ELMO FC Femtosecond Fiber Laser
边发射激光芯片的分类
![边发射激光芯片的分类](https://img.taocdn.com/s3/m/80a0207ea22d7375a417866fb84ae45c3b35c29b.png)
边发射激光芯片的分类
边发射激光芯片可以分为以下几种类型:
1. FP(Fabry-Perot)芯片,也称为法布里-珀罗(Fabry-Perot)激光器。
这种激光器使用两个反射镜形成谐振腔,通过控制反射镜的距离和反射率来调整激光的频率和波长。
FP芯片通常具有较高的输出功率和较窄的线宽,适用于多种应用,如光通信、光谱分析和激光雷达等。
2. DFB(Distributed Feedback)芯片,也称为分布式反馈激光器。
这种激光器使用光栅结构对光进行反馈,以产生相干光。
DFB芯片通常具有稳定的波长和较低的噪声,适用于高速光通信和长距离传输等应用。
3. EML(Electro-absorption Modulated Laser)芯片,也称为电吸收调制激光器。
这种激光器使用电吸收效应来调制激光的强度和频率。
EML芯片通常具有较高的调制速度和较低的功耗,适用于高速短距离通信和传感等应用。
以上是边发射激光芯片的三种主要类型,每种类型都有其特点和适用范围。
在实际应用中,需要根据具体需求选择合适的边发射激光芯片类型。
名词解释
![名词解释](https://img.taocdn.com/s3/m/e40b7303844769eae009eded.png)
色散补偿光纤(DCF,Dispersion Compensating Fiber)是具有大的负色散光纤。
它是针对现已铺设的G652标准单模光纤而设计的一种新型为了使现已敷设的G652光纤系统采用WDM/EDFA技术,G652标准光纤在1.55 μm波长的色散不是零,而是正的(17-20)ps/(nm·km),并且具有正的色散斜率,因此需要在这些光纤中加接具有负色散的色散补偿光纤,进行色散补偿,以保证整条光纤线路的总色散近似为零,从而实现高速度、大容量、长距离的通信。
背景不同的光分量(不同的模式或不同的频率等)通常以不同的速度在光纤中传输,色散是光纤的一种重要的光学特性,色散引起光脉冲的展宽、严重限制了光纤的传输容量及带宽。
对于多模光纤,起主要作用的色散机理是模式色散或称模间色散(即不同的模以不同的速度传输引起的色散)。
20世纪90年代初,为了解决由标准单模光纤组成的2.5Gbit/s´8波分复用系统在波长1550nm处存在比较大色散的问题,光纤制造厂家通过增加光纤的波导负色散来抵消光纤的材料正色散方法,研制出了在1550nm波长具有较大负色散的光纤,称之为色散补偿光纤。
该光纤的设计指导思想是利用色散补偿光纤在1550nm波长的大的负色散,补偿标准单模光纤在1550nm波长由于长度增加所积累的大的正色散。
优质色散补偿光纤在1550nm波长的负色散值可达−80~−150ps/(nm·km)。
一般1km色散补偿光纤可以补偿4~8km标准单模光纤的色散。
但是,色散的补偿本身具有比较大的衰减,需要采用光放大器来弥补色散补偿光纤的光损失。
什么又是TDC(可调色散补偿器)呢:可调色散补偿器(Tunable Dispersion Compensating)就是所补偿的色散值是在一定的范围内可以调谐的。
光器件和芯片的结构介绍
![光器件和芯片的结构介绍](https://img.taocdn.com/s3/m/adbde805bf23482fb4daa58da0116c175f0e1e95.png)
主要内容
光模块简介 光模块内部主要元器件 光模块调制方式 光模块的特点及应用 光模块原理框图 光模块主要性能指标 光模块接口电平
构成:TEC致冷器,激光二 极管,EA调制器,背光检 测二极管和,热敏电阻等
放大器分类
➢ 跨阻放大器:Transimpedance Amplifier(TIA )
➢ 主放Main Amplifiers (MA) 或后放 Post Amplifiers
限幅放大器:Limiting Amplifier (LA) 自动增益控制放大器:Automatic Gain Control Amplifier (AGC).
主要内容
光模块简介 光模块内部主要元器件 光模块调制方式 光模块的特点及应用 光模块原理框图 光模块主要性能指标 光模块接口电平
1X9光模块
特点: ➢ 工作速率: 155Mb/s~1Gb/s ➢ 工作电压:3.3 V或5V ➢ 波长:1310nm,1550nm ➢ 宽温工作范围 ➢ 传输距离可达80km 应用 ➢ 数据通信:快速以太网,千兆以太网 ➢ 电信: OC -3/STM -1, OC -12/STM -4
1490nm PD
前置 放大器
单纤双向光组件
ONU
光收发合一模块
OLT光收发合一模块功能框图
Data IN TDIS IN
TF
Data OUT Reset IN
(选用)
激光器 驱动器
突发式 限幅放大器
MD LD
1490nm WDM
1310nm PD
突发式前置 放大器
OLT
光收发合一模块
BOSA
➢ 单纤双向光组件(Bi-Dirctional Optical Subassembly)
单模光纤耦合半导体激光器
![单模光纤耦合半导体激光器](https://img.taocdn.com/s3/m/03971e3ae97101f69e3143323968011ca200f741.png)
单模光纤耦合半导体激光器【原创版】目录1.单模光纤耦合半导体激光器的概念2.单模光纤耦合半导体激光器的特点3.单模光纤耦合半导体激光器的应用领域4.市场上的相关产品及生产厂家5.德国 INGENERIC 微透镜在单模光纤耦合半导体激光器中的应用正文一、单模光纤耦合半导体激光器的概念单模光纤耦合半导体激光器是一种将半导体激光器和单模光纤进行耦合的光源设备。
它可以将半导体激光器产生的光信号通过单模光纤进行传输,具有光束质量好、传输效率高、信号干扰小等优点。
在工业生产、科研实验、光通信等领域有广泛的应用。
二、单模光纤耦合半导体激光器的特点1.高稳定性:单模光纤耦合半导体激光器具有优良的光学稳定性,能够在各种环境下保持稳定的输出性能。
2.高效率:通过光纤耦合,可以有效提高激光器的输出效率,减少能量损耗。
3.多功能:单模光纤耦合半导体激光器可以提供从紫外到近红外多个波长,多种输出功率水平,连续或调制脉冲等多种工作方式,满足不同应用场景的需求。
4.优良的光束质量:单模光纤耦合半导体激光器具有优异的光束质量,可以实现点状到线形、面型等多种光斑模式。
5.保护性能:具有过饱和保护和温度控制等功能,可以有效保护激光器免受损坏。
三、单模光纤耦合半导体激光器的应用领域单模光纤耦合半导体激光器在光通信、光纤传感、激光加工、医疗美容、科学研究等领域具有广泛的应用。
四、市场上的相关产品及生产厂家目前,国内外有许多厂家生产单模光纤耦合半导体激光器,如陕西福雷光电科技有限公司、上海屹持光电有限公司等。
这些厂家生产的产品性能稳定,质量可靠,得到了市场的认可。
五、德国 INGENERIC 微透镜在单模光纤耦合半导体激光器中的应用德国 INGENERIC 公司生产的微透镜阵列具有卓越的形状精度,可以用于光纤耦合的光束转换、激光的均匀化以及相同波长激光堆的有效组合。
华睿 Femto 系列飞秒激光器 用户操作手册说明书
![华睿 Femto 系列飞秒激光器 用户操作手册说明书](https://img.taocdn.com/s3/m/0d5c7d9029ea81c758f5f61fb7360b4c2f3f2a4f.png)
Huaray Femto SeriesOperator’s ManualFemto系列光纤飞秒激光器用户操作手册Ver 3.1 Build 20211105第一章:激光安全常识激光产品根据其输出功率等级分为Class Ⅰ,Class Ⅱ,Class ⅢA,Class ⅢB,Class Ⅳ。
其中Class Ⅳ类激光辐射会对人体产生严重伤害,本产品即属于此类。
危险!目视从激光器射出的可见或不可见激光将导致严重的损伤并有可能致盲,反射、散射和漫反射光也同样具有危险。
请注意:人眼对于波长在400~700nm范围外的激光是不可见的。
注意!为防止意外暴露在激光或反射激光的照射范围内,在使用、维护、检修本激光器时,应配戴特定波长的激光防护眼镜。
➢非专业人员不允许打开电源或激光器进行任何操作。
➢激光照射到金属的被加工零件上时,可能有强烈的激光光束被反射出来,使用中必须采取措施加以遮挡,或采用具备Class Ⅳ等级防护能力的工作平台。
➢在使用设备之前请认真阅读本说明书,并严格遵循说明书中的方法使用本设备。
➢设备操作人员需经过系统的培训,请定期对设备进行维护保养,以排除故障隐患。
➢使用设备时要连接合适的电源,并保证有可靠的接地。
➢如果对本产品有任何疑问,请联系本公司售后维护人员。
Femto系列脉冲飞秒光纤激光器产品,分为Femto-10,Femto-50和Femto-200等三个子系列,分别对应在红外波段(1035 nm)的最大单脉冲能量为10 μJ、50 μJ和200 μJ。
所有517 nm波段产品,均可选择1035 nm / 517 nm 切换。
系列型号HR-Femto-IR-10-10HR-Femto-GN-4-4HR-Femto-IR-50-40HR-Femto-GN-20-15HR-Femto-IR-200-40HR-Femto-GN-75-15中心波长1035 nm 517 nm 1035 nm 517nm 1035 nm 517nm 输出功率10 W 4 W 40 W 15 W 40 W 15 W 最大脉冲能量10 μJ 4 μJ50 μJ20 μJ200 μJ75 μJ最大脉冲串能量~ ~ 200 μJ~ ~ ~重复频率Single-Shot to 1 MHzSingle-Shot to 1 MHzSingle-Shot to 800kHzSingle-Shot to 800kHzSingle-Shot to 200kHzSingle-Shot to 200kHz脉冲宽度<300 fs to 10ps<300 fs to 10ps<300 fs to 10ps<300 fs to 10ps<300 fs to 10ps<300 fs to 10ps光束质量M²≤1.3 (Typical <1.2)M²≤1.3 (Typical <1.2)M²≤1.3 (Typical <1.2)M²≤1.3 (Typical <1.2)M²≤1.3 (Typical <1.2)M²≤1.3 (Typical <1.2)光束发散角<1 mrad, 2θ<1 mrad, 2θ<1 mrad, 2θ<1 mrad, 2θ<1 mrad,2θ<1 mrad, 2θ光斑圆度≥90%≥90%≥90%≥90%≥85%≥85%光斑直径3±1 mm, 1/e²3±1 mm, 1/e²3±1 mm, 1/e²3±1 mm, 1/e²3±1 mm, 1/e²3±1 mm, 1/e²偏振态Linear Linear Linear Linear Linear Linear 脉冲稳定性<2% RMS <2% RMS <2% RMS <2% RMS <2% RMS <2% RMS 功率稳定性<2% RMS <2% RMS <2% RMS <2% RMS <2% RMS <2% RMS 工作温度10 to 30 °C10 to 30 °C10 to 30 °C10 to 30 °C10 to 30 °C10 to 30 °C电源AC 220/110VAC 220/110VAC 220/110VAC 220/110VAC 220/110VAC 220/110V3.1产品前面板介绍3.3.1 Femto-10 产品前面板红外绿光或双波段3.3.2 Femto-50 产品前面板红外绿光或双波段3.3.3 Femto-200 产品前面板红外绿光或双波段3.2 后面板示意图3.2.1 Femto-10产品后面板示意图红外绿光或双波段序号接口名称说明激光状态指示灯1. 待机时熄灭;2. 开机激光功率上升过程中黄灯闪烁,激光功率稳定之后黄灯常亮;3. 出现错误时,红灯常亮。
飞秒激光
![飞秒激光](https://img.taocdn.com/s3/m/324fbaa5dd3383c4bb4cd23c.png)
光爆破的原理
数千万的激光脉冲连接一起
光爆破的原理
当角膜瓣掀开时,气体和水被吸收或释放出来。
形成一个分开的平面
光爆破的原理
激光脉冲按某一角度彼此堆积可劈开角膜
飞秒激光在眼科手术的应用
屈光手术
Lasik手术中制作角膜瓣 Femto- ICRS,intra corneal ring segments
常规lasik
波前像差引导的lasik(有或没有虹膜跟踪) 飞秒激光+常规lasik
飞秒+波前像差引导的lasik
LASIK
目前全世界最主流的屈光手术
美国FDA数据:现在每年接受LASIK手术患者的
数量为120-140万,年增长速度为17%
我国每年大概80-100万例手术.
LASIK手术的优势
手术不损伤角膜上皮,恢复较快 术后疼痛不严重,疼痛时间短 手术对角膜前弹力层影响小,几乎不出现Haze 术后不需要长期用药
手术过程
调整并确认治疗参数,然后进行治疗
飞秒激光制瓣的特点
制瓣时间(8.5mm):6 秒 角膜瓣厚度:90µm ~ 400µm, 直径:5.0~9.5mm,以0.1mm增减 切削角度:30~90° 以1°增减 角膜瓣的实际厚度与设计厚度误差约±2 µm
飞秒激光制瓣的优点
LASIK手术的基本过程
一、角膜瓣的制作
二、准分子激光对角膜瓣下组织的切削
LASIK手术过程
LASIK手术过程 :制作角膜瓣
