的最小值,关键是构造积为定值,属于基础题. 4.从1,2,3,4,5,这5个数中任取两个奇数,1个偶数,组成没有重复数字的三位数的个数为( ) A .60 B .24 C .12 D .36【答案】D【解析】采用分步计数原理,分两步,第一步先选取三个数,第二步对选出的三个数进行排列. 【详解】第一步先将三个数取出,有21326C C ⋅=种, 第二步对取出的三个数进行排列,共有336A =种,所以完成两步共有6636⨯=种. 故选:D. 【点睛】本题考查排列、组合及简单计数问题,是一道基础题.5.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:由最小二乘法得y 与x 的线性回归方程为0.7y x a =+,则当8x =时,繁殖个数y 的预测值为( ) A .4.9B .5.25C .5.95D .6.15【解析】根据题中条件,求出,x y ,再由回归直线必过样本中心,求出a ,将8x =代入回归方程,即可求出结果. 【详解】由题中数据可得:3456 4.54x +++==, 2.534 4.53.54y +++==,因为回归直线必过样本中心(),x y , 所以0.7 3.50.7 4.50.35a y x =-=-⨯=, 因此0.70.35y x =+,所以当8x =时,0.780.35 5.95y =⨯+=. 故选:C. 【点睛】本题主要考查用回归直线求预测值,熟记回归直线的特征即可,属于基础题型. 6.现有4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( ) A .23B .35C .12D .25【答案】D【解析】设男生甲被选中为事件A ,女生乙也被选中为事件B ,分别求得1()2P A =,1()5P AB =,再结合条件概率的计算公式,即可求解.【详解】由题意,从现有4名男生,2名女生选出3人参加学校组织的社会实践活动,设男生甲被选中为事件A ,其概率为25361()2C P A C ==,设女生乙也被选中为事件B ,其概率为14361()5C P AB C ==,所以在男生甲被选中的情况下,女生乙也被选中的概率为()2(|)1()5215P AB P B A P A ===. 故选:D. 【点睛】本题主要考查了条件概率的求解,其中解答中正确理解题意,熟练应用条件概率的计算公式求解是解答的关键,着重考查推理与计算能力.7.在某区2020年5月份的高二期中质量检测中,学生的数学成绩服从正态分布()~98,100X N .且()881080.683P x ≤≤≈,()781180.954P x ≤≤≈,已知参加本次考试的学生有9460人,王小雅同学在这次考试中数学成绩为108分,则她的数学成绩在该区的排名大约是( ) A .2800 B .2180C .1500D .6230【答案】C【解析】首先根据题意得到正态曲线的对称轴,再计算()108≥P x ,即可得到答案. 【详解】由题知:学生的数学成绩服从正态分布()~98,100X N 所以98μ=,10σ=. 所以()()11081881080.15852⎡⎤≥=-≤≤≈⎣⎦P x P x , 即数学成绩高于108分的学生占总人数的0.1585,所以王小雅同学的数学成绩在该区的排名大约是94600.15851500⨯≈. 故选:C 【点睛】本题主要考查正态分布曲线的特点和曲线所表示的意义,属于简单题. 8.若函数ln y x ax =-有两个零点,则实数a 的取值范围是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .10,e ⎛⎫ ⎪⎝⎭D .0,1【答案】C【解析】函数ln y x ax =-有两个零点等价于方程ln 0x ax -=有两个根,等价于y a =与ln (0)xyx x 图象有两个交点,通过导数分析ln (0)xy x x的单调性,根据图象即可求出求出a 的范围. 【详解】函数ln y x ax =-有两个零点,∴方程ln 0x ax -=有两个根,0x ,分离参数得ln xa x=, y a ∴=与ln (0)xyx x图象有两个交点, 令ln ()(0)xg x x x=>, 21ln '()xg x x,令'()0g x =,解得x e = 当0x e <<时,'()0g x >,∴()g x 在()0,e 单调递增,当x e >时,)'(0g x <,∴()g x 在(),e +∞单调递减,且()0>g x()g x ∴在x e =处取得极大值及最大值1(e)g e=, 可以画出函数()g x 的大致图象如下:观察图象可以得出10a e<<. 故选:C. 【点睛】本题主要考查函数零点的应用,构造函数求函数的导数,利用函数极值和导数之间的关系是解决本题的关键.二、多选题9.已知复数()(()()2131z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数13z i =B .若复数2z =,则3m =C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=【答案】BD【解析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确;对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误;对于D ,若0m =,则1z =-,()()221420412z z ++=+--++=,故D 正确. 故选:BD. 【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题. 10.若()()()()102100121021111x a a x a x a x +=+++++++,x ∈R ,则( )A .01a =B .()101021rr rr a C -=-,0,1,2,,10r =C .12101a a a +++=D .()()221002101393a a a a a a +++-+++=【答案】AD【解析】对于A ,令1x =-可求出0a 的值;对于B ,由于101010(21)[2(1)1][12(1)]x x x +=+-=-+,从而可求出其通项公式,从而可求出r a ;对于C ,先令0x =,求出01210a a a a ++++的值,再减去0a 可得1210a a a +++的值;对于D ,先令0x =,求出01210a a a a ++++的值,再令2x =-可求出01210a a a a -+-+的值,然后两式相乘可得()()220210139a a a a a a +++-+++的值.【详解】解:对于A ,令1x =-,则100(21)a -+=,得01a =,所以A 正确;对于B ,因为101010(21)[2(1)1][12(1)]x x x +=+-=-+,所以10(2)r r r a C =-,故B 错误;对于C ,令0x =,则012101a a a a ++++=,又因为01a =,所以12100a a a +++=,所以C 错误;对于D ,令2x =-,则012101010(41)3a a a a =-+-+=-+,即()()1002101393a a a a a a +++-+++=,因为()()02101391a a a a a a +++++++=,所以()()221002101393a a a a a a +++-+++=,所以D 正确,故选:AD 【点睛】此题主要考查二项式定理的应用,利用了赋值法求值,考查转化思想和计算能力,属于基础题.11.下列结论正确的是( )A .463456A ⨯⨯⨯=B .233667C C C +=C .3885C C =D .“仁义礼智信”为儒家“五常”,由伟大的教育家孔子提出,现将“仁义礼智信”排成一排,则“礼智”互不相邻的排法总数为72 【答案】ABCD【解析】分别计算各选项,即可判断正误. 【详解】 对于A ,121m n A n n n n m ,故A 正确;对于B ,2366152035C C ,3735C =,故B 正确; 对于C ,mn mnn C C ,故C 正确;对于D ,采用插空法,将“礼智”插入“仁义信”的4个空中,则一共有22342372C A A 种,故D 正确. 故选:ABCD. 【点睛】本题考查排列组合知识的应用,属于基础题.12.关于函数1()ln f x x x=+,下列说法正确的是( ) A .(1)f 是()f x 的极小值;B .函数()y f x x =-有且只有1个零点C .()f x 在(,1)-∞上单调递减;D .设()()g x xf x =,则1g g e ⎛⎫< ⎪⎝⎭. 【答案】ABD【解析】由函数()f x 的定义域为(0,)+∞,可知选项C 错误,再利用导数求出极小值可判断选项A 正确;由1()ln y f x x x x x=-=+-求导,可判断该函数在(0,)+∞上单调递减且1x =时其函数值为0,可判断选项B 正确;对()()1ln g x xf x x x ==+求导,分析单调性,求出最小值可判断选项D 正确. 【详解】函数()f x 的定义域为(0,)+∞,可知C 错误, 对A ,22111()x f x x x x-'=-+=, 当(0,1)x ∈时,()0f x '<,函数()f x 在(0,1)上单调递减; 当(1,)x ∈+∞时,()0f x '>,函数()f x 在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值(1)1f =,故A 正确; 对B ,1()ln y f x x x x x=-=+-,其定义域为(0,)+∞, 22222131112410x x x y x x x x ⎛⎫--- ⎪-+-⎝⎭=-+-==<', 所以函数()y f x x =-在(0,)+∞上单调递减,又1x =时其函数值为0, 所以函数()y f x x =-有且只有1个零点,故B 正确; 对D ,()()1ln g x xf x x x ==+,其定义域为(0,)+∞,()ln 1g x x =+,令()0g x =,得1=x e,当1(0,)∈x e 时,()0g x '<,函数()g x 在1(0,)e上单调递减; 当1(,)∈+∞x e时,()0g x '>,函数()g x 在1(,)e+∞上单调递增, 所以当1=x e时,函数()g x 取得极小值1()g e ,也是最小值,所以1g g e ⎛⎫< ⎪⎝⎭,故D 正确. 故选:ABD 【点睛】本题主要考查导数在研究函数中的应用,属于中档题.三、填空题13.曲线()sin f x x =在点(0,(0))f 处的切线方程为________________. 【答案】y x =【解析】根据导数的几何意义,求得在点(0,(0))f 处的切线的斜率为1k =,进而可求解切线的方程,得到答案. 【详解】由题意,函数()sin f x x =,则()cos f x x '=,则(0)cos01f '==, 即在点(0,(0))f 处的切线的斜率为1k = 又由(0)sin 00f ==,即切点的坐标为(0,0), 所以在点(0,0)处的切线的方程为y x =, 故答案为y x = 【点睛】本题主要考查了利用导数的几何意义求解在某点处的切线方程,其中解答中熟练应用导数的几何意义,求得切线的斜率是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知随机变量X 的概率分布为:则()3P X ≥=__________________. 【答案】0.38【解析】由分布列的性质求出=3X 时的概率,即可求出()3P X ≥. 【详解】()0.160.220.2430.100.060.01=1P X +++=+++ ()30.21P X ∴==()()()()()3=3=4=5=6=0.210.100.060.01=0.38P X P X P X P X P X ∴≥=++++++故答案为:0.38 【点睛】本题考查离散型随机变量分布列性质的应用以及求概率,属于基础题. 15.多项式()()3254321012345212x x a x a x a x a x a x a ++=+++++,则1a =_______________.【答案】44【解析】由于()()()223321221(44)x x x x x ++=+++,所以1a 等于3(21)x +展开式的2次项系数与4乘以3(21)x +展开式的3次项系数的和. 【详解】解:3(21)x +的通项公式为3332r r rr T C x --=,因为()()()223321221(44)x x x x x ++=+++,所以1203133242123244a C C =⋅+⨯⋅=+=,故答案为:44 【点睛】此题考查二项式定理的应用,考查求二项式展开式中指定项的系数,属于基础题四、双空题16.某学校组织教师进行“学习强国”知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,已知对给出的3个问题,教师甲答对的概率分别为34,12,p .若教师甲恰好答对3个问题的概率是14,则p =________,在前述条件下,设随机变量X 表示教师甲答对题目的个数,则X 的数学期望为_______________. 【答案】23 2312【解析】(1)根据恰好答对3个问题的概率是14,可以列式子311424p ⨯⨯=,即可求出p ;(2)先将答对不同题目个数的概率计算出来,再根据数学期望的计算方法即可计算出来. 【详解】 (1)教师甲恰好答对3个问题的概率是14, 311424p , 23p ∴=; (2)教师甲答对题目的个数X 可取值为0,1,2,3,1111042324P X , 311111112114234234234P X , 11231231111242342342324P X , 134P X , ∴X 的数学期望为111112312324424412. 故答案为:(1)23(2)2312. 【点睛】本题主要考查随机事件的概率的求法以及数学期望的求法,是一道基础题.五、解答题17.某市第一批支援湖北抗疫医疗队共10人,其中有2名志愿者、3名医生、5名护士,现根据需要,从中选派3名队员到J 医院参与救治工作. (1)求志愿者、医生、护士各选1人的概率; (2)求至少选1名医生的概率.【答案】(1)14(2)1724. 【解析】(1)先计算出所有的选派方法310C ,再计算出志愿者、医生、护士各选1人的方法,即可求出概率;(2)先求出对立事件的概率,即不选医生的概率,即可求出至少选1名医生的概率. 【详解】(1)记“志愿者、医生、护土各选1人”为事件A ,()11123510314C C C P A C ==, 所以志愿者、医生,护士各选1人的概率为14; (2)记“至少选1名医生”为事件B ,则事件B 的对立事件为“不选医生”,记作事件B ,37310724C P BC , ()()17124P B P B ∴=-=, 所以至少选1名医生的概率为1724. 【点睛】本题主要考查排列、组合、及简单计数问题,解决此题的方法是计算对立事件的数目,含有“至多”“至少”等词语的事件一般是从对立事件入手.18.已知多项式12nx ⎫-⎪⎭的展开式中,第3项与第5项的二项式系数之比为2:5. (1)求n 的值;(2)求展开式中含x 项的系数. 【答案】(1)8;(2)7.【解析】(1)根据二项式系数的比值列式求解n ; (2)先求出展开式的通项,然后求解所求项的系数.