LASIK手术过程 :制作角膜瓣
LASIK手术过程 :制作角膜瓣
LASIK手术过程 :制作角膜瓣
LASIK手术过程 :角膜瓣制作成功
LASIK手术过程 :激光切削
光纤型梳状滤波器的研究和设计毕业设计
![光纤型梳状滤波器的研究和设计毕业设计](https://img.taocdn.com/s3/m/fa9c9f1d65ce05087732138a.png)
光纤型梳状滤波器的研究和设计毕业设计杭州电子科技大学毕业设计(论文)外文文献翻译毕业设计(论文)题目光纤型梳状滤波器的研究和设计翻译(1)题目基于一个高双折射光纤双Sagnac环的可调谐多波长光纤激光器翻译(2)题目可调谐全光纤双折射梳状滤波器学院通信工程专业通信工程姓名张波班级10083415学号10081534指导教师魏一振译文一:基于一个高双折射光纤双Sagnac环的可调谐多波长光纤激光器王天枢,缪雪峰,周雪芳,钱胜杭州电子科技大学通信工程学院,中国杭州,310018作者通讯:tianshuw@2011年12月12日接受;2012年2月21日校订;2012年2月21日完成;2012年2月22日通告(Doc. ID:159647);2012年3月28日出版我们提出并证明了一个基于双光纤Sagnac环的可调谐多波长光纤激光器。
使用琼斯矩阵分析了单个和两个Sagnac环梳状滤波器的特性。
模拟结果显示两个Sagnac环的可调谐性和可控性比单个环的更好,这个结论也被实验结果所确认。
通过调整偏振控制器和保偏光纤的长度,可实现波长范围、波长间隔和激光线宽的调谐。
实验结果表明多波长光纤激光器输出激光的线宽为0.0187nm和光学边模抑制比为50dB。
©美国光学学会2012OCIS 编码:060.3510, 140.3600, 060.2420, 120.57901.引言工作在波长1550nm附近的多波长光纤激光器已经吸引了许多人的兴趣,它可以应用于密集波分复用(DWDM)系统,精细光谱学,光纤传感和微波(RF)光电[1-4]等领域。
多波长光纤激光器可以通过布拉格光纤光栅阵列[5],锁模技术[6-7],光学参量振荡器[8],四波混频效应[9],受激布里渊散射效应实现[10-12]。
掺铒光纤(EDF)环形激光器可以提供大输出功率,高斜度效率和大可调谐波长范围。
例如,作为一种可调谐EDF激光器,带有单个高双折射光纤Sagnac 环的多波长光纤激光器已经提出[13-15]。
武汉华工激光公司推出新型自主研发的光纤激光打标机
![武汉华工激光公司推出新型自主研发的光纤激光打标机](https://img.taocdn.com/s3/m/39f3ab1c0b4e767f5acfcecc.png)
瓦特 的功 率 。
Mois 司 运 营 部 副 总 裁 R d B e 说 : bu 公 e yr “ bu 公 司 为 建 立 光 纤 连 接 新 标 准 而 研 发 出 Mo is
采用偏 振 无关性 光 隔离技术 , 能量损 失仅 为1 通 %。 常 1 0W带光 隔 的光纤 激光 器 只能 输 出9W的功率 ,
而光纤 激 光器可 以输 出到99W。除此之 外 , S 1 . LF 0 系 列光 纤激 光 打标 机 单色 性好 ,镜 片 反射 能 量 损
Me h连接 头 。我们 已经 推 出结 合高 功 率发 射器 , it g 且 操作 简单 、支 持重 复 插拔 功 能 的连 接 头 的设 计 方 案 。与 封 闭式 隔片 激 光器 的设计 相 吻合 。我 们 还 计 划推 出Megt 接 头 的 市 场专 利 。最 后 给 激 i 连 h
L F0 S 1 系列 光 纤 激 光 打标 机使 用 自主 研 发 的 光 纤 激光 器 , 有 脉 宽 窄 、 具 峰值 功率 高 、 内置 光 隔 不惧 高反 等特点 。 统光 隔离 器技术 会造 成约 1 % 传 O
的激 光 能量 损失 ,该公 司 自主研 发 的光 纤 激 光 器
Meg t 接 头 ,该 可分 离 式 光 纤 连 接 器 主 要用 于 i 连 h 高功 率领 域 ,如 泵浦 发射 光及 商 业 耦合 激 光 器 和 工业 耦 合 激 光器 等 。Me h连 接 头 通 过改 变 多模 it g
武汉华工激光公司推 出新型 自主
研 发 的光纤 激 光 打 标机
近 日, 武汉华 工激 光工 程有 限责 任公 司推 出全
Femtosecond laser excitation of multiple spin waves
![Femtosecond laser excitation of multiple spin waves](https://img.taocdn.com/s3/m/5ee59538b4daa58da0114adb.png)
Femtosecond laser excitation of multiple spin waves and composition dependence of Gilbert damping in full-Heusler Co2Fe1−xMnxAl filmsChuyuan Cheng, Kangkang Meng, Shufa Li, Jianhua Zhao, and Tianshu LaiCitation: Applied Physics Letters 103, 232406 (2013); doi: 10.1063/1.4838256View online: /10.1063/1.4838256View Table of Contents: /content/aip/journal/apl/103/23?ver=pdfcovPublished by the AIP PublishingArticles you may be interested inDifferent temperature scaling of strain-induced magneto-crystalline anisotropy and Gilbert damping in Co2FeAl film epitaxied on GaAsAppl. Phys. Lett. 105, 072413 (2014); 10.1063/1.4893949Magnetic and Gilbert damping properties of L 21-Co2FeAl film grown by molecular beam epitaxyAppl. Phys. Lett. 103, 152402 (2013); 10.1063/1.4824654Low spin-wave damping in amorphous Co40Fe40B20 thin filmsJ. Appl. Phys. 113, 213909 (2013); 10.1063/1.4808462Spin-transfer switching in full-Heusler Co2FeAl-based magnetic tunnel junctionsAppl. Phys. Lett. 100, 182403 (2012); 10.1063/1.4710521Exchange anisotropy and spin-wave damping in CoFe/IrMn bilayersJ. Appl. Phys. 93, 7717 (2003); 10.1063/1.1543126Femtosecond laser excitation of multiple spin waves and composition dependence of Gilbert damping in full-Heusler Co 2Fe 12x Mn x Al filmsChuyuan Cheng,1Kangkang Meng,2Shufa Li,1Jianhua Zhao,2,a)and Tianshu Lai 1,a)1State-Key Laboratory of Optoelectronic Materials and Technologies,School of Physics and Engineering,Sun Yat-Sen University,Guangzhou 510275,People’s Republic of China 2State-Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,P.O.Box 912,Beijing 100083,People’s Republic of China(Received 2September 2013;accepted 17November 2013;published online 3December 2013)Spin-wave dynamics in 30nm thick Co 2Fe 1Àx Mn x Al full-Heusler films is investigated using time-resolved magneto-optical polar Kerr spectroscopy under an external field perpendicular to films.Damon-Eshbach (DE)and the first-order perpendicular standing spin-wave (PSSW)modes are observed simultaneously in four samples with x ¼0,0.3,0.7,and 1.The frequency of DE and PSSW modes does not apparently depend on composition x ,but damping of DE mode significantly on x and reaches the minimum as x ¼0.7.The efficient coherent excitation of DE spinwave exhibits the promising application of Co 2Fe 0.3Mn 0.7Al films in magnonic devices.VC 2013AIP Publishing LLC .[/10.1063/1.4838256]Cobalt-based full-Heusler ferromagnetic alloy films have a high Curie temperature and spin polarization,which are cru-cial for spintronic devices.It was already reported that mag-netic tunnel junction using cobalt-based full-Heusler films as electrodes showed a high tunnel magnetoresistance ratio and low switching current.1In addition,cobalt-based full-Heusler ferromagnetic alloy films also showed low damping.2–4Such properties make cobalt-based full-Heusler ferromagnetic alloy films become a promising material in magnonics,5,6where spin waves are utilized to transport,store,and process informa-tion.Consequently,the generation and manipulation of spin waves becomes vital in magnonics.Spin wave logic gates have been demonstared.7It has shown experimentally by Brillouin light scattering (BLS)that rich thermal spin wave modes existed in cobalt-based full-Heusler ferromagnetic alloy films,8,9such as Damon-Eshbach (DE)spin-wave and perpen-dicular standing spin-wave (PSSW)modes.However,the coherent excitation of such spin wave modes has been an open issue,and has not been reported yet.Liu et al.studied spin-wave dynamics in Co 2MnAl (Ref.3)and Co 2MnSi (Ref.4)films using all-optical time-resolved magneto-optical Kerr (TR-MOKE)spectroscopy with an external field applied in plane,and observed only uniform precession or Kittel mode,but did not DE and PSSW modes excited.In this Letter,we investigate the dynamics of spin waves in Co 2Fe 1Àx Mn x Al full-Heusler films using all-optical TR-MOKE spectroscopy.In contrast to previous in-plane field applied,here an external field is applied nearly normal to films.Multiple spin-wave modes,including DE and PSSW modes as well as an external field-independent spin wave mode,are observed simultaneously.The three spin-wave modes all can be excited in four samples with x ¼0,0.3,0.7,and 1,but DE spin wave is excited most effi-ciently.The frequency of spin wave modes is not apparently dependent on the composition x ,but damping significantly depends on x .The origin of external field-independent spinwave mode is deeply studied and ascertained.Efficient exci-tation of DE spin waves supports full-Heusler alloy films as a promising material in magnonic devices because DE spin wave is a propagating wave which enables information transmission.Four samples under study are 30nm thick Co 2Fe 1Àx Mn x Al films grown on GaAs (001)substrate by molecular-beam epi-taxy at the temperature of 160 C with x ¼0,0.3,0.7,and 1.All samples were capped with an aluminum layer of 2nm thickness to avoid oxidation.More details on the preparation and the magnetic properties of the samples can be found else-where.10The experimental setup for time-resolved polar Kerr measurement of spin wave dynamics was described in details elsewhere.11Laser pulses of 150fs from a Ti:sapphire regener-ative amplifier with a repetition rate of 1kHz at the central wavelength of 800nm are split into stronger pump and weaker probe whose the fluence ratio of pump to probe is larger than 30.The pump pulse is focused to a spot of 150l m in diameter on sample surface,while the focused spot of the probe is nearly half smaller than and is located at the centre of the pump spot.The polar Kerr rotation of the probe reflected from sample sur-face is detected by a balanced optical bridge and measured with the help of a lock-in amplifier,which is synchronized to an optical chopper that modulates the pump beam.The external magnetic field is generated by an electromagnet and applied nearly normal to films.Fig.1(a)shows the pump-induced magnetization dynamics of the sample,Co 2Fe 0.3Mn 0.7Al film,under differ-ent stationary external field (H ).One can see that obvious oscillations occur,that is spin waves,but the oscillations are not simply harmonic damping,which implies multiple spin-wave modes are excited simultaneously.One can also discern oscillatory period decreases with increasing external field,which shows the dispersion of spin waves that can be used to identify the type of spin waves.To obtain the disper-sion,it is necessary to achieve the spectrum of spin waves for different external field.The oscillatory component is first obtained by subtracting non-oscillatory component from the magnetization dynamics in Fig.1(a)and then is fast Fouriera)Authors to whom correspondence should be addressed.Electronic addresses:stslts@ and jhzhao@.0003-6951/2013/103(23)/232406/5/$30.00VC 2013AIP Publishing LLC 103,232406-1APPLIED PHYSICS LETTERS 103,232406(2013)transformed(FFT),while the non-oscillatory component is an exponential decay function which bestfits the magnet-ization dynamics and describes the recovery process of pump-induced demagnetization.In this way,FFT spectra corresponding to the spin waves in Fig.1(a)are obtained and plotted in Fig.1(b).It is obvious that three peaks occur in every FFT spectrum and shifted upward with external field except for the peak at$43.9GHz.The strength of peak weakens rapidly with the rise of frequency.The posi-tion of peak or the frequency of spin wave mode is read out and plotted in Figs.1(c)and1(d)by scattered points as a function of externalfield,which is just so-called the dis-persion of spin waves and will be exploited to identify these spin-wave modes.For the simplicity in description below,the three spin-wave modes are referred to as low-, middle-,and high-frequency modes in order of their fre-quency values.The theoretical dispersion relations of dipolar and exchange spin-wave modes in continuousfilms were estab-lished under arbitrary orientation of the internal magnetic field.12According to this theory,as H is applied nearly nor-mal to thefilm plane as here,the dispersion equation of dipole-interaction-dominated DE spin-wave mode reads(in CGS units)x2 DE ¼x2Hsin2hþx H x Msin h1Àcos2hkdð1ÀeÀkdÞþx2Msin2hkdð1ÀeÀkdÞÂ1À1kdð1ÀeÀkdÞ;(1)where d is the thickness offilms,k is the wavevector of DE mode,and M s is the saturation magnetization.x H¼c H sin/ and x M¼c4p M s.c is the gyromagnetic ratio.h and/are the angles of the direction of magnetization and external mag-neticfield with respect to the normal offilms,respectively.For exchange-dominated PSSW mode,its dispersion equation readsx2PSSW¼x Hsin hþx A n2xHsin hþx M sin2hþx A n2;(2)where x A¼c2A ex/M s(p/d)2,A ex is the exchange constant, and n is the index of PSSW mode.As n¼0,Eq.(2)reduces to the dispersion equation of the Kittel mode.In our experimental geometry,/is constant but h is changed with externalfield,and is determined by the follow-ing magnetization equilibrium condition:2H sinðhÀ/ÞÀ4p M s sin2h¼0:(3)Obviously,none of the three spin-wave modes is Kittel mode because the frequency of Kittel mode should approach to zero as externalfield reduces to zero.Wefirst try to best fit the dispersion(filled circles in Fig.1(c))of the low-frequency mode with Eqs.