【详解】(1)因为多项式12nx ⎫⎪⎭的展开式中第3项、第5项二项式系数分别为2n C ,4n C ,又第3项与第5项的二项式系数之比为2:5.所以,2425n n C C =,.即()()()()122112354321n n n n n n -⨯=---⨯⨯⨯, 化简得25240n n --=,解得8n =或3n =-(舍去); 故n 的值为8.(2)又因为展开式通项83821881122rx rr r rr T C C xx --+⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭, 当8312r-=时,解得2r ;.所以2238172T C x x ⎛⎫=-= ⎪⎝⎭, 所以展开式中含x 项的系数为7. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有给定项的二项式系数,利用通项求特定项的系数,属于简单题目. 19.已知函数()33f x ax x =-在2x =处取得极值. (1)求实数a 的值;(2)若过点()1,P t 存在3条直线与曲线()y f x =相切,求实数t 的取值范围. 【答案】(1)2a =;(2)()3,1--. 【解析】(1)由已知得'02f ⎛⎫= ⎪⎪⎝⎭,解得2a =,再对函数()f x 求导,验证函数()f x在x =处取得极值; (2)设切点为()3,23x x x -,则切线的斜率为3223631x x tx x --=--,则过点P 存在3条直线与曲线()y f x =相切,等价于方程324630x x t -++=有3个不同的实数解.设()32463p x x x t =-++,即需()0p x =有3解,()()'121p x x x =-,令()'p x =得0x =或1x =.需()()0010p p ⎧>⎪⎨<⎪⎩,解之得可得实数t 的取值范围.【详解】(1)因为函数()33f x ax x =-在x =处取得极值.由()'233f x ax =-,知2'33022f a ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,解得2a =;.当2a =时,()323f x x x =-,()263f x x ='-,令()0f x '=,2x =±;∴,2x ⎛∈-∞- ⎝⎭,()'0f x >,()f x 在,2⎛-∞- ⎝⎭上单调递增;22x ⎛∈- ⎝⎭,()'0f x <,()f x 在,22⎛⎫-⎪ ⎪⎝⎭单调递减x ⎛⎫∈ ⎝∞ +⎪⎪⎭,()'0f x >,()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;所以2a =时,函数()f x 在x =处取得极小值. (2)设切点为()3,23x x x -,则切线的斜率为3223631x x tx x --=--,整理得:324630x x t -++=,则过点P 存在3条直线与曲线()y f x =相切 等价于方程324630x x t -++=有3个不同的实数解.. 设()32463p x x x t =-++,()()'121p x x x =-,令()'0p x =得0x =或1x =.当(),0x ∈-∞时,()0p x '>,()p x 在(),0-∞上单调递增,当()0,1x ∈时,()0p x '<,()p x 在()0,1上单调递减,当()1,x ∈+∞时,()0p x '>,()p x 在()1,+∞上单调递增,.()0p x =有3解,则()()0010p p ⎧>⎪⎨<⎪⎩,解之得31t -<<-.所以实数t 的取值范围为()3,1--.【点睛】本题考查利用函数的导函数研究函数的极值,切线的条数等相关问题,属于较难题. 20.冠状病毒是一个大型病毒家族,今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.(1)某科研团队为研究潜伏期与新冠肺炎患者年龄的关系,组织专家统计了该地区新冠肺炎患者新冠病毒潜伏期的相关信息,其中被统计的患者中60岁以下的人数与60岁以上的人数相同,60岁以下且潜伏期在7天以下的人数约占15,60岁以上且潜伏期在7天以下的人数约占35,若研究得到在犯错误概率不超过0.010的前提下,认为潜伏期与新冠肺炎患者年龄有关,现设被统计的60岁以上的人员人数为5x,请完成下面2×2列联表并计算被统计的60岁以上的人员至少多少人?附1:()()()()()22n ad bcXa b c d a c b d-=++++,其中n a b c d=+++(2)某地区的新冠肺炎治愈人数y(人)与3月份的时间x(日)满足回归直线方程ˆˆˆy bx a=+,统计数据如下:已知5=11405i i y y ==∑,52=190i i x =∑,5=1885i i i x y =∑,请利用所给数据求t 和回归直线方程ˆˆˆybx a =+; 附2:()1221ˆni ii ni i x y nx ybx n x ==-⋅=-∑∑,ˆˆay bx =-. 【答案】(1)填表见解析;被统计的60岁以上的人员人数至少为20人;(2)60t =;ˆ8.56yx =+. 【解析】(1)根据题意填写列联表,计算观测值,对照临界值列出不等式,从而求得结果;(2)由题意求出回归系数,写出回归方程. 【详解】解:(1)因为被统计的患者中60岁以下的人数与60岁以上的人数相同,60岁以下且潜伏期在7天以下的人数约占15, 60岁以上且潜伏期在7天以下的人数约占35,由被统计的60岁以上的人员人数为5x , 填写22⨯列联表如下;计算()()()()()()22210?·24?355?5?4?63n ad bc x x x x x xX a b c d a c b d x x x x--===++++, 因为犯错误概率不超过0.010的前提,所以5 6.6353x,519.905x , 所以被统计的60岁以上的人员人数至少为20人. (2)由统计数据如下表,且511405i i y y ===∑,52190ii x==∑,51885i i i x y ==∑,由40y =,得4052530404560t =⨯----=,所以()51522215?88554408.59054ˆ5i ii i i x y x ybx x ==--⨯⨯===-⨯-∑∑, ˆˆ408.546ay bx =-=-⨯=; 所以y 关于x 的回归方程为ˆ8.56yx =+. 【点睛】本题考查了列联表与独立性检验的应用问题,也考查了线性回归方程的计算问题,是中档题.21.2019年《少年的你》自上映以来引发了社会的广泛关注,特别引起了在校学生情感共鸣,现假如男生认为《少年的你》值得看的概率为45,女生认为《少年的你》值得看的概率为34,某机构就《少年的你》是否值得看的问题随机采访了4名学生(其中2男2女)(1)求这4名学生中女生认为值得看的人数比男生认为值得看的人数多的概率; (2)设ζ表示这4名学生中认为《少年的你》值得看的人数,求ζ的分布列与数学期望.【答案】(1)87400;(2)分布列见解析;期望为3110. 【解析】(1)对于事件“这4名学生中女生认为值得看的人数比男生认为值得看的人数多”分三种情况:认为值得看的人中有:1名男生,2名女生;无男生,1名女生;无男生,2名女生.分别求得相应的概率,再相加可得答案.(2)随机变量ξ的可能取值为0,1,2,3,4,.分别求得随机变量取值的概率,构成分布列,再利用离散型随机变量的分布列的期望公式求得答案.【详解】(1)设X 表示2名男生中认为值得看的人数,Y 表示2名女生中认为值得看的人数. 设“这4名观众中女生认为值得看的人数比男生认为值得看的人数多”为事件A ,. 又因为男生认为《少年的你》值得看的概率为45,女生值得看的概率为34所以()()()()1, 20, 10, 2P A P X Y P X Y P X Y ===+==+==22221122341113318745554445400C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅=⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 所以女生认为值得看的人数比男生认为值得看的人数多的概率为87400. (2)ξ的可能取值为0,1,2,3,4,.()()2202211100,054400P P X Y C C ξ⎛⎫⎛⎫=====⋅= ⎪ ⎪⎝⎭⎝⎭, ()()()22100212224111311411,00,1554544400P P X Y P X Y C C C C ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====+===⋅+⋅= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()()()22,01,10,2P P X Y P X Y P X Y ξ====+==+==2222201102222222414113137354554454400C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅= ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()()()221221222241343116831,22,1554544400P P X Y P X Y C C C C ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====+===⋅+⋅= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()2222224314442,254400P P X Y C C ξ⎛⎫⎛⎫=====⋅= ⎪ ⎪⎝⎭⎝⎭, 所以ξ的分布列为:所以114731681441240310123440040040040040040010E ξ=⨯+⨯+⨯+⨯+⨯==, 所以数学期望为3110. 【点睛】本题考查相互独立事件的概率,概率的加法公式,离散型随机变量的分布列以及其期望公式,属于中档题.22.设函数()xf x xe =,()()xg x a e e=-,(1)设()()()x xf x g x ϕ=-,讨论()ϕx 的单调性;(2)若不等式()()0f x g x +>对()1,∈+∞x 恒成立,求整数a 的最大值. 【答案】(1)见解析(2)3.【解析】(1)由题可得()()2xxx x e a e eϕ=--,利用()ϕx 的导数来讨论单调性;(2)先将不等式中的参数a 分离,然后构造函数,将不等式的恒成立转化为求函数的最值,然后利用函数的导数讨论函数的单调性,从而求出函数的最值,最终求出a 的最大值. 【详解】(1)因为()xf x xe =,()()xg x a e e=-,()()()x xf x g x ϕ=-,∴()()2x x x x e a e e ϕ=--,()()22x x e x x a ϕ'∴=++,令22y x x a =++,则44a ∆=-,①当1a ≥时,()0x ϕ'≥,()ϕx 在(),-∞+∞上单调递增,②当1a <时,令()0x ϕ'=,1x =-±当(,1x ∈-∞-,()0ϕ'>x ,()ϕx 在(,1-∞-上单调递增,当(11x ∈--+,()0ϕ'<x ,()ϕx 在(11--+上单调速减,当()1x ∈-++∞,()0ϕ'>x ,()ϕx 在()1-++∞上单调递增, 综上:当1a ≥时,()ϕx 在(),-∞+∞上单调递增;当1a <时,()ϕx在(,1-∞--,()1-+∞上单调递增;在(11--+上单调递减; (2)当()1,∈+∞x 时,()0xxxe a e e->+恒成立,等价于当()1,∈+∞x 时,xx xe a e e >-恒成立,令()xx xe t x e e=-,()1,∈+∞x ,()()()2x x xe e ex e t x ee --'∴=-,令()xx x e e m e --=,()1,∈+∞x ,()0x m x e e '∴=->, ()x e x e x e m -∴-=在1,上单调递增,()2230m e e =-<,()3340m e e =->,()m x ∴'在()2,3上有唯一零点0x ,且00x e ex e =+,()02,3x ∈,()t x ∴在()01,x 上单调递减,在()0,x +∞上单调递增, ()()()()00000000min13,4x x x ex e x e t x t x x e e ex +∴====+∈-,()013,4a x ∴<+∈,∴a 的最大值为3.【点睛】本题考查利用导数讨论函数的单调性,以及利用导数解决不等式的恒成立问题,合理的构造函数是解决问题的关键,是一道综合题.。
2019-2020年高二上学期期末考试 数学理 含答案
2019-2020年高二上学期期末考试 数学理 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
) 1.下列命题正确的是A .若a 2>b 2,则a >b B .若1a >1b,则a <bC .若ac >bc ,则a >bD .若a <b , 则a <b2.抛物线28y x =-的焦点坐标是A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)3. 设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22D. ln 24.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词, 然而他的实际效果大哩,原来这句话的等价命题是 A .不拥有的人们不一定幸福 B .不拥有的人们可能幸福 C .拥有的人们不一定幸福 D .不拥有的人们不幸福 5.不等式21≥-xx 的解集为A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞6.下列有关选项正确的...是 A .若q p ∨为真命题,则p q ∧为真命题. B .“5x =”是“2450x x --=”的充要条件.C .命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”. D .已知命题p :R x ∈∃,使得210x x +-<,则p ⌝:R x ∈∀,使得210x x +-≥7.设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C . 1D . 148. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小 关系为A.1243e e e e <<<B.1234e e e e <<<C.2134e e e e <<<D.2143e e e e <<<9.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是A .1 B.15 C. 75 D. 3510 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A 9B 12C 16D 1711.在正方体111111ABCD A B C D BB ACD -中,与平面的余弦值为A32B33 C 32D3612.已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为A .32 B.12C. 1D. 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 在△ABC 中,若=++=A c bc b a 则,222_14.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .15. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .16 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题求函数44313+-=x x y 在区间03⎡⎤⎣⎦,上的最大值与最小值以及增区间和减区间。
2018-2019学年江苏省淮安市高2020届高二上学期期末调研考试数学试卷及解析
2018-2019学年淮安市高2020届高二上学期期末调研考试数学试卷★祝考试顺利★一、填空题(本大题共14小题,共70.0分)1.直线的斜率为______.【答案】【解析】【分析】把直线方程化为斜截式即可得出斜率.【详解】直线化为:,其斜率为.故答案为:.【点睛】本题考查了直线方程的一般式化为斜截式,考查了推理能力与计算能力,属于基础题.直线方程有五种形式:斜截式,点斜式,两点式,截距式,还有一般式.将一般式化为斜截式得到,其中是斜率.2.若命题,则 _____________.【答案】【解析】因为全称命题的否定是特称命题,所以命题“”的否定为“”,故答案为.3.已知函数,是的导函数,则的值为______.【答案】【解析】【分析】求得函数的导数,代入进行计算即可.【详解】函数的导数,则,故答案为:.4.双曲线的渐近线与准线在第一象限的交点坐标为______.【答案】【解析】【分析】由交点在第一象限确定渐近线与准线都是右支,联立方程求解即可.【详解】交点在第一象限,,,,双曲线的渐近线与准线方程为:与,联立得,交点坐标为故答案为:5.直线与直线垂直,则实数a的值为______.【答案】1【解析】【分析】利用直线相互垂直与斜率之间的关系即可得出.【详解】由于两条直线垂直,故,解得.故答案为.6.已知抛物线的焦点到原点的距离为5,则实数p的值为______.【答案】10【解析】【分析】抛物线的焦点到原点的距离为,由此求得p的值.。
2019-2020学年高二上学期期末考试数学试题(理科)附解答
2019-2020学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,,,则A. B. 0, C. D.【答案】C【解析】解:;.故选:C.可求出B,然后进行并集的运算即可.考查描述法、列举法的定义,绝对值不等式的解法,以及并集的运算.2.已知数列中,,则A. 4B. 9C. 12D. 13【答案】D【解析】解:数列中,,则.故选:D.利用通项公式即可得出.本题考查了数列的通项公式,考查了推理能力与计算能力,属于基础题.3.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.【答案】A【解析】解:根据题意,椭圆C:,其焦点在x轴上,若,,则,则椭圆的方程为;故选:A.根据题意,分析椭圆的焦点位置,由椭圆的几何性质可得b的值,代入椭圆的方程即可得答案.本题考查椭圆的标准方程,注意掌握椭圆标准方程的形式,属于基础题.4.若向量,,则A. B. C. 3 D.【答案】D【解析】解:向量,,0,,.故选:D.利用向量坐标运算法则求解0,,由此能求出的值.本题考查向量的模的求法,考查向量坐标运算法则、向量的模等基础知识,考查函数与方程思想,考查运算求解能力,是基础题.5.设a,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】C【解析】解:若,,不等式等价为,此时成立.,不等式等价为,即,此时成立.,不等式等价为,即,此时成立,即充分性成立.若,当,时,去掉绝对值得,,因为,所以,即.当,时,.当,时,去掉绝对值得,,因为,所以,即即必要性成立,综上“”是“”的充要条件,故选:C.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.6.若x,y满足,则的最小值为A. B. C. D.【答案】B【解析】解:x,y满足的区域如图:设,则,当此直线经过时z最小,所以z的最小值为;故选:B.画出平面区域,利用目标函数的几何意义求最小值.本题主要考查线性规划的应用,利用数形结合是解决本题的关键,比较基础.7.设抛物线上一点P到y轴的距离是2,则点P到该抛物线焦点的距离是A. 1B. 2C. 3D. 4【答案】C【解析】解:由于抛物线上一点P到y轴的距离是2,故点P的横坐标为2.再由抛物线的准线为,以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,故点P到该抛物线焦点的距离是,故选:C.由题意可得点P的横坐标为2,抛物线的定义可得点P到该抛物线焦点的距离等于点P 到准线的距离,由此求得结果.本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.8.设是等差数列的前n项和,若,,则A. B. 2017 C. 2018 D. 2019【答案】D【解析】解:设等差数列的公差为d,,,,化为:,解得.则.故选:D.设等差数列的公差为d,根据,,利用求和公式可得d,即可得出.本题考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.9.下列各组两个向量中,平行的一组向量是A. ,2,B. ,1,C. ,1,D. ,【答案】B【解析】解:在A中,,2,,,故A中两个向量不平行,故A错误;在B中,,1,,,故B中两个向量平行,故B正确;在C中,,1,,,故C中两个向量不平行,故C错误;在D中,,,,故D中两个向量不平行,故D错误.故选:B.利用向量平行的性质直接求解.本题考查平行向量的判断,考查向量与向量平行的性质等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.10.的内角A,B,C的对边分別为a,b,c,已知,,,则的面积是A. B. C. 1 D.【答案】B【解析】解:的内角A,B,C的对边分別为a,b,c,已知,利用正弦定理得:,整理得:,由于:,所以:,由于:,则:.由于:,,则:.故选:B.首先利用三角函数关系式的恒等变换和正弦定理求出B的值,进一步利用三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和三角形面积公式的应用.11.设,是双曲线C:的左,右焦点,O是坐标原点过作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A. B. 2 C. D.【答案】C【解析】解:双曲线C:的一条渐近线方程为,点到渐近线的距离,即,,,,,在三角形中,由余弦定理可得,,即,即,,故选:C.先根据点到直线的距离求出,再求出,在三角形中,由余弦定理可得,代值化简整理可得,问题得以解决.本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.12.已知正方体的棱长为1,若P点在正方体的内部,且满足,则平面PAB与平面ABCD所成二面角的余弦值为A. B. C. D.【答案】B【解析】解:以A为坐标原点,AB,AD,分别为x,y,z轴,由,可得,0,,1,,则,0,,设平面PAB的法向量为y,,由,且,可得,且,可取,而平面ABCD的法向量为0,,则平面PAB与平面ABCD所成二面角的余弦值为.故选:B.以A为坐标原点,AB,AD,分别为x,y,z轴,求得P、A、B的坐标,可得向量AP,向量AB的坐标,设平面PAB的法向量为y,,由向量数量积为0,可得平面PAB的一个法向量,再由平面ABCD的法向量为0,,运用两个向量的夹角公式计算可得所求值.本题考查平面和平面所成角的求法,注意运用坐标法和平面的法向量,考查化简整理的运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知等比数列中,,,则______.【答案】【解析】解:等比数列中,,,,解得,.故答案为:.由等比数列中,,,得到,由此能求出.本题考查等比数列的第7项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.14.已知,,,则的最小值为______.【答案】8【解析】解:当且仅当,时取等故答案为:8先变形:,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.15.已知,1,,则,______.【答案】【解析】解:,1,,,.故答案为:.利用空间向量夹角公式直接求解.本题考查向量夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.16.设,若时均有成立,则______.【答案】【解析】解:若,则当时,,由二次函数的性质可知,不等式不可能在时恒成立,故当时不可能都有成立,故,故当时,,当时,,当时均有成立,故当时,,当时,,故是方程的实数根,故,解得:舍或,综上:,故答案为:.通过讨论a的范围以及函数恒成立问题,求出,进而得到是方程的实数根,求出a的值即可.本题考查了函数恒成立问题,考查分类讨论思想,转化思想,是一道中档题.三、解答题(本大题共6小题,共70.0分)17.解关于x的不等式【答案】解:当时,不等式化为,;分当时,原不等式化为,当时,不等式的解为或;当时,不等式的解为;当时,不等式的解为或;分综上所述,得原不等式的解集为:当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.【解析】根据a的范围,分a等于0和a大于0两种情况考虑:当时,把代入不等式得到一个一元一次不等式,求出不等式的解集;当a大于0时,把原不等式的左边分解因式,再根据a大于1,及a大于0小于1分三种情况取解集,当a大于1时,根据小于1,利用不等式取解集的方法求出解集;当时,根据完全平方式大于0,得到x不等于1;当a大于0小于1时,根据大于1,利用不等式取解集的方法即可求出解集,综上,写出a不同取值时,各自的解集即可.此题考查了一元二次不等式的解法,考查了分类讨论及转化的数学思想根据a的不同取值,灵活利用不等式取解集的方法求出相应的解集是解本题的关键.18.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点,平行于OM的直线l在y轴上的截距为,直线l交椭圆于A,B 两个不同点.求椭圆的方程;求m的取值范围.【答案】解:设椭圆方程为则分解得,分椭圆方程为;分直线l平行于OM,且在y轴上的截距为m又,的方程为:由直线方程代入椭圆方程,分直线l与椭圆交于A、B两个不同点,,分解得,且分【解析】设出椭圆的方程,利用长轴长是短轴长的2倍且经过点,建立方程,求出a,b,即可求椭圆的方程;由直线方程代入椭圆方程,利用根的判别式,即可求m的取值范围.本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.19.设数列的前n项和为,且满足,求数列的通项公式;若,求数列的前n项和.【答案】解:,当时,,得,,时,得,,符合上式.数列的通项公式为;,,得..【解析】由求得,验证成立后得数列的通项公式;把数列的通项公式代入,然后利用错位相减法求数列的前n项和.本题考查由数列的前n项和求数列的通项公式,训练了错位相减法求数列的和,是中档题.20.在中,角A,B,C的对边分别为a,b,c,,.求A的大小;若,求.【答案】解:,可得:,可得:,解得:,,,,.,.由可得:,,由三角形的面积公式可得:.【解析】由已知利用余弦定理可求,,联立解得,,利用余弦定理可求的值,结合范围,可求A的值.由已知及可得:,,由三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算了和转化思想,属于中档题.21.如图,已知四棱锥,是以AD为斜边的等腰直角三角形,,,,E为PD的中点.Ⅰ证明:平面PAB;Ⅱ求直线CE与平面PBC所成角的正弦值.【答案】证明:Ⅰ取AD的中点F,连结EF,CF,为PD的中点,,在四边形ABCD中,,,F为中点,,平面平面ABP,平面EFC,平面PAB.解:Ⅱ连结BF,过F作于M,连结PF,,,推导出四边形BCDF为矩形,,平面PBF,又,平面PBF,,设,由,得,,,,又平面PBF,,平面PBC,即点F到平面PBC的距离为,,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,到平面PBC的距离为,在中,由余弦定理得,设直线CE与平面PBC所成角为,则.【解析】Ⅰ取AD的中点F,连结EF,CF,推导出,,从而平面平面ABP,由此能证明平面PAB.Ⅱ连结BF,过F作于M,连结PF,推导出四边形BCDF为矩形,从而,进而平面PBF,由,得,再求出,由此能求出.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.22.已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围.【答案】解:由题意可设椭圆方程为,由得,所以,椭圆方程为分由题意可知,直线l的斜率存在且不为0,故可设直线l的方程为,,,则由,消去y得.,且,.分因为直线OP,PQ,OQ的斜率依次成等比数列,所以,,即,又,所以,即分由于直线OQ的斜率存在,且,得且.设d为点O到直线l的距离,则,所以的取值范围为分【解析】根据中心在原点O,焦点在x轴上,离心率为的椭圆过点,利用待定系数法,求出几何量,可得椭圆的方程设直线l的方程为,代入椭圆方程,利用韦达定理,结合直线OP,PQ,OQ的斜率依次成等比数列,求出k的值,表示出面积,即可求出面积的取值范围.本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,综合性强.。
2019-2020年高二上学期期末考试 数学理 含答案