(2)and(3).The bestfitting is also plotted in Fig.1(c)by solid line.It looks tofit well. However,the parameters given by thefitting,such as A ex and M s,are much different from the experimental values reported.Furthermore,the dispersion curves of the second-(dotted line),third-(dashed line),and fourth-(solid line) order PSSW modes deduced by the bestfitting are also plot-ted in Fig.1(c).One can discern the fourth-order PSSW mode seems tofit the middle-frequency mode(open circles) well.However,it is not reasonable physically because the fourth-order PSSW mode is excited less efficiently than the second-and third-order PSSW modes.It is impossible that the fourth-order PSSW mode is observed but the second-and third-order modes can not.Therefore,the low-frequency mode is excluded as thefirst-order PSSW mode,while the middle-frequency mode as higher-order PSSW mode. Next,we try to bestfit the low-frequency mode with Eqs.(1) and(3).Thefitting is plotted in Fig.1(d)by green solid line. One can see thefitting is very well.More importantly,the fitting gives out reasonable parameters k¼2.58l mÀ1and M s¼900emu/cm3.The latter agrees well with the reportedFIG. 1.(a)Spin-wave dynamics ofCo2Fe0.3Mn0.7Al Heuslerfilm meas-ured by polar TR-MOKE spectroscopyunder a pumpfluence of$27mJ/cm2for different externalfields appliednearly perpendicular tofilm.(b)FFTpower spectra corresponding to the os-cillatory components in(a).The dataare amplified by20times in the rightside of the vertical line.(c)Scatteredpoints denote the externalfield de-pendence of three peaks in(b).Linesstand for bestfitting based on the dis-persion of PSSW mode.(d)The scat-tered points denote the externalfielddependence of three peaks in(b).Solidline is bestfitting with the dispersionof DE mode,and dashed line with theone offirst-order PSSW mode.Thesolid and dotted lines at43.9GHz arethe guide to eyes.value(1027emu/cm3)of Co2FeAlfilms,8while k¼2.58l mÀ1 is in the regime of dipolar-interaction-dominated spin waves.6 Therefore,we ascertain the low-frequency mode as DE spin-wave mode.We try to bestfit the middle-frequency mode with Eqs.(2)and(3),andfind the bestfitting can be obtained as n¼1.The bestfitting is plotted in Fig.1(d)by dashed line,and gives out parameters A ex¼2.13l erg/cm and M s¼890emu/cm3.The M s¼890emu/cm3agrees well with M s¼900emu/cm3given by thefitting of low-frequency mode,while A ex¼2.13l erg/cm is comparable to the reported A ex¼1.55l erg/cm of Co2FeAlfilms.8Therefore,we believe the middle-frequency being thefirst-order PSSW mode. Thefitting of two modes gives almost identical saturation magnetization M s that agrees well with the reported value, which further enhance the reliability to assign the low-and middle-frequency modes to DE and PSSW modes, respectively.To reveal the influence of composition(x)on the spin-wave modes,another three samples with x¼0,0.3,and1are also studied on their magnetization dynamics under different externalfields as described before.The oscillatory compo-nents are extracted as described before and then fast Fourier transformed.There are also similar low-,middle-,and high-frequency three peaks or spin-wave modes in every FFT spectrum for the three samples,and the low-and middle-frequency peaks are shifted upward with increasing external field,but the high-frequency peak at43.9GHz not shifted. The externalfield dependence of the frequency of the three modes is plotted in Figs.2(a),2(b),and2(d).Fig.1(d)is re-plotted as Fig.2(c).One can see they look very similar, showing that composition x does not apparently influence the frequency of spin-wave modes.The green solid lines show bestfitting to greenfilled circles with Eqs.(1)and(3),while blue dashed lines exhibit bestfitting to blue open circles with Eqs.(2)and(3)as n¼1.Thosefittings give out parameters M s¼1000,980,900,and740emu/cm3,and A ex¼2.2,2.39, 2.13,and1.69l erg/cm,respectively,for x¼0,0.3,0.7,and 1.M s decreases monotonously with increasing x,which is in good agreement with the prediction of Slater-Pauling rule of Co2-based Heusler compounds.13,14Slater-Pauling rule predicted that the magnetic moment M per formula unit is 5l B for Co2FeAl,while it declines to4l B for Co2MnAl. Based on the reported lattice constants,10the calculated val-ues of M s are1012,945,856,and789emu/cm3,respectively, for x¼0,0.3,0.7,and1,which agree very well with M s¼1000,980,900,and740emu/cm3given by bestfittings. This further supports our assignment on DE and PSSW modes.In our out-of-plane experimental geometry,DE and PSSW can be efficiently excited,but they could not be excited in in-plane geometry.3,4Main reason may be large precession angle allowed in our geometry under enough pump excitation.For large precession angle,the Landau-Lifshitz equation of motion is intrinsically nonlinear, which is helpful to pump energy into certain spin-wave modes by nonlinear interaction.15Furthermore,in the out-of-plane geometry,externalfield is applied perpendicularly tofilm plane,which is preferential for magnonic device applications because a strongfield is easily generated in a small gap which corresponds to the thickness of magnonic devices.Gilbert damping is a vital parameter for magnonic applications.It is necessary to reveal the composition(x)de-pendence of the damping of Co2Fe1Àx Mn x Alfilms.An exponential sum function,including a single exponential decay and three harmonic damping functions,yðtÞ¼P3k¼1A k expðÀt=T kÞsinð2p f k tþ/kÞþB expðÀt=T demÞ,is used to best fit all magnetization dynamics as plotted in Fig.1(a),where A k,T k,f k,and/k are the amplitude,lifetime,frequency,and initial phase of the k th spin-wave mode,respectively.B and T dem depict the amplitude and recovery time constant of pump-induced demagnetization,respectively.Partial signals (scattered points)in Fig.1(a)and their bestfittings (color solid lines)are plotted in Fig.3(a).One can see that the solid linesfit experimental points very well.Thefitting gives out the frequencies(f k)and lifetimes(T k)of three spin-wave modes.The frequencies are almost identical to ones depicted by FFT spectra.The lifetimes of low-frequency(DE)mode are plotted in Fig.3(b)by scat-tered symbols because DE spin wave is especially focused on in magnonic devices due to its propagating character, whereas the lifetimes of other modes are not shown here. One can see that the lifetime of DE mode is strongly depend-ent on composition x though the frequency of DE mode does not apparently depend on x.Gilbert damping a is calculated by the following formula:161a¼scH sin/sin hþ2p M s sin2h;(4)where s is the lifetime of spin waves,as shown in Fig.3(b).Based on Eqs.