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则()A. B. C. D.2.若,则向量与的夹角为()A. B. C. D.3.若坐标原点到抛物线的准线距离为2,则()A.8 B. C. D.4.下列说法中正确的是()A.命题“函数f(x)在x=x0处有极值,则”的否命题是真命题B.若命题,则;C.若是的充分不必要条件,则是的必要不充分条件;D.方程有唯一解的充要条件是5.一个长方体,其正视图面积为,侧视图面积为,俯视图面积为,则长方体的外接球的表面积为()A.B.C.D.6. 函数的单调递减区间为()A.B.C.D.7.点在圆上移动时,它与定点连线的中点的轨迹方程是()A.B.C.D.8.对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12.其中,正确说法的序号是( )A. ①②B.③④C. ②④D.①③9.若方程有两个不相等的实根,则的取值范围为()A.B.C.D.10.如图,正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误..的是()A.D1O∥平面A1BC1 B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.二面角M-AC-B等于45°11. 在区间和上分别取一个数,记为, 则方程表示焦点在轴上且离心率小于的椭圆的概率为()A.B.C.D.12.是定义在上的函数, 若存在区间,使函数在上的值域恰为,则称函数是型函数.给出下列说法:①不可能是型函数;②若函数是型函数, 则,;③设函数是型函数, 则的最小值为;④若函数是型函数, 则的最大值为.下列选项正确的是()A.①③B.②③C.②④D.①④2019-2020年高二上学期期末考试数学理含答案二、填空题:本大题共4小题,每小题5分,共20分.13.在等比数列{a n}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15=________.14.已知,过点作一直线与曲线相交且仅有一个公共点,则该直线的倾斜角恰好等于此双曲线渐近线的倾斜角或;类比此思想,已知,过点作一直线与函数的图象相交且仅有一个公共点,则该直线的倾斜角为__________15.已知函数的图象在点处的切线斜率为1,则________________.16.给出如下五个结论:①若为钝角三角形,则②存在区间()使为减函数而<0③函数的图象关于点成中心对称④既有最大、最小值,又是偶函数⑤最小正周期为π其中正确结论的序号是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 我校开设了“足球社”、“诗雨文学社”、“旭爱公益社”三个社团,三个社团参加的人数如下表所示:已知“足球社”社团抽取的同学8人.(Ⅰ)求样本容量的值和从“诗雨文学社”社团抽取的同学的人数;(Ⅱ)若从“诗雨文学社”社团抽取的同学中选出2人担任该社团正、副社长的职务,已知“诗雨文学社”社团被抽取的同学中有2名女生,求至少有1名女同学被选为正、副社长的概率.18.(本小题满分10分)已知在等比数列中,,且是和的等差中项.(1)求数列的通项公式;(2)若数列满足,求的前项和.19. (本小题满分12分)已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.20.(本小题满分12分)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.(1)若点M ,N ,K 分别是棱HA ,HC ,HF 的中点,点G 是NK 上的任意一点,求证:MG ∥平面ACF ;(2)已知原长方体材料中,AB =2 m ,AD =3 m ,DH =1 m ,根据艺术品加工需要,工程师必须求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t 的值是多少?21.(本小题满分13分) 已知函数和.(1)若函数在区间不单调,求实数的取值范围; (2)当时,不等式恒成立,求实数的最大值. 22.(本小题满分13分)已知椭圆经过点,且离心率为. (1) 求椭圆的标准方程;(2) 若是椭圆内一点,椭圆的内接梯形的对角线与交于点,设直线在轴上的截距为,记,求的表达式(3) 求的最大值.临川一中xx 学年度上学期期末考试高二数学试卷答题卷(理科)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合目要求的.)题 号一二三总 分17 18 19 20 21 22得 分题号123456789101112考号___________________……………………线……………………………………二、填空题(本大题4小题,每小题5分,共20分;把正确答案填在横线上.)13._________________________;14._________________________;15._________________________;16._________________________;三、解答题(本大题共6小题,共70分;解答应写出文字说明、证明过程或演算步骤.)法2:从这6位同学中任选2人,没有女生的有:{C ,D},{C ,E},{C ,F},{D ,E},{D ,F},{E ,F},共6种故至少有1名女同学被选中的概率1-=. .…………10分 18:(1)设等比数列的公比为 ,由是和的等差中项 …….. 5分 (2)21(11)(32)(52)(212)n n S n -∴=++++++⋅⋅⋅+-+.21[135(21)](1222)n n -=+++⋅⋅⋅-++++⋅⋅⋅+.... 10分 19解:(1)若为真:解得或 若为真:则 解得或 若“且”是真命题,则解得或 …… 6分 (2)若为真,则,即 由是的必要不充分条件, 则可得或即或 解得或 ……12分20(1)证明:∵HM =MA ,HN =NC ,HK =KF ,∴MK ∥AF ,MN ∥AC .∵MK ⊄平面ACF ,AF ⊂平面ACF ,∴MK ∥平面ACF , 同理可证MN ∥平面ACF ,∵MN ,MK ⊂平面MNK ,且MK ∩MN =M ,∴平面MNK ∥平面ACF ,又MG ⊂平面MNK ,故MG ∥平面ACF .(2)由程序框图可知a =CF ,b =AC ,c =AF ,∴d =b 2+c 2-a 22bc =AC 2+AF 2-CF 22AC ·AF=cos ∠CAF , ∴e =12bc 1-d 2=12AC ·AF ·sin ∠CAF =S △ACF . 又h =3t e ,∴t =13he =13h ·S △ACF=V 三棱锥HACF . ∵三棱锥HACF 为将长方体ABCDEFGH 切掉4个体积相等的小三棱锥所得,∴V 三棱锥HACF =2×3×1-4×13×12×3×2×1=6-4=2,故t =2.22.(1)椭圆的标准方程为,……………..3分(2)由已知得不垂直于轴(否则由对称性,点在轴上)设直线的方程为,直线的方程为将代入得,设点,由韦达定理得,…………..5分同理设点,由韦达定理得由三点共线A C A C C A C A A C C A y x y x y x y x y x y x 2222)21)(1()21)(1(++-=++-⇒---=---⇒同理由三点共线B D B D D B D B y x y x y x y x 2222++-=++-⇒两式相加结合的方程,得)(24)(2)()(24)(2)()(2)(242)(2)()(2)(242)(2)(D C B A D C B A D C B A B D A C D B B A D C D B C A D B D C B A x x m m x x k x x x x n n x x k x x m kx x m kx x m y x x x k x x n kx x n kx x n y x x x k x x ++++++-=++++++-+++++++++-=+++++++++-利用得,由得,…………..7分由及直线不过点得且 又点到直线的距离是,故32621222323848221)(22--=-⨯-⨯⨯==∆m m m m S m f PAB(且)…..10分 (3)=3225]2)415(4[721)415(472165922222224=-+≤-=+-m m m m m m (也可用导数求解)当且仅当即时,上式等号成立,故的最大值为.…………..13分。
精品解析:江苏省淮安市淮阴中学2019-2020学年高二上学期期末考试数学试题(解析版)
江苏省淮阴中学2019-2020学年度第一学期高二期末数学试题一、选择题1. 抛物线28y x =的焦点到准线的距离是( )A. 1B. 2C. 4D. 8【答案】C 【解析】 【分析】先根据抛物线的方程求出p 的值,再根据抛物线的简单性质即可得到. 【详解】由228y px x ==,知p =4,而焦点到准线的距离就是p .故选C .【点睛】本题主要考查了抛物线的简单性质.考查了学生对抛物线标准方程的理解和运用,属于基础题.2. 已知方程22112x y m m+=--表示焦点在x 轴上的椭圆,则m 的取值范围是( ) A. 12m << B. 31 2m <<C.322m << D. 12m <<且32m ≠【答案】C 【解析】 【分析】根据焦点在x 轴上的椭圆方程的特点可得不等式,解不等式求得结果. 【详解】22112x y m m+=--表示焦点在x 轴上的椭圆 120m m ∴->->,解得:322m <<故选:C【点睛】本题考查根据方程表示椭圆及椭圆焦点位置求解参数范围的问题,属于基础题.3. 已知ABC ∆的顶点A 是椭圆2213x y +=的一个焦点,顶点B 、C 在椭圆上,且BC 经过椭圆的另一个焦点,则ABC 的周长为( )A. B. 6D. 12【答案】C【解析】 【分析】画出示意图,根据椭圆定义可得,ABC 周长为4AB BC AC AB BD AC CD a ++=+++=,由方程得到a 即可.【详解】解:如图,由题可知3a =,不妨设椭圆焦点分别为A ,D ,根据椭圆定义可得,2AB BD a +=,2AC CD a +=, 因ABC 周长为4AB BC AC AB BD AC CD a ++=+++=,所以周长为43, 故选:C. 4. 若双曲线 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( ) A. 11 B. 9C. 5D. 3【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B . 考点:双曲线的标准方程和定义.5. 已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为( )A. 2212128x y -=B. 2212821x y -=C. 22134x y -=D. 22143x y -=【答案】D 【解析】试题分析:双曲线的一条渐近线是by x a=2b a =①,抛物线2y =的准线是x =c =2227a b c +==②,由①②联立解得2a b =⎧⎪⎨=⎪⎩,所以双曲线方程为22143x y -=.故选D . 考点:双曲线的标准方程.6. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A. 221810x y -=B. 22145x y -=C.22154x y -= D. 22143x y -= 【答案】B 【解析】 【分析】根据已知可得2b a =,双曲线焦距26c =,结合,,a b c 的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为2y x =,则2b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②由①②解得a =2,bC 的方程为22145x y -=.故选:B .【点睛】本题考查椭圆、双曲线的标准方程以及双曲线的简单几何性质,属于基础题. 7. 双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( )A. 4B. -4C. -14D.14【答案】C 【解析】 【分析】先将双曲线方程化为标准形式,利用虚轴长是实轴长的2倍列方程,解方程求得m 的值.【详解】依题意,双曲线的标准方程为2211x y m-=-,即2211,a b m ==-,由于虚轴长是实轴长的2倍,所以2b a =,即224b a =,也即114,4m m -==-.故选C. 【点睛】本小题主要考查双曲线的标准方程,考查双曲线实轴和虚轴的概念,属于基础题.8. 过椭圆22221(0)x y a b a b +=>>的左焦点1F 做x 轴的垂线交椭圆于点P ,2F 为其右焦点,若1230F F P ∠=,则椭圆的离心率为( )A.2B.13C.12D.【答案】D 【解析】 【分析】把x c =-代入椭圆方程求得P 的坐标,进而根据1230F F P ∠=,推断出22b a c =,整理得220e +-=,解得e 即可.【详解】已知椭圆的方程22221(0)x y a b a b+=>>,由题意得把x c =-代入椭圆方程,解得P 的坐标为(﹣c ,2b a )或(﹣c ,﹣2ba),∵1230F F P ∠=,∴23tan 3023b ac==,即)2222aca c ==-220e +=,∴e=3或e. 故选D .【点睛】本题主要考查了椭圆的方程及其简单的几何性质,也考查了直角三角形的性质,属于基础题.9. 已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =A. 1D. 2【答案】B 【解析】因为c e a ==,所以c =,从而22224a b a c =-=,则椭圆方程为222241x y a a +=.依题意可得直线方程为()y k x =,联立2222()2{41y k x a x y a a=-+=可得22222(14)(31)0k x ax k a +-+-=设,A B 坐标分别为1122(,),(,)x y x y,则2212122(31)14k ax x x x k-+==+ 因为3AF FB =,所以1122(,)3(,)22a x y x y --=-,从而有123x x += ① 再由3AF FB =可得3AF FB =12)3)x a x -=-,即213x x -=② 由①②可得12,x x ==,所以2221225(31)914k a x x a k -⋅==+,则22(31)5149k k -=+,解得k =因为0k >,所以k =B10. 已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 A. (0,1)B. 1(0,]2C.D. 【答案】C 【解析】设椭圆的半长轴、半短轴、半焦距分别为,,a b c .因为12·0MF MF =所以点M 的轨迹为以原点为圆心,半径为c 的圆.与因为点M 在椭圆的内部,所以,c a c b <<,所以2222<=-c b a c ,所以22222122c c a e a <∴=<,所以e ∈ ,故选C .【点睛】求离心率的值或范围就是找,,a b c 的值或关系.由12·0MF MF =想到点M 的轨迹为以原点为圆心,半径为c 的圆.再由点M 在椭圆的内部,可得,c a c b <<,因为a b < .所以由c b <得2222<=-c b a c ,由,a c 关系求离心率的范围.11. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( ) A. 2B.C.D.【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).12. 椭圆22221(0)x y a b a b+=>>的右焦点为F ,其右准线与轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A. (0,2B. 1(0,]2C. 1,1)D. 1[,1)2【答案】D 【解析】解:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F 点到P 点与A 点的距离相等 |FA|=222222222222,[,][,]1{{11,21(0,1)[,1)2a b c PF a c a c c cb ac a c cac c b ac c cac c a c a c c ac c a c a a e e -=∈-+∈-+-≤≤+≤-≤-∴∴+≥-≤-≥∈∴∈于是,即二.填空题13. 