(3)and(4),the damping(a)of four sam-ples is calculated and plotted in Fig.3(c).One can see that a is significantly dependent on x but not on the externalfield, implying that the damping is mainly intrinsic because mainly extrinsic damping should apparently decrease with increas-ing externalfield.16One can also discern that a is changed non-monotonously with x and reaches the minimum ($0.006)as x¼0.7,which seems to be comparable to the case of Co2Fe1Àx Mn x Sifilms where a approaches to the min-imum($0.003)as x¼0.6.2FIG.2.Scattered points denote the externalfield dependence of three spin-wave modes in four Co2Fe1Àx Mn x Al samples with x¼0(a),0.3(b),0.7 (c),and1(d).Solid lines denote the bestfitting with the dispersion formula of DE mode,while dashed lines represent the bestfitting with the dispersion equation of PSSW mode.Dotted lines are the guides to eyes.Finally,the origin of the high-frequency mode at43.9GHz is discussed.One can see it appears in all four samples and is independent of externalfield,as Fig.2shows.Externalfield-independent spin-wave modes were reported in some patterned ferromagnetic microstructures,such as CoFeB antidote latti-ces,17where such a spin-wave mode was explained as localized spin-wave mode which is confined near the border of antidots. However,our samples have no patterned microstructure,but are continuousfilms.Consequently,the localized spin-wave or-igin of the mode at43.9GHz may be excluded.Another possi-ble origin is coherent acoustic phonon(CAP)in GaAs substrate.18It has been reported that femtosecond laser excita-tion to GaSb/GaAs heterostructure could generate CAP in GaAs substrate,where GaSb layer absorbed photon energy so that its lattice expansion led to strain acoustic wave traveling into GaAs substrate.In our experiment,Co2Fe1Àx Mn x Al layer absorbs photon energy,which may lead to CAP in GaAs sub-strates.The frequency of CAP can be calculated by the for-mula,f¼(2nV s cos b)/k,18where n is the refractive index of GaAs,V s is the propagating speed of CAP in GaAs at room temperature,b and k are the refraction angle in GaAs and wavelength of probe light,respectively.The calculated fre-quency of CAP is f¼43.75GHz for the parameters n¼3.7,19 V s¼4730m/s,20b¼0,and k¼800nm,and agrees excellently with43.9GHz,the frequency of high-frequency mode. Therefore,CAP is possible as the origin of the high-frequency mode at43.9GHz.To experimentally confirm the CAP origin of the high-frequency mode,we perform a transient photoreflectivity measurement because the transient photoreflectivity is sensi-tive to CAP.18We measure the transient differential photore-flectivity on the four samples under the same experimental geometry as Kerr measurement but the balanced optical bridge detectors are replaced by a single photodetector and polarization beamsplitter is removed.The oscillatory tran-sient differential reflectivity(D R/R)is indeed observed and similar in all samples.A set of typical D R/R measured on Co2MnAlfilm are plotted in Fig.4(a)for different external fields and pumpfluence.One can see that D R/R is sensitive to pumpfluence but insensitive to externalfields.The FFT spec-tra of D R/R are obtained as described before,and plotted in Fig.4(b).One can discern that a peak indeed occurs atFIG. 4.(a)Transient differentialreflectivity D R/R of Co2MnAlfilmunder different externalfields andpumpfluence.(b)FFT power spectracorresponding to(a).The verticaldashed line indicates the position of43.9GHz.FIG.3.(a)Partial spin-wave dynamicsin Fig.1(a)and their bestfittings withan exponential sum function.Thescattered points shows externalfielddependence of the lifetime(b)anddamping(c)of DE mode in four sam-ples with x¼0,0.3,0.7,and1.Solidlines are the guides to eyes.43.9GHz in FFT spectra,and is not shifted with pumpflu-ence and externalfield,but its strength is increased with pumpfluence.In contrast,DE and PSSW modes do not occur in Fig.4(b).Those phenomena reveal non-magnetic origin of the peak at43.9GHz or origin of CAP.In other words,we have confirmed experimentally that the high-frequency mode originates from CAP in GaAs substrate.In summary,all-optical pump-probe polar magneto-optical Kerr spectroscopy has been employed to investigate the spin-wave dynamics in Co2Fe1Àx Mn x Al Heuslerfilms excited by femtosecond laser pulses under the experimental geometry where an externalfield is applied nearly normal to films.DE and PSSW modes are observed simultaneously in all samples.It is found that the frequency of DE and PSSW modes is not apparently dependent on the composition x of the samples,but the damping of DE mode significantly on x. Minimum damping is observed as x¼0.7.An external field-independent mode at43.9GHz is also observed,and is confirmed experimentally to originate from coherent acous-tic phonon in GaAs substrate.Saturation magnetization and exchange constants of the four samples are obtained by best fitting.The former agrees well with theoretical prediction based on Slater-Pauling rule.This work was partially supported by National Natural Science Foundation of China under Grant Nos.11274399, 11127406,and61078027,National Basic Research Program of China under Grant Nos.2013CB922403,2013CB922303, and2010CB923200,and doctoral specialized fund of MOE of China under Grant No.20090171110005as well as NSF of Guangdong Province under Grant No.9151027501000077.1H.Sukegawa,Z.C.Wen,K.Kondou,S.Kasai,S.Mitani,and K.Inomata, Appl.Phys.Lett.100,182403(2012).2T.Kubota,S.Tsunegi,M.Oogane,S.Mizukami,T.Miyazaki,H. Naganuma,and Y.Ando,Appl.Phys.Lett.94,122504(2009).3Y.Liu,L.R.Shelford,V.V.Kruglyak,R.J.Hicken,Y.Sakuraba,M. Oogane,Y.Ando,and T.Miyazaki,J.Appl.Phys.101,09C106(2007).4Y.Liu,L.R.Shelford,V.V.Kruglyak,R.J.Hicken,Y.Sakuraba,M. Oogane,and Y.Ando,Phys.Rev.B81,094402(2010).5A.A.Serga,A.V.Chumak,and B.Hillebrands,J.Phys.D43,264002 (2010).6B.Lenk,H.Ulrichs,F.Garbs,and M.M€u nzenberg,Phys.Rep.507,107 (2011).7T.Schneider,A.A.Serga,B.Leven,B.Hillebrands,R.L.Stamps,and M. P.Kostylev,Appl.Phys.Lett.92,022505(2008).8O.Gaier,J.Hamrle,S.Trudel, A.Conca Parra, B.Hillebrands, E. Arbelo,C.Herbort,and M.Jourdan,J.Phys.D:Appl.Phys.42,084004 (2009).9T.Kubota,J.Hamrle,Y.Sakuraba,O.Gaier,M.Oogane,A.Sakuma,B. Hillebrands,K.Takanashi,and Y.Ando,J.Appl.Phys.106,113907 (2009).10K.K.Meng,S.L.Wang,P.F.Xu,L.Chen,W.S.Yan,and J.H.Zhao, Appl.Phys.Lett.97,232506(2010).11X.D.Liu,Z.Xu,R.X.Gao,H.N.Hu,Z.F.Chen,Z.X.Wang,J.Du,S. M.Zhou,and i,Appl.Phys.Lett.92,232501(2008).12B.A.Kalinikos and A.N.Slavin,J.Phys.C19,7013(1986).13G.H.Fecher,H.C.Kandpal,S.Wurmehl,C.Felser,and G.Scho€u nhense, J.Appl.Phys.99,08J106(2006).14S.Trudel,O.Gaier,J.Hamrle,and B.Hillebrands,J.Phys.D:Appl.Phys. 43,193001(2010).15B.Lenk,G.Eilers,J.Hamrle,and M.M€u nzenberg,Phys.Rev.B82, 134443(2010).16Z.Chen,M.Yi,M.Chen,S.Li,S.Zhou,and i,Appl.Phys.Lett. 101,222402(2012).17H.Ulrichs,B.Lenk,and M.M€u nzenberg,Appl.Phys.Lett.97,092506 (2010).ler,J.Qi,Y.Xu,Y.J.Cho,X.Liu,J.Furdyna,I.Perakis,T. Shahbazyan,and N.Tolk,Phys.Rev.B74,113313(2006).19D.Aspnes and A.Studna,Phys.Rev.B27,985(1983).20J.S.Blakemore,J.Appl.Phys.53,R123(1982).。
光通信中英文对照
![光通信中英文对照](https://img.taocdn.com/s3/m/61f287e180c758f5f61fb7360b4c2e3f57272562.png)
光通信中英文对照光纤:opticalfiber;fibergrating:光栅OFC:光缆GIF:渐变型光纤SIF:阶越型光纤DSF:色散位移光纤DCF:色散补偿光纤DFF:色散平坦光纤POF:塑料光纤(PlaticOpticalFiber)PCF:光子晶体光纤PANDA光纤:偏振保持光纤HNLF:高非线性光纤HCF:密封涂层光纤CCF:碳涂层光纤MCF:金属涂层光纤ECF:偏心光纤光纤阵列:fiberarray;FA;FABU;BFA光纤阵列模块:FiberArrayBlock(FAB)AWG:阵列波导光栅FBT:熔融拉锥Coupler:耦合器平面波导型光分路器:PLCplitter熔融拉锥光纤分路器:FuedFiberSplitterCW:连续Pump:泵浦Power:电源laercrytal:激光晶体PD:光电二极管LD:半导体激光器、激光二极管ILD:注入型半导体激光器LED:发光二极管LightEmittingDiodeDBR:分布式布拉格反射DFB:分布反馈DFB-LD:分布反馈式半导体激光器FP-LD:法布里-珀罗半导体激光器DSM-LD:动态单模半导体激光器SC:超连续光源(Supercontinuum)PA:前置放大器LA:线路放大器BA、PA:功率放大器OA:光放大器LNA:低噪声放大器OFA:光纤放大器SOA:半导体光放大器SRS:受激拉曼散射SRA(RFA):拉曼光纤放大器SBS:受激布里渊散射SBA:受激布里渊散射光纤放大器BRA(BFA):布里渊光纤放大器TDFA:掺铥光纤放大器(属掺杂稀土离子)EDFA:掺饵光纤放大器PDFA:掺错光纤放大器NDFA:掺铌光纤放大器IL:插入损耗RL:回波损耗EL:附加损耗TL:传输损耗PDL:偏振相关损耗BIL:弯曲附加损耗CR:分光比ER:消光比FL:均匀性PMD:偏振模色散、单模光纤中偏振色散EMB:有效模式带宽OFL:满注入带宽OM:光模式OpticalModeMFD:模场直径Iolator:隔离器Coupler:耦合器Connector:连接器Splitter:分路器Collimator:准直器Opticalwitch:光开关Attenuator:衰减器Modulator:调制器Filter:滤波器Receive:接收器OC:光载体、光纤载波CW:载波carrierwaveOLT:光缆终端设备、局端机房设备ODN:光配线网络ONU:光节点、光网络单元ONT:光网络终端OTN:光传送网OTM:光终端复用器OUT:光转发器OTU:波长转换器OSU:光用户单元O某C:光交换节点ODF:光纤配线架DDF:数字配线架OT:输出终端PCM:电端机CO:中心局3U:超高速、超大容量、超长距离OAN:光纤接入网LAN:局域网MAN:城域网高速短距离的光纤通信系统WAN:广域网Metronetwork:地下网路Ethernet:以太网Network:网络CUN:可持续网络NGN:下一代网络NPN:新公众网UN:一体化网ASON:自动交换光网络OAN:光接入网PON:无源光网络WDMPON:波分复用型无源光网络CDMAPON:码分多址型无源光网络PSPON:功率分割型无源光网络APON:BPON:宽带无源光网络BroadbandPONEPON:以太无源光网络EthernetPONGPON:吉比特无源光网络GigabitPONTDM:时分复用OTDM:光时分复用OADM:光分插复用(OpticalAdd-DropMultiple某er)CDM:码分复用FDM:频分复用WDM:波分复用Wavelength:波长Diviion:分开Multiple某er:多路(复用)器DWDM:密集波分复用CWDM:粗波分复用FWDM:滤波片式波分复用器HWDM:高隔离度波分复用器CDMA:码分多址(Code-diviionmultipleacce) SDMA:空分多址MU某:多路复用(multiple某)DEMU某:解复用(de-multiple某)GFF:增益平坦滤波器(gainflatteningfilter) bit:二进制位、比特Byte:字节、8位元组1字节=8比特bandwidth:带宽、频宽baud:波特率bp(bitperecond):bit/DFG:差频3R再生:再放大、再整形、再定时2R再生:再整形、再定时1R再生:再放大REG:再生器某GM:交叉增益调制某PM:交叉相位调制FWM:四波混频TOBPF:带通滤波器SPN::节点共享式SPL:链路共享式RZ:归零码NRZ:不归零码ASK:幅移键控FSK:频移键控PSK:相移键控IM-DD:强度调制-直接检测PC:偏振控制器OC:光环形器PBS:偏振分束器GEQ:增益平坦器MTBF:平均无故障时间matchgel:匹配液CamSplice:光纤接续子OTDR:光时域反射器ESA:激发态吸收DGD:微分群时延FTTH:光纤至U户FiberToTheHome FTTB:光纤到大楼FTTC:光纤到路边VOD:视频点播IPTV:即交互式网络电视CATV:有线电视网(采用模拟传输方式)Adapter:适配器connector:连接器Attenuator:衰减器Iolator:隔离器Tranceive:收发器Coupler:耦合器光耦合器(OC)FIC:快速连接头fieldintallableconnectorV-groove:V型槽Source:源lamp-houe:(仪器上的)光源PowerMeter:功率计Photoelectricdetector:光电探测器opticalwitch:光开关FVW:电子显微镜Adheive:胶粘剂OpticalAdheive:光学胶黏剂Setting:测试I/O:开/关Bare:赤裸BareFiber:裸纤RibbonFiber:带状光纤Looe:宽松Tube:管LooeTube:松套管Tight:紧的Buffer:缓冲层TightBuffer:紧缓冲层ingle:单dual:双Multi-mode多模Standard:标准torage:储存temperature温度lo:损耗Fan-Out:输出端Input:输入Output:输出Special:特殊的Other:其他TLC:泰尔认证ITU-T:国际电信联盟远程通信标准化组织IEC:国际电工委员会ISO:国际标准化组织GB/T:推荐性国家标准Package:包装Dimenion:尺寸Port:端口Type:类型Length:长度None:没有Si某-a某etage六维微调架Backtop:支架Fi某ing:固定Preciion:精密opticalpart:光学零件SidePull:侧拉LSZH:聚烯烃PE:聚乙烯PVC:聚氯乙烯Metal:属Steel:钢铁StainleSteel:不锈钢Platic:塑胶PMMA:亚克力或者亚加力、有机玻璃。
光频梳MENLOSYSTEM
![光频梳MENLOSYSTEM](https://img.taocdn.com/s3/m/3dc3f7bed4d8d15abe234efa.png)
Frequency Combs
FC1500-250-WG
FC1500-250-WG OptHale Waihona Puke cal Frequency Comb
Stabilized comb spectrum: 25 nm bandwidth at 1560 nm 250 MHz mode spacing
Optical Frequency Comb FC8003/4
Spin-Off, Max-PlanckInstitute of Quantum Optics
REVENUE
2016: Close to 100 employees
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 © 2016
permits intra-cavity feedback for fCEO with bandwidth > 1 MHz
Pump
Menlo patented figure 9® technology Environmentally stable all-PM fiber design Low amplitude and phase noise Stable laser operation in less than 60 seconds Reliable long term operation with single mode-locking state
• Search for variability of fundamental constants
Exo-earth around Sun-like star: With 1 yr period
武汉锐科光纤激光技术股份有限公司 20QS 30QS 激光器英文说明书
![武汉锐科光纤激光技术股份有限公司 20QS 30QS 激光器英文说明书](https://img.taocdn.com/s3/m/56e27049f02d2af90242a8956bec0975f465a435.png)