若双曲线221y x m-=m =__________.【答案】2 【解析】222222221,,13c a b a b m e m a a+=====+=,2m =.渐近线方程是y ==. 14. 已知x ,y满足y =,则3yx +的取值范围是_____.【答案】0,5⎡⎢⎣⎦【解析】 【分析】将已知方程整理为()22104x y y +=≥,可得其图象为半椭圆;将3y x +转化为半椭圆上的点与()3,0-连线的取值范围;由图象可知下底限为0,上限为直线与半椭圆相切的时候;假设切线方程,联立后利用0∆=求得切线斜率,从而得到所求的范围.【详解】由2142y x =-得:()22104x y y +=≥,则其图象为如下图所示的半椭圆3yx +可看做半椭圆上的点(),x y 与()3,0-连线的斜率 当如图所示的过()3,0-的直线l 与椭圆相切时,设直线():3l y k x =+,0k > 与椭圆方程联立得:()222241243640k x k x k +++-=()()4225764413640k k k ∴∆=-+-=,解得:55k =∴半椭圆上的点(),x y 与()3,0-连线的斜率的取值范围为5⎡⎢⎣⎦ 53y x ⎡∴∈⎢+⎣⎦故答案为:5⎡⎢⎣⎦【点睛】本题考查根据直线与椭圆的位置关系求解参数范围的问题,关键是能够明确所求式子的几何意义为曲线上的点与定点连线的斜率,利用数形结合的方式确定临界值,从而求得结果.15. 已知点1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,且122F PF π∠=.若△12PF F 的面积为9,则b =_______ 【答案】3 【解析】 【分析】利用椭圆的标准方程定义及其三角形面积计算公式、勾股定理即可得出. 【详解】解:122F PF π∠=,12PF F ∆的面积为9,设1||PF m =,2||PF n =.则22221924m n a mn m n c +=⎧⎪⎪=⎨⎪+=⎪⎩可得:224364c a +=, 即2229a c b -==, 解得3b =. 故答案为:3.【点睛】本题考查了椭圆的标准方程定义及其性质、三角形面积计算公式、勾股定理,考查了推理能力与计算能力,属于中档题.16. 曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数 a 2(a >1)的点的轨迹.给出下列三个结论: ① 曲线C过坐标原点; ② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F PF 的面积大于a .其中,所有正确结论的序号是 .【答案】②③ 【解析】 试题分析:设,依题意,则,化简可得:,由,则曲线C 不过坐标原点,①错误;把曲线方程中的,原方程不变,所以曲线C 关于坐标原点对称正确;又方程原型则,,令,可得或,可知当时,取得最大值,此时,△F 1PF 2的面积不大于考点:1.直接法求轨迹方程;2.对称的判断方法;3.面积的最大值;三、解答题17. 已知平面上的三点(52)P ,、1(60)F -, 、2(60)F , . (1)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(2)设点P 、1F 、2F 关于直线y x = 的对称点分别为P ' 、1F ' 、2F ' ,求以1F ' 、2F ' 为焦点且过点P ' 的双曲线的标准方程.【答案】(1)221459x y += (2)2212016x y -=.【解析】试题分析:(1)根据题意设出所求的椭圆的标准方程,然后代入半焦距,根据椭圆的定义求出a =从而可得2229b a c =-=,进而可得椭圆的标准方程;(2)点()52P ,、1(60F ,)- 、()260F , 关于直线y x = 的对称点分别为()25P ',、()'106F -, 、()'206F , .设所求双曲线的标准方程为 2222111y x a b -= (10a > ,10b > )其半焦距16c = ,由双曲线定义得''1122a P F P F =-=''得1a =从而可得22211116b c a =-=,进而可得'1F 、'2F 为焦点且过点P ' 的双曲线的标准方程.试题解析:(1)由题意知,焦点在x 轴上,可设椭圆的标准方程为22221x ya b+= (0a b >> )其半焦距6c =由椭圆定义得122a PF PF =+=∴a =∴22245369b a c =-=-=故椭圆的标准方程为221459x y += .(2)点()52P ,、1(60F ,)- 、()260F , 关于直线y x = 的对称点分别为()25P ', 、()'106F -, 、()'206F , .设所求双曲线的标准方程为2222111y x a b -= (10a > ,10b > )其半焦距16c = , 由双曲线定义得''1122a P F P F =-''==∴1a =,∴222111362016b c a =-=-= ,故所求的双曲线的标准方程为 2212016x y -=.18. 已知椭圆()222210x y a b a b +=>>离心率2e =,过左焦点F 且垂直于x 轴的直线交椭圆于点P ,且2PF=.(1)求椭圆的方程;(2)点(),Q x y 在椭圆上,求x +的最大值.【答案】(1) 221168x y +=;(2) 【解析】 【分析】 (1)利用离心率2e =以及通经公式求解即可.(2)利用椭圆的参数方程求解即可.【详解】(1)由题意得2422c a a c b b a ⎧=⎪=⎧⎪⎪⇒⎨⎨==⎪⎩⎪=⎪⎩故椭圆方程为221168x y +=. (2)设4cosx y θθ=⎧⎪⎨=⎪⎩ ,则4cos 4sin )4x πθθθ=+=+,当4πθ=时)4πθ+取最大值.故x 的最大值为【点睛】本题主要考查了椭圆的基本量求法以及利用参数方程求解最值问题,属于基础题型.19. 已知椭圆221 73x y+=(1)椭圆的左右焦点为1F,2F,点P在椭圆上运动,求12PF PF ⋅的取值范围;(2)倾斜角为锐角的直线l过点()1,0M交椭圆于A,B两点,且满足2AM MB=,求直线l的方程.【答案】(1)[]1,3-(2):l y x=【解析】【分析】(1)设)Pθθ,利用平面向量数量积的坐标运算可整理得到2124cos 1PF PFθ⋅=-,由余弦函数的值域可求得12PF PF⋅的取值范围;(2)由2AM MB=可利用B点横纵坐标表示出A点坐标,将A,B两点坐标代入椭圆方程可求得B点坐标;利用两点连线斜率公式求得直线l斜率后,利用点斜式得到直线方程.【详解】(1)由椭圆方程知:()12,0F-,()22,0F设)Pθθ则()12,PFθθ=-,()22,PFθθ=222127cos43sin4cos1PF PFθθθ∴⋅=-+=-2cos1θ≤≤214cos13θ∴-≤-≤,即12PF PF⋅的取值范围为[]1,3-(2)设()11,A x y,()22,B x y,则()111,AM x y=--,()221,MB x y=-由2AM MB=得:()12121212x xy y⎧-=-⎨-=⎩1212322x xy y=-⎧∴⎨=-⎩()2232,2A x y∴--由,A B两点在椭圆上可得:()22222222324173173x yx y⎧-+=⎪⎪⎨⎪+=⎪⎩,解得:2252xy⎧=⎪⎪⎨⎪=⎪⎩52B⎛∴⎝⎭∴直线l斜率145712k==-∴直线l 方程为:()717y x =-,即7777y x =- 【点睛】本题考查椭圆中的向量问题的求解,涉及到平面向量数量积的取值范围的求解、直线方程的求解问题;求解平面向量数量积的关键是能够灵活应用椭圆的参数方程,将问题转化为三角函数的值域求解问题.20. 已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形.∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = ∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.21. 已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).【答案】(1)63m <-或63m >;(2)22. 【解析】(1)可设直线AB 的方程为1y x b m=-+,从而可知有两个不同的解,再由AB 中点也在直线上,即可得到关于m 的不等式,从而求解;(2)令1t m=,可 将AOB ∆表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:(1)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+,由,消去y ,得,∵直线1y x b m=-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m bM m m ++代入直线方程12y mx =+解得2222m b m +=-,②.由①②得6m <或6m >(2)令1(t m =∈⋃,则22AB t =+,且O 到直线AB的距离为21t d +=,设AOB ∆的面积为()S t ,∴1()2S t AB d =⋅=212t =时,等号成立,故AOB ∆考点:1.直线与椭圆的位置关系;2.点到直线距离公式;3.求函数的最值.22. 已知双曲线C 的方程为()222210,0y x a b a b -=>>,离心率e =(1)求双曲线C 的方程;(2)设P 是双曲线C 上的点,A,B 两点在双曲线C 的渐近线上,且分别位于第一,二象限,若AP PB λ=,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB 面积的取值范围.【答案】(1) 2214y x -=;(2)82,3⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)根据离心率以及顶点到渐近线的距离表达出,,a b c 对应的关系再求解即可.(2)由双曲线方程与渐近线方程可设001122(,),(,2),(,2)P x y A x x B x x -,再利用AP PB λ=求得00(,)P x y ,再代入双曲线方程求解化简,再代入面积公式求解即可.【详解】(1)由题,一条渐近线方程0b y x bx ay a =⇒-=,可知25c c a a ab c ⎧⎧==⎪⎪⎪⎪⇒⎨⎪==⎪⎩,两式相乘有1b =,又222c a b =+.故2222154,524c a a c a a +=⇒=⇒==.故双曲线C 的方程:2214y x -=(2)由题,渐近线方程为2y x =±,故设001122(,),(,2),(,2)P x y A x x B x x -因为AP PB λ=,故12001200120120()12(2)21x x x x x x x y x x y x x y λλλλλλ+⎧=⎪-=-⎧⎪+⇒⎨⎨-=---⎩⎪=⎪+⎩,将点00(,)P x y 代入双曲线方程有221212111x x x x λλλλ-+⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭.化简得()21214x x λλ+=-. 故()1221122221111(2)2112212222AOBSx y x y x x x x x x λλλλ=-=--⨯+⎛⎫==+⎪=+ ⎝⎭. 因为1,23λ⎡⎤∈⎢⎥⎣⎦,由对勾函数性质得1102,3λλ⎡⎤+∈⎢⎥⎣⎦,故11822,23AOBSλλ⎛⎫⎡⎤++∈ ⎪⎢⎥⎝⎭⎣=⎦【点睛】本题主要考查了双曲线方程的求解以及设点求双曲线上对应的点代入方程求解的方法等.主要利用向量的关系表达出双曲线上的点的表达式,属于难题.。
2019—2020年最新苏教版高二数学上学期期末考试学情检测及答案解析.docx
(新课标)2019—2020学年苏教版高中数学必修三高二上学期期末复习检测一.填空题.(每题5分,共70分)1.已知直线032=+-y x l :则点 P(1,-1)在直线的_________方.(填上、下)2.函数)0(1)(>+=x xx x f 的最小值为___________ 3.若命题“q p ∧”为假命题,“p ⌝”也为假命题,则命题“q p ∨”的真假性为________4.函数ex e x f x -=)(的单调增区间为_______________5.命题p :x > 1,命题q :01>-xx 则p 是 q 成立的 __________________条件。
6.若x ≥0,y ≥0,2x+3y ≤100,2x+y ≤60,则z = 6x+4y 的最大值是 ___________7.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a b y a x 的一个焦点,且双曲线的离心率为2,则双曲线的方程为___________8.若命题”使“01)1(,2<+-+∈∃x a x R x 是假命题,则实数a 的取值范围是_____________9.已知函数a x x x x f +--=23)(的图像与x 轴仅有一个交点,则a 的取值范围为________ 10. 已知命题:p 函数2lg(21)y ax ax =++的值域是R ,命题:q 2321ax ax a +++的定义域为R ,若p q ∧为真命题,则实数a 的取值集合为11.已知抛物线)0(22>=p px y 的焦点F 与双曲线1322=-y x 的右焦点重合,抛物线的准线与x 轴的交点为K ,点 A 在抛物线上且 AF AK 2=,则AFK ∆的面积为12.在]2,21[上,函数q px x x f ++=2)(与函数212)(xx x g +=在同一点处取得相同的最小值,那么函数f(x)在]2,21[上最大值是______________13. 若ABC ∆为锐角三角形,,,A B C 的对边分别为,,a b c ,且满足2sin()4a B c π+=,则s i n s i n B C 的取值范围是 14.若点 P ,Q 分别在函数x e y =和函数x y ln =的图像上,则P 与Q 两点间的距离的最小值是___________二.解答题.(共90分,前3题每题14分,后3题每题16分)15(1)已知x >0,y >0,且2x +y =1,求1x +1y的最小值; (2)当x >0时,求f (x )=2xx 2+1的最大值.(1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2x y 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号.16.已知)0(0120208222>≤-+-≤--m m x x q x x p :,:,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。
精品解析:江苏省2019-2020学年高二上学期期末数学试题(解析版)
P 使 PA1 2c, PA2 2c 2a ,此时 PF1F2 为等腰三角形,
也且仅有一个点 P 使 PA2 2c, PA1 2c 2a ,此时 PF1F2 为等腰三角形,同理可得第二三四象限每
个象限也有且仅有两个点,一共八个,
所以 C 是真命题;
0
A1PA2 2
F1PF2 2
2
,根据焦点三角形面积的二级结论 SPF1F2
A. PA1 PA2 2a
B.
直线
PA1,
PA2
的斜率之积等于定值
b2 a2
C. 使得 PF1F2 为等腰三角形的点 P 有且仅有 8 个
b2 D. PF1F2 的面积为 tan A1PA2
2
【答案】BC 【解析】 【分析】 结合双曲线的几何性质和常见二级结论推导即可得解.
【详解】在 A1PA2 中,两边之差小于第三边,即 PA1 PA2 A1A2 2a ,所以 A 不是真命题;
1(a>b>0) 的离心率为
3 ,过右焦点 F 且斜率为 k(k>0) 的直线与 C 相交于 2
A、B 两点.若 AF 3FB ,则 k
A. 1
B. 2
C. 3
D. 2
【答案】B
【解析】
因为 e c a
3 ,所以 c 2
3 2
a ,从而 b2
a2
c2
a2 4
,则椭圆方程为
x2 a2
+
4y2 a2
9.若 a 0,b 0, a b 2 ,则下列不等式,其中正确的有( )
A. ab 1
B. a b 2
C. a2 b2 2
【答案】ACD 【解析】 【分析】
D. 1 1 2 ab
江苏省淮安市2019年数学高二年级上学期期末试卷
江苏省淮安市2019年数学高二年级上学期期末试卷一、选择题1.在中,,则( )A.B.C.D.2.已知集合{}0+2M x x =≤≤4,{}2,3N =-,则M N =A .∅B .{}2-C .{}2D .{}2,2-3.在ABC △中,角A ,B ,C 所对的边为a ,b ,c ,若4cos 5A =,且边5,c a ==b=( ) A .3或5B .3C .2或5D .54.抛物线24y x =的准线方程为( ) A .1x =-B .1y =-C .1x =D .1y =5.已知水平放置的ABC △是按“斜二测画法”得到如图所示的直观图,其中1B O C O ''''==,A O ''=,那么原ABC △中ABC ∠的大小是( ).A .30°B .45︒C .60︒D .90︒6.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( )A.B.C.D.7.某市进行了一次法律常识竞赛,满分100分,共有N 人参赛,得分全在[]40,90内,经统计,得到如下的频率分布直方图,若得分在[]40,50的有30人,则N =( )A .600B .450C .60D .458.如图是《集合》的知识结构图,如果要加入“交集”,则应该放在A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位9.平面α过正方体1111ABCD A B C D -的顶点A ,α//平面11CB D ,α⋂平面ABCD m =,则直线m 与直线BC 所成角的正弦值为( )A.2B.2C.1D.1210.已知函数()ln f x x x =+,则()1f '的值为( ) A.1B.-2C.-1D.211.已知两点(,0),(,0)(0)A a B a a ->,若曲线22230x y y +--+=上存在点P ,使得090APB ∠=,则正实数a 的取值范围为( )A.(0,3]B.[1,3]C.[2,3]D.[1,2]12.执行如图的程序框图,若输入的5=p ,则输出n 的值为()A.15B.6C.5D.4二、填空题13.某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a =______,若这次满意度评分的中位数为b ,根据频率分布直方图,估计b______65(填“>”,“<”或“=”)14.已知函数在区间上的最小值为,则的值为_____.15.执行如图所示的程序框图,若p=0.8,则输出的n=______.16.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、.若2,a b ==sin cos B B +=,则角A 的大小为____________________.三、解答题 17.已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围; (3)当时,若函数的定义域为,求函数的值域. 18.已知函数.(1)若函数在处取得极值,求的值和函数的单调区间; (2)若关于的不等式在上恒成立,求实数的取值范围.19.已知集合(1)若,求实数的值;(2)若命题命题且是的充分不必要条件,求实数的取值范围.20.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:年龄与是否支持发展共享单车有关系;(Ⅱ)若对年龄在,的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.参考数据:参考公式:,其中.21.已知函数,其中.(1)求的单调递增区间;(2)若在区间上的最大值为6,求实数的值.22.在各项均为正数的数列中,且.(Ⅰ)当时,求的值;(Ⅱ)求证:当时,.【参考答案】***试卷处理标记,请不要删除一、选择题13.0.005>14.15.4π16.6三、解答题17.(1);(2);(3)当时,的值域为;当时,的值域为;当时,的值域为.【解析】分析:(1)先根据一元二次方程解得e x>3,再解对数不等式得解集,(2)解一元二次不等式得集合A,再根据,得log2f(x)≥1在0≤x≤1上有解,利用变量分离法得a≥3e x-e2x在0≤x≤1上有解,即a≥[3e x-e2x]min.最后根据二次函数性质求最值得结果,(3)先转化为对勾函数,再根据拐点与定义区间位置关系,分类讨论,结合单调性确定函数值域.详解:(1)当a=-3时,由f(x)>1得e x-3e-x-1>1,所以e2x-2e x-3>0,即(e x-3) (e x+1)>0,所以e x>3,故x>ln3,所以不等式的解集为(ln3,+∞).(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.因为A∩B≠ ,所以log2f(x)≥1在0≤x≤1上有解,即f(x)≥2在0≤x≤1上有解,即e x+ae-x-3≥0在0≤x≤1上有解,所以a≥3e x-e2x在0≤x≤1上有解,即a≥[3e x-e2x]min.由0≤x≤1得1≤e x≤e,所以3e x-e2x=-(e x-)2+∈[3e-e2,],所以a≥3e-e2.(3)设t=e x,由(2)知1≤t≤e,记g(t)=t+-1(1≤t≤e,a>1),则,)①当≥e时,即a≥e2时,g(t)在1≤t≤e上递减,所以g(e)≤g(t)≤g(1),即.所以f(x)的值域为.②当1<<e时,即1<a<e2时,g(t)min= g()=2-1,g(t)max=max{ g(1),g(e)} =max{ a,}.1°若a,即e<a<e2时,g(t)max= g(1)= a;所以f(x)的值域为;2°若a,即1<a≤e时,g(t)max= g(e) =,所以f(x)的值域为.综上所述,当1<a≤e时,f(x)的值域为;当e<a<e2时,f(x)的值域为;当a≥e2时,f(x)的值域为.点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R 是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.18.(1) ,函数的单调递增区间是和,单调递减区间是;(2) .【解析】试题分析:(1)由,解得令得减区间,得增区间;(2) 关于的不等式在上恒成立,等价于函数的最小值大于等于零..试题解析:(Ⅰ)由题意知,,且,解得.此时,令,解得或,令,解得,则函数的单调递增区间是和,单调递减区间是(Ⅱ),当时,在上恒成立,则函数在区间上单调递增,∴当时,;当时,令,解得,令,解得,则函数在区间()上单调递减,在上单调递增,,即,解得;综上所述,实数的取值范围为.19.(1) .(2) 或.【解析】分析:(1)分a>0和a<0两种情况讨论是否存在满足条件的实数a的值,综合讨论结果,可得答案;(2)若p是q充分不必要条件,则A⊊B,分类讨论,可得满足条件的a的取值范围.详解:(1) 当时当时显然故时,,(2)当时,则解得当时,则综上是的充分不必要条件,实数的取值范围是或.点睛:注意区别:“命题是命题的充分不必要条件”与“命题的充分不必要条件是命题”20.(Ⅰ)见解析;(Ⅱ)见解析.【解析】试题分析:(1)由题意可知a=30,b=10,c=5,d=5,代入:。
2019-2020学年江苏省淮安市数学高二下期末质量检测试题含解析
2019-2020学年江苏省淮安市数学高二下期末质量检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.从5个中国人、4个美国人、3个日本人中各选一人的选法有( ) A .12种 B .24种 C .48种 D .60种【答案】D 【解析】 【分析】直接根据乘法原理得到答案. 【详解】根据乘法原理,一共有54360⨯⨯=种选法. 故选:D . 【点睛】本题考查了乘法原理,属于简单题.2.已知()f x 是定义在R 上的奇函数,对任意12,[0,)x x ∈+∞,12x x ≠,都有()()()12120x x f x f x --<⎡⎤⎣⎦,且对于任意的[1,3]t ∈,都有2()(2)0f mt t f m -+>恒成立,则实数m的取值范围是( ) A .13m <B .311m <C.4m <D .103m <<【答案】B 【解析】 【分析】由()()()12120x x f x f x --<⎡⎤⎣⎦可判断函数为减函数,将2()(2)0f mt t f m -+>变形为2()(2)(2)f mt t f m f m ->-=-,再将函数转化成恒成立问题即可【详解】()()()12120x x f x f x --<⎡⎤⎣⎦,又()f x 是定义在R 上的奇函数,()f x ∴为R 上减函数,故2()(2)0f mt t f m -+>可变形为2()(2)(2)f mt t f m f m ->-=-,即2()(2)f mt t f m ->-,根据函数在R 上为减函数可得22mt t m -<-,整理后得2212t m t t t+<=+,2y t t=+在t ∈为减函数,t ∈为增函数,所以112y t t=+在t ∈为增函数,t ∈为减函数2212t m t t t +<=+在[1,3]t ∈恒成立,即1min m y <,当3t =时,1y 有最小值311所以311m <答案选B 【点睛】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“f ”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题3.命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是( ) A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x < D .*,x R n N ∃∈∀∈,使得2n x <【答案】D 【解析】试题分析:∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 【考点】全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作: ①将存在(全称)量词改成全称(存在)量词;②将结论加以否定. 4.已知函数()y f x =的导数是()'y f x =,若()0,x ∀∈+∞,都有()()'2xf x f x <成立,则( )A .23f f >B .()21f f<C .()432f f <D .()()412f f >【答案】D 【解析】分析:由题意构造函数()()()20f x g x x x=>,结合函数的单调性整理计算即可求得最终结果.详解:令()()()20f x g x x x=>,则:()()()()()243'2'2'f x x f x xxf x f x g x xx⨯-⨯-==,由()0,x ∀∈+∞,都有()()'2xf x f x <成立,可得()'0g x <在区间()0,∞+内恒成立, 即函数()g x 是区间()0,∞+内单调递减,据此可得:()()12g g >,即()()221212f f >,则()()412f f >.本题选择D 选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.5.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若301C c a =︒==,,ABC ∆的面积为A .4B .2C .34D .32【答案】A 【解析】 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 12224ab C =⨯=. 故选A. 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6.执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .12 【答案】C 【解析】 试题分析:当时,为奇数,,;当时,为偶数,,; 当时,为奇数,,; 当时,为偶数,,; 当时,输出. 考点:程序框图.7.已知函数()ln f x x x x =+,若k Z ∈,且(2)()k x f x -<对任意的2x >恒成立,则k 的最大值为 A .3 B .4C .5D .6【答案】B 【解析】由2x >,则()()2k x f x -<= ln x x x +可化简为ln 2x x xk x +<-,构造函数()ln ,22x x x g x x x +=>-,()()()()()()22ln 22ln 2ln 422x x x x x x x g x x x +--+--==-'-,令()()222ln 4,10x h x x x h x x x-=--=-='>则,即()h x 在()2,+∞单调递增,设()00h x =,因为()842ln80h =-<,()952ln90h =->,所以089x <<,且004ln 2x x -=,故()g x 在()02,x 上单调递减, ()0,x +∞上单调递增,所以()()00000000min004·ln 924,2222x x x x x x x g x g x x x -++⎛⎫====∈ ⎪--⎝⎭,又()min k g x <,4k ∴≤,即k 的最小值为4,故选B.