User Instruction RFL-P20QSRFL-P30QSWuhan Raycus Fiber Laser Technologies CO., Ltd.2021Safety InformationPlease read this instruction carefully and familiarize yourself with the information we have provided before you use the product. In this brochure, important operation procedures, safety and other information are provided for you and all future users. In order to ensure operatingsafely and optimal performance of the product, please do according to following warnings, cautions and other information.a)Raycus pulsed fiber laser is classified as a high power Class IV laser device. Beforesupplying the power to the device, please make sure that the correct voltage of 24VDCpower source is connected and the anode and cathode are right. Failure to connectpower source correctly will cause damage to the device.b)The device emits invisible 1060~1085nm wavelength light with average power 20W~30W. Do not expose your eyesor skin to the radiation of the laser.c)Do not take apart the device, because there are no replaceable accessories available forusers to use. Any maintenance can only be proceeded in Raycus.d)Do not look into the light output end directly. Use appropriate laser safety eyewearwhen operating the device.Safety labels and locationsThe two labels above is located on the top of the cover of the device, representing laser radicalization.Content1.Description (1)1.1.Product description (1)1.2.Actual configuration list (1)1.3.Environmental requirements and cautions (1)1.4.Specifications (2)2.Mounting (3)2.1Mounting dimensions (3)2.2Method of installation (3)3.Control Interface (4)4.Operation Regulations (6)4.1Pre-inspection (6)4.2Operation procedures (7)4.3Cautions (7)5.Instructions for warranty, return and maintenance (8)5.1General warranty (8)5.2Limitations of warranty (8)5.3Service and repairs (8)1.Description1.1.Product descriptionRaycus pulsed laser is an ideal high power laser source with high speed and high efficiency. It is specially designed for industrial laser making system and other applications.Compared with traditional lasers, pulsed laser has some unique advantages in increasing the conversion efficiency of the pump light 10 times higher.Its low power consumption and automotive design make it appropriate for operating both in and outside the lab. Besides, it is exquisite and convenient for its independence in placement, free time in using and facility in connecting to equipment directly.The device can emit 1060~1085nm wavelength pulsed light under the control of industrial laser’s standard interface driven by 24VDC power source.1.2.Actual configuration list1.3.Environmental requirements and cautionsPulsed laser should be driven by 24VDC±1V power source.a)Caution: Make sure the corresponding wires of the device are properly grounded.b)All the maintenance to the device should only be done by Raycus, because there is noreplacement or accessory provided with the device. Please do not try to damage thelabels or open the cover in order to prevent against electric shock, or the warranty willbe invalid.c)The output head of the product is connected with an optical cable. Please be carefulhandling the output head. Avoid dirt and any other contaminations. Please use thespecialized lens paper when cleaning the lens. Please lid the laser with protective coverof the light isolator to be against dirt only when the laser is not installed in the deviceor not in working.d)If the operating the device fails to follow this instruction, the protective function willbe weakened. Therefore, it should be used under normal conditions.e)Do not install the collimating device into the output head when the laser device is inworking.f)The device has three cooling fans at the rear panel to dissipate heat. In order toguarantee enough airflow to help giving heat off, there must be a space of at least10cm’s w idth for airflow in front and rear side of the device. As the cooling fans areworking at blow condition, if laser is mounted in a cabinet with fans, the directionshould be same as laser’s fans.g)Do not look into the output head of the device directly. Please do wear appropriatelaser safety eyewear during the time when operating the device.h)Make sure the pulse repetition rate higher than 30 KHz.i)For the longest time without pulse is only 100 us. If there is no pulse output, pleasestopmarking at once, to avoid further damage of the device.j)Power source sudden interruption will do great harm to the laser device. Please make sure the power supply works continuously.1.4.Specifications2.Mounting2.1Mounting dimensionsa)Fiber Laser module dimensions (As shown in Fig. 1).Figure 1. Dimension drawing of laser module(Unit: mm).b)Isolated output head dimensions (As shown in Fig. 2).Figure 2. Dimension drawing of output isolator (Unit: mm).2.2Method of installationa)Fix the module stable to the bracket and keep the laser in good ventilation.b) Connect the power line to 24VDC power and ensure enough DC output power.Keep itclear to the polarity of the electric current: anode-brown; cathode-blue; PE-yellow and green. The definition figure is shown in Fig. 3.Figure 3. Definition of power line wiresc) Make sure that the interface of the external controllermatches the laser and the controlcable is well connected to the laser ’s interface. The recommended electrical connection is shown in Fig. 4.L N GNDFigure 4. Schematic of recommended electrical connectiond) The bending radius of the delivery fiber should not less than 15cm.3. Control InterfaceThere are DB9 and DB25 interfaces at the rear of the laser. The DB9 is a RS232 interface only used for debugging, no needs to connect. And DB25 is the joint interface connecting control24V+GND24V-system with laser device, please make sure the connection is reliable before operating. Feet of the DB25 are defined as follows in Fig. 5.Figure 5. Connect port of controllera)The pump current of diode laser and the laser output power are controlled by settingthe value of PIN1-PIN8 (TTL level). PIN1-PIN8 can be set from 0~255,corresponding to the laser output power from 0~100%(the actual laser power maynot be strictly linear with the setting value). The relationship between PIN value andoutput