点睛:本题考查函数的恒成立和有解问题,属于较难题目.首先根据自变量x 的范围,分离参数和变量,转化为新函数g(x)的最值,通过构造函数求导判断单调性,可知()g x 在()02,x 上单调递减, ()0,x +∞上单调递增,所以()()0min g x g x =,且004ln 2x x -=,089x <<,通过对最小值化简得出()0g x 的范围,进而得出k 的范围.8.如图是由正方体与三棱锥组合而成的几何体的三视图,则该几何体的表面积为()A .B .C .D .【答案】C 【解析】 【分析】由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,由此可求得几何体的表面积. 【详解】由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,故该几何体的表面积为【点睛】本题主要考查三视图的还原,几何体的表面积的计算,难度一般,意在考查学生的转化能力,空间想象能力,计算能力.9. “四边形是矩形,四边形的对角线相等”补充以上推理的大前提是( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形【答案】B【解析】 【分析】根据题意,用三段论的形式分析即可得答案. 【详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据, ∵由四边形是矩形,得到四边形的对角线相等的结论, ∴大前提一定是矩形都是对角线相等的四边形,故选B . 【点睛】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.10.设{}n a 是公比为q 的等比数列,则“1n n a a +>对任意*N n ∈成立”是“1q >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】根据等比数列的通项公式,由充分条件与必要条件的概念,即可判断出结果. 【详解】因为{}n a 是公比为q 的等比数列,若1n n a a +>对任意*N n ∈成立,则111n n a q a q ->对任意*N n ∈成立,若10a >,则1q >;若10a <,则01q <<;所以由“1n n a a +>对任意*N n ∈成立”不能推出“1q >”;若1q >,10a <,则111n n a q a q -<,即1n n a a +<;所以由“1q >”不能推出“1n n a a +>对任意*N n ∈成立”; 因此,“1n n a a +>对任意*N n ∈成立”是“1q >”的既不充分也不必要条件. 故选:D. 【点睛】本题主要考查既不充分也不必要条件的判断,熟记概念即可,属于基础题型.11.在四边形ABCD 中,如果0AB AD ⋅=,AB DC =,那么四边形ABCD 的形状是( ) A .矩形 B .菱形C .正方形D .直角梯形【答案】A 【解析】 【分析】由AB DC =可判断出四边形ABCD 为平行四边形,由0AB AD ⋅=可得出AB AD ⊥,由此判断出四边形ABCD的形状.【详解】AB DC=,所以,四边形ABCD为平行四边形,由0AB AD⋅=可得出AB AD⊥,因此,平行四边形ABCD为矩形,故选A.【点睛】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.12.复数21ii-的虚部为()A.i B.i-C.1 D.-1 【答案】C【解析】【分析】先化简复数,即得复数的虚部.【详解】由题得21ii-2(1)22=1(1)(1)2i i iii i+-+==-+-+.所以复数的虚部为1.故选C【点睛】本题主要考查复数的运算和虚部的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题13.已知抛物线的准线与双曲线交于两点,点为抛物线的交点,若为正三角形,则双曲线的离心率是____【答案】【解析】分析:求得抛物线y2=4x的准线为x=﹣1,焦点F(1,0),把x=﹣1代入双曲求得y的值,再根据△FAB 为正三角形,可得tan30°=,解得a的值,可得的值.详解:已知抛物线y2=4x的准线为x=﹣1,焦点F(1,0),把x=﹣1代入双曲线求得y=±,再根据△FAB 为正三角形,可得tan30°==,解得 a=.故 c 2=+4,∴,故答案为: .点睛:(1)本题主要考查椭圆、抛物线的定义、标准方程,以及简单性质的应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求离心率常用的有直接法和方程法,本题利用的是直接法,直接先求a 和c 的值,再求离心率.14.()()2221z m m i m R =-+-∈,其共轭复数z 对应复平面内的点在第二象限,则实数m 的范围是____.【答案】12,2⎛⎫ ⎪⎝⎭【解析】 【分析】根据共轭复数对应的点所在的象限,列出不等式组求解. 【详解】由已知得:()2221z m m i =---,且在第二象限,所以:220210m m ⎧-<⎨-⎩< ,解得:2212m m ⎧-<<⎪⎨⎪⎩< , 所以12.2m -<<故答案为 12,2⎛⎫ ⎪⎝⎭. 【点睛】本题考查共轭复数的概念和其对应的点所在的象限,属于基础题.15.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .【答案】1.8 【解析】 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯-⨯⨯⨯=, 四棱锥O−EFG 的高3cm , ∴31123123O EFGH V cm -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =-=-=,其质量为0.9132118.8g ⨯=. 【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解. 16.已知集合{}{},,2,3,4a b c =,且下列三个关系:3,3,4a b c ≠=≠有且只有一个正确,则函数()()22,,x x b f x x c a x b⎧>⎪=⎨-+≤⎪⎩的值域是_______. 【答案】[3,)+∞ 【解析】分析:根据集合相等的条件,列出a 、b 、c 所有的取值情况,再判断是否符合条件,求出a ,b ,c 的值,结合的最值即可求出函数的值域.详解:由{a ,b ,c}={2,3,4}得,a 、b 、c 的取值有以下情况: 当a=2时,b=3、c=4时,a ≠3,b=3,c≠4都正确,不满足条件. 当a=2时,b=4、c=3时,a ≠3成立,c ≠4成立,此时不满足题意; 当a=3时,b=2、c=4时,都不正确,此时不满足题意; 当a=3时,b=4、c=2时,c ≠4成立,此时满足题意; 当a=4时,b=2,c=3时,a ≠3,c≠4成立,此时不满足题意; 当a=4时,b=3、c=2时,a ≠3,b=3成立,此时不满足题意;综上得,a=3、b=4、c=2,则函数()22()x x b f x x c a x b ⎧=⎨-+≤⎩,>,=224{(2)34x x x x -+≤,>,, 当x >4时,f (x )=2x >24=16, 当x ≤4时,f (x )=(x ﹣2)2+3≥3, 综上f (x )≥3,即函数的值域为[3,+∞), 故答案为[3,+∞).点睛:本题主要考查函数的值域的计算,根据集合相等关系以及命题的真假条件求出a ,b ,c 的值是解决本题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019-2020学年高二上学期期末考试数学试题(解析版)
2019-2020学年高二上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知等比数列中,,,则该数列的公比q为A. 2B. 1C.D.【答案】D【解析】解:等比数列中,,,该数列的公比.故选:D.根据等比数列的通项公式,利用,即可求出q的值.本题考查了等比数列的通项公式的应用问题,是基础题目.2.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为A. B. C. D.【答案】B【解析】解:因为抛物线的准线方程为,则由题意知,点是双曲线的左焦点,所以,又双曲线的一条渐近线方程是,所以,解得,,所以双曲线的方程为.故选:B.由抛物线标准方程易得其准线方程为,而通过双曲线的标准方程可见其焦点在x 轴上,则双曲线的左焦点为,此时由双曲线的性质可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为,可得,则得a、b 的另一个方程那么只需解a、b的方程组,问题即可解决.本题主要考查双曲线和抛物线的标准方程与几何性质.3.在三棱柱中,D是的中点,F是的中点,且,则A. ,B. ,C. ,D. ,【答案】A【解析】解:根据向量加法的多边形法则以及已知可得,,,,故选:A.根据向量加法的多边形法则可得,,从而可求,.本题主要考查了平面向量加法的三角形法则及多边形法则的应用,解题的关键是要善于利用题目中正三棱柱的性质,把所求的向量用基本向量表示.4.已知点在函数的图象上,则数列的前n项和的最小值为A. 36B.C. 6D.【答案】B【解析】解:点在函数的图象上,则,,当时,取得最小值为.故选:B.点在函数的图象上,的,,由二次函数性质,求得的最小值本题考查了等差数列前n项和的最小值,属于基础题.5.“”是“方程表示的曲线是焦点在y轴上的椭圆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:若方程表示的曲线是焦点在y轴上的椭圆,则,即,解得,即“”是“方程表示的曲线是焦点在y轴上的椭圆”的充要条件,故选:C.根据椭圆的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据椭圆方程的性质是解决本题的关键.6.下列结论错误的是A. 命题p:“,使得”,则¬:“,”B. “”是“”的充分不必要条件C. 等比数列2,x,8,中的D. 已知a,,,则的最小值为8.【答案】D【解析】解:对于命题p:,,则¬:,使得,正确;对于B,“”“,或”,故“”是“”的充分不必要条件,故正确;对于C,等比数列2,x,8,中的,正确;对于D,由于a,,,则,当且仅当时,,取等号,所以D不正确.故选:D.对于A:利用命题的否定定义即可得出;根据充要条件的定义,可判断B;利用等比数列的通项公式求解即可判断C的正误;所求式子乘以1,而1用代换;判断D的正误;本题以命题的真假判断与应用为载体,考查了四种命题,命题的否定,充要条件等知识点,难度中档.7.若不等式对于一切恒成立,则a的最小值是A. 0B.C.D.【答案】C【解析】解:不等式对于一切恒成立,即有对于一切恒成立.由于的导数为,当时,,函数y递减.则当时,y取得最小值且为,则有,解得.则a的最小值为.故选:C.由题意可得对于一切恒成立运用函数的导数判断右边的单调性,求得最小值,令不大于最小值即可.本题考查不等式的恒成立问题,考查函数的单调性的运用,考查运算能力,属于中档题和易错题.8.设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是A. 函数有极大值和极小值B. 函数有极大值和极小值C. 函数有极大值和极小值D. 函数有极大值和极小值【答案】D【解析】解:由函数的图象可知,,,并且当时,,当,,函数有极大值.又当时,,当时,,故函数有极小值.故选:D.利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.如图,长方体中,,点E,F,G分别是,AB,的中点,则异面直线与GF所成的角是A.B.C.D.【答案】A【解析】解:由题意:是长方体,E,F,G分别是,AB,的中点,连接,,为异面直线与GF所成的角.连接,在三角形中,,,,,.,即异面直线与GF所成的角为.故选:A.异面直线所成的角通过平移相交,找到平面角,转化为平面三角形的角求解,由题意:E,F,G分别是,AB,的中点,连接,,那么就是异面直线与GF 所成的角.本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.10.已知a,,且,则的取值范围是A. B. C. D.【答案】A【解析】解:a,,且,设,,则,即为,由a,b为二次方程的两根,可得,解得,则的取值范围是.故选:A.a,,设,,,由a,b为二次方程的两根,运用判别式法,解二次不等式即可得到所求范围.本题考查了换元法和构造法、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.11.已知函数的定义域为R,并且满足,且当时其导函数满足2f{{'}}(x)'/>,若则A. B.C. D.【答案】C【解析】解:函数对定义域R内的任意x都有,关于直线对称;又当时其导函数满足,当时,,在上的单调递增;同理可得,当时,在单调递减;,,,又,,在上的单调递增;故选:C.由,可知函数关于直线对称,由,可知在与上的单调性,从而可得答案.本题考查抽象函数及其应用,考查导数的性质,判断在与上的单调性是关键,属于中档题.12.已知点,分别是双曲线的左,右焦点,过且垂直于x轴的直线与双曲线交于M,N两点,若,则该双曲线的离心率e的取值范围是A. B. C. D.【答案】B【解析】解:当时,,得,则,则,则,,,若,则只要即可,则,即,即,则,即,则,得,,,故选:B.求出交点M,N的坐标,若,则只要即可,利用斜率公式进行求解即可.本题主要考查双曲线离心率的计算,根据向量数量积的关系转化为求是解决本题的关键考查学生的转化能力.二、填空题(本大题共4小题,共20.0分)13.已知向量,若,则k的值为______.【答案】【解析】解:;;;解得.故答案为:.可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量垂直的充要条件,向量坐标的加法和数量积运算.14.若“”是“”的必要不充分条件,则a的取值范围是______.【答案】或【解析】解:若“”是“”表示,则,,则,即实数a的取值范围是,故答案为:根据必要不充分条件的定义转化为集合真子集关系进行求解即可.本题主要考查充分条件和必要条件的应用,结合子集关系是解决本题的关键.15.若数列的前n项和为,则数列的通项公式是______.【答案】【解析】解:当时,,解得当时,,整理可得,即,故数列从第二项开始是以为首项,为公比的等比数列,故当时,,经验证当时,上式也适合,故答案为:把代入已知式子可得数列的首项,由时,,可得数列为等比数列,且公比为,代入等比数列的通项公式分段可得答案.本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.16.设点和点分别是函数和图象上的点,且,,若直线轴,则M,N两点间的距离的最小值为______.【答案】2【解析】解:当时,0'/>,函数在上单调递增.点和点分别是函数和图象上的点,且,,若直线轴,则,即,则M,N两点间的距离为.令,,则,,故在上单调递增,故,故在上单调递增,故的最小值为,即M,N两点间的距离的最小值为2,故答案为2.求出导函数,根据题意可知,令,求出其导函数,进而求得的最小值即为M、N两点间的最短距离.本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知是首项为1的等比数列的前n项的和,,,成等差数列,求的值;若,求.【答案】解:由题意,,显然,分,分解得分,分,分两式相减,得分分,分分【解析】利用已知条件,列出方程求解的值;化简数列的表达式,利用错位相减法求解数列的和即可.本题考查数列求和,等差数列以及等比数列的综合应用,考查转化思想以及计算能力.18.已知函数在点处的切线方程是.求实数a,b的值;求函数在上的最大值和最小值其中e是自然对数的底数.【答案】解:因为,,分则,,函数在点处的切线方程为:,分直线过点,则由题意得,即,分由得,函数的定义域为,分,,0⇒x > 2'/>,在上单调递减,在上单调递增分故在上单调递减,在上单调递增,分在上的最小值为分又,,且.在上的最大值为分综上,在上的最大值为,最小值为分【解析】求出函数的导数,通过切线方程棱长方程即可求实数a,b的值;求出函数的导数,判断函数的单调性,然后求解函数的极值,然后求函数在上的最大值和最小值.本题考查函数的导数的应用,切线方程以及函数的最值的求法,考查转化思想以及计算能力.19.如图所示,在底面为平行四边形的四棱锥中,,平面ABCD,且,,点E是PD的中点.求证:平面AEC;求二面角的大小.【答案】解:平面ABCD,AB,平面ABCD,,且.以A为坐标原点建立如图所示空间直角坐标系;分证明:,0,,,,设平面AEC的法向量为,则,取,得.又2,,所以,,又平面AEC,因此:平面分平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,则,得:所以二面角的大小为分【解析】由已知得,,且以A为坐标原点建立如图所示空间直角坐标系;设平面AEC的法向量为,由,得平面AEC 求出平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,,可得二面角的大小本题考查了空间线面平行的判定,及向量法求二面角,属于中档题.20.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知米,米.Ⅰ要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?Ⅱ当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.【答案】解:Ⅰ设DN的长为米,则米,由得又得解得:或即DN的长取值范围是Ⅱ矩形花坛的面积为当且仅当,即时,矩形花坛的面积最小为24平方米.【解析】Ⅰ设DN的长为米,则米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.化简矩形的面积,利用基本不等式,即可求得结论.本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.21.已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过x轴正半轴一点且斜率为的直线l交椭圆于A,B两点.求椭圆的标准方程;是否存在实数m使以线段AB为直径的圆经过点F,若存在,求出实数m的值;若不存在说明理由.【答案】解:抛物线的焦点是,,,又椭圆的离心率为,即,,则故椭圆的方程为;分由题意得直线l的方程为,由,消去y得,由,解得.又,.设,,则,.分,,分分若存在m使以线段AB为直径的圆经过点F,则必有,即,分解得或又,.即存在使以线段AB为直径的圆经过点分【解析】由抛物线得焦点坐标,结合已知条件及椭圆的离心率可求出c,a 的值,由,求出b,则椭圆的方程可求;由题意得直线l的方程为,联立,消去y得,由,解得m的范围,设,,则,,求出,由,,求出,若存在m使以线段AB为直径的圆经过点F,则必有,求出实数m的值即可.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、数量积运算,考查了推理能力和计算能力,是中档题.22.已知函数,其中e为自然对数的底数,Ⅰ判断函数的单调性,并说明理由Ⅱ若,不等式恒成立,求a的取值范围.【答案】解:Ⅰ由,得,当时,,为R上的减函数;当时,令,得,若,则,此时为的单调减函数;若,则,此时为的单调增函数.综上所述,当时,为R上的减函数;当时,若,为的单调减函数;若,为的单调增函数.Ⅱ由题意,,不等式恒成立,等价于恒成立,即,恒成立.令,则问题等价于a不小于函数在上的最大值.由,函数在上单调递减,令,,.在上也是减函数,在上也是减函数,在上的最大值为.故,不等式恒成立的实数a的取值范围是.【解析】Ⅰ求出原函数的导函数,然后对a分类,当时,,为R上的减函数;当时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;Ⅱ,不等式恒成立,等价于恒成立,分离参数a,可得恒成立令,则问题等价于a不小于函数在上的最大值,然后利用导数求得函数在上的最大值得答案.本题考查利用导数研究函数的单调性,考查函数最值的求法,训练了利用分离变量法求函数的最值,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a q C.因为 an an1 a1qn1 a1qn
a12q2n1
a12 q
q2
n 1
,所以
an an1
2
是首项为 1
,
公比为 q2 的等比数列;
D.因为 an an1 an2 an anq anq2 q2 q 1 an a1 q2 q 1 qn1 ,
B. AA1 B1C1 D1C1 AA1 A1D1 D1C1 AC1 ,故正确;
C. AB C1C B1C1 AB CC1 B1C1 AB BB1 B1C1 AC1 ,故正确;
D. AA1 DC B1C1 AA1 A1B1 B1C1 AC1 ,故正确.
【详解】当 x2 2x 0 时, 0 x 2 ,
所以 x 2 不能推出 x2 2x 0 , x2 2x 0 能推出 x 2 ,
所以“ x 2 ”是“ x2 2x 0 ”的必要不充分条件.
故选:B.
【点睛】本题考查充分条件、必要条件的判断,难度较易.注意一个基本事实:小范围能推
x2 B.因为 2
y2
1
,所以 3x2 4 2x 2 0 ,所以 32 24 8 0 ,所以直线
与椭圆有两个交点,不符;
C.因为 x2 y2 1的渐近线方程为 y x ,所以 x y 2 0 平行于渐近线且不与渐近线
重合,
所以 x y 2 0 与双曲线仅有一个公共点,符合;
故选:BD.
【点睛】本题考查命题成立的充分不必要条件的判断,难度较易.判断命题成立的充分不必
要条件或必要不充分条件,可从命题成立的对象所构成集合的真子集关系考虑.
10.与直线 x y 2 0 仅有一个公共点的曲线是( )
A. x2 y2 1
x2 y2 1 B. 2
C. x2 y2 1
y
的最小值即可.
y 2x 2 (x 1)
【详解】因为
x 1
,
y 2x 2 2x 1 2 2 2 2x 1 2 2 6
所以
x 1
x 1
x 1
,
取等号时
2x
1
x
2 1
,即
x
2
,
所以 ymin 6 .
故选:C.
【点睛】本题考查利用配凑法以及基本不等式求解最小值,难度较易.利用基本不等式求解
2 A. 11
8 B. 11
16 C. 11
18 D. 11
【答案】C
【解析】
【分析】 将问题转化为等差数列问题,根据已知条件列出方程组求解出数列的首项和公差,然后即可
求解出 a5 的值.
【详解】将等差数列记为
an
,其中第
n
节的容积为
an
1 n 9, n N *
,
因为
aS74
4 a8
a9
D. y2 x
【答案】AC
【解析】
【分析】
A.根据圆心到直线的距离进行判断;B.联立直线与椭圆方程利用 进行判断;C.根据双 曲线的渐近线与直线的位置关系进行判断;D.联立直线与抛物线方程利用 进行判断.
2
d
1 r
【详解】A.圆心到直线的距离
11
,所以直线和圆相切,所以仅有一个公共
点,符合;
x y 2 0
最值时注意说明取等号的条件.
6.已知数列 an 是等比数列, a2014 4 , a2020 16 ,则 a2017 (
)
A. 4 2
B. 4 2
C. 8
D. ±8
【答案】D
【解析】
【分析】
根据等比数列下标和的性质,得到 a2017 是 a2014 、 a2020 的等比中项,从而可计算出 a2017 的值.
难度一般.已知直线
l
的方向向量为
a
,平面
的法向量为 b
,若 l
/
/
则有
a
b
,若
l 则有 a / /b .
y 2x 2 (x 1)
5.函数
x 1
的最小值是( )
A. 2
B. 4
C. 6
D. 8
【答案】C
【解析】
【分析】
2x 将
2 x 1 变形为
2 x
1
2 x 1
2
,然后根据基本不等式求解出
公差即可求解出通项公式;(2)利用等差数列的性质求解通项公式.
二、多项选择题(在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添
涂在答题卡相应位置上)
9.已知函数 f (x) x2 4x 3 ,则 f (x) 0 的充分不必要条件是( )
A. [1,3]
B. {1,3}
C. (,1],[3 +)
【详解】因为an是等比数列,且 2014 2020 2 2017 ,
所以 a20172
a2014
a2020
Байду номын сангаас
64 ,所以 a2017
8
.
故选:D.
【点睛】本题考查等比数列的性质运用,难度较易.在等比数列
an
中,已知
m n p q 2c m, n, p, q, c N * ,则有 aman apaq ac2 .
江苏省淮安市 2019-2020 学年高二数学上学期期末考试试题(含解析)
一、单项选择题(在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂 在答题卡相应位置上)
1.命题“ x R , x2 2x 3 0 ”的否定是( )
A. x R , x2 2x 3 0
B. x R , x2 2x 3 0
【详解】设 an a1qn1 ,
A.
1 an
1 a1q n 1
1 a1
1 q
n1
,此时
1 an
为首项为
1 a1
,公比为
1 q
的等比数列;
B.因为 log2 an log2
a1q n 1
log2
a1
n
1log2
q
a1
0,
q
0 ,此时 log 2
an
是首
项为 log2 a1 ,公差为 log2 q 的等差数列;
则实数 x 的值是( )
A. 1 【答案】C
B. 5
C. ﹣1
D. ﹣5
【解析】
【分析】
根据直线与平面垂直时直线的方向量与平面的法向量共线,利用共线时对应的坐标关系即可
计算出 x 的值.
【详解】因为直线 l 平面 ,所以 m / /n ,
所以
x 2
1 2
2 4
,所以
x
1 .
故选:C.
【点睛】本题考查根据直线与平面的位置关系求解参数,其中涉及到空间向量的共线计算,
【点睛】本题考查根据几何图形的性质求解双曲线离心率,难度一般.求解椭圆或者双曲线 的离心率时,若出现了特殊几何图形,可借助几何图形的性质(边、角等)求解离心率.
8.《九章算术》中的“竹九节”问题:现有一根 9 节的竹子,自上而下各节的容积成等差数
列,上面 4 节的容积共 4 升,下面 3 节的容积共 6 升,则第 5 节的容积是( )
1,所以设抛物线方程为
x2
2 py p
0
,
又因为准线方程
y
p 2
1
,所以
p
2,
所以抛物线标准方程为: x2 4 y .
故选:A.
【点睛】本题考查根据抛物线的准线方程求解抛物线的标准方程,难度较易.解答此类问题
的思路:根据焦点或准线设出标准方程,求解出方程中 p 的值即可得到标准方程.
4.若直线 l 的方向向量 m (x, 1, 2) ,平面 的法向量 n (2, 2, 4) ,且直线 l 平面 ,
AF1 , AF2
,再结合
AF1
AF2
2a
即可计算出双曲线
的离心率.
【详解】因为 F1F2 2c 且 F1AB 是等边三角形,
所以
AF1
F1F2 cos 30
43 c
3,
AF2
F1F2
tan 30
23 c
3,
由双曲线的定义可知:
AF1
AF2
2a
23 c
3,
e c 3
所以 a
.
故选:A.
出大范围,大范围不能推出小范围.
3.准线方程为 y 1的抛物线的标准方程为( )
A. x2 4 y
【答案】A
B. y2 4x
C. x2 2 y
D. x2 4 y
【解析】
【分析】 先根据准线方程确定出抛物线方程的基本形式,然后求解出 p 的值即可得到抛物线的标准方
程.
【详解】因为准线方程为
y
6
,所以
4a1a176dd24
,所以
a1 d
8 11
2 11
,
a5 所以
a1
4d
16 11
16 ,所以第 5 节的容积为 11
.
故选:C.
【点睛】本题考查等差数列及其前 n 项和的 简单综合应用,难度较易.已知关于等差数列的两
个等式求解等差数列通项的常用方法:(1)构造关于首项和公差的方程组,求解出首项和
a3 ________.
【答案】4 【解析】 【分析】
将点的坐标代入到
f
x 中,求解出
Sn
的表达式,根据
an
Sn
Sn1
n
2求解出 an
,即
可求解出 a3 的值.
【详解】因为 n, Sn 在 f x的图象上,所以 Sn n2 n ,
所以
an
Sn