power is shown in Table 4.b)PIN 17 is the external 5V input, providing power supply for alarm signal: inputcurrent >20mA.c)The external input signal (PIN 1-8, 18-20, 22) are connected to the optical couplerinside the system. Input voltage 3V-5V are defined as digital High, below 1V aredefined as digital Low. The input current should be above 2mA.d)Alarms status: Pins 11, 12, 16 and 21 are the alarm and status outputs which driven by+5V power from PIN 17. PIN 12 is reserved (always be high). These pins indicate thefollowing device states.e)PIN 10、13、14、15、24、25 are all digital GND.f)PIN 20 is the pulse repeating rate signal(PRR, TTL level). If the PRR need to bechanged during the work, it must be changed 5ms earlier than the EM signal turninginto high.g)PIN 22 is the guide laser (red diode)on/off signal. High level switch on the guide laserwhile low level switch off the guide laser.4.Operation Regulations4.1Pre-inspectiona)Make sure the device appearance is in good condition and the output fiber isneitherexcessively bended nor broken.b)Make sure signal line of laser and marking system are properly connected.4.2Operation proceduresa)Starting proceduresPlease make sure the controlsystem is on before you turn on the fiber laser. Only afterat least 1 minute since the power turned on, the subsequent operations can be preceded.b)Frequency set introductionsFor model P20QS, the frequency setting range is from 30KHz to 60KHz.For model P30QS, the frequency setting range is from 40KHz to 60KHz.c)Laser marking checkingFor the device initial testing, firstturn the power down to zero without turning on themarking system after the device is successfully started. Then draw a quadrate, markingcontinuously whileslowly increasing the power from zero to 100% at the same time.Meanwhile, use a ceramic material to observe the laser and the laser should becomestronger, otherwise shut down the device and check. If operating normally, themarking system can be used in common order afterwards.4.3Cautionsa)Marking frequency must be in the range of30~60 KHz for P20QS, 40~60 KHz forP30QS.b)It should not modulate the frequency while marking.Stop marking first before shutting down the device, then turn the power down to zeroand cut the power of.5.Instructions for warranty, return and maintenance5.1General warrantyAll products are warranted by Raycus against defects and problems in materials and workmanship during the warranty period according to the purchase order or specifications and we guarantee the product will accord with the specification under normal use.Raycus has the right to choose to repair or replace any product that proves to be defective in materials and workmanship selectively during the warranty period. Only products with particular defects are under warranty. Raycus reserves the right to issue a credit note for any defective products produced in normal conditions.5.2Limitations of warrantyThe warranty does not cover the maintenance or reimbursement of our productof which the problem results from tampering, disassembling, misuse, accident, modification, unsuitable physical or operating environment, improper maintenance, damages due to excessive use or not following the instructions caused by those who are not from Raycus.Customer has the responsibility to understand and follow this instruction to use the device. Any damage caused by fault operating is not warranted. Accessories and fiber connectors are excluded in this warranty.According to the warranty, client should write to us within 31days since the defect is discovered. This warranty does not involve any other party, including specified buyer, end-user or customer and any parts, equipment or other products produced by other companies.5.3Service and repairsRaycus is responsible for all the maintenance, for there is no accessory available inside for users to use. Please contact Raycus as soon as possible when problems under warranty about maintenance happen to the product. The product returned with permission should be placed in a suitable container. If any damage happens to the product, please notify the carrier in document immediately.All the items about warranty and service above provided by Raycus are for uses’reference, formal contents about warranty and service are subject to the contract.Wuhan Raycus Fiber Laser Technologies Co. Ltd.All Rights Recerved.。
【国家自然科学基金】_飞秒激光_基金支持热词逐年推荐_【万方软件创新助手】_20140731
![【国家自然科学基金】_飞秒激光_基金支持热词逐年推荐_【万方软件创新助手】_20140731](https://img.taocdn.com/s3/m/d9517541f7ec4afe04a1dfa6.png)
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
阳离子胶体金 阈值 镍-钛(niti)合金 锁相电路 锁相环 铌酸锂 钛宝石激光器 量子相干控制 量子点 重复率 通道长度 通道寿命 选择激发 进展 输运特性 载波包络相位 超连续辐射 超连续谱产生 超连续白光 超连续 超短脉冲激光 超热电子束 超快速测量 超快电子衍射 超强超短脉冲激光 负阻效应 谷间散射 解离 角色散 衍射光栅 蛋白质 虚拟实验室 薄膜靶 薄膜 荧光材料 荧光寿命成像 荧光 色散补偿 自适应脉冲整形 自启动锁模 能量相位关系 能谱 绝对频率测量 细胞标记 线性啁啾光谱散射 纳米加工分辨率 纳秒 粗糙度 稳频 稳定性 离化作用 神经活动 碰撞电离 相干渡越辐射
铕离子 铌酸锂 钛宝石激光器 钇铝石榴石 酸刻蚀 遗传算法 透过率 选通电脉冲 载流子动力学 转动波包 超连续谱产生 超快电子转移 超快电子衍射 超快时间分辨 超宽带飞秒激光 谐振腔 调谐 解离 角分布 表面形貌 补偿温度 衍射效率 虚拟示波器 虚拟仪器 荧光变化 色散 自聚焦 自相位涮制 自吸收 脉冲测量 脉冲整形 脉冲数字全息 脉冲压缩 能量特性 能量剩余系数 耦合常数 群速度色散 综述 细胞生物学 细胞手术 线性吸收谱 纳米波纹 纳米光纤 紫外飞秒激光 简并四波混频 等离子体波 空间色散 磁化翻转 硅酸盐玻璃 硅片 石墨 矩阵光学 相干控制 相对误差
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
【CN209619442U】双离子束共溅射纳米膜设备【专利】
![【CN209619442U】双离子束共溅射纳米膜设备【专利】](https://img.taocdn.com/s3/m/06db6d7bbe1e650e53ea9911.png)
(10)授权公告号 CN 209619442 U (45)授权公告日 2019.11.12
( 54 )实用新型名称 双离子束共溅射纳米膜设备
( 57 )摘要 本实 用新型公 开一 种双离子束共溅射 纳米
膜设备,包括:真空室、左右侧离子源、工件组件、 左右 侧靶台 、辅 源 、抽气 系统 、膜厚 测量 仪 等 组 成 。由 于 采 用二 个 溅 射 主 源 、二 个 靶台 、一 个 辅 源 ,可一直性安装最多八 种靶材 ,实现不破坏真 空的情况下连续溅射制备多层薄膜。同时由于有 辅源的存在,可在薄膜制备前对镀膜工件进行原 位剥离清洗,使得膜质吸附能力强、均匀性好、致 密、内应力小,薄膜质量大大提高。
3
CN 209619442 U
说 明 书
2/3 页
的情况下连续溅射制备多层薄膜。同时由于有辅源的存在,可在薄膜制备前对镀膜工件进 行原位剥离清洗,使得膜质吸附能力强、均匀性好、致密、内应力小,薄膜质量大大提高。
附图说明 [0018] 图1为本实用新型的双离子束共溅射纳米膜设备示意图。 [0019] 图中:1、真空室;2、右侧主源;3、左侧主源 ;4、工件组件;5、左侧靶台;6、右侧靶 台 ;7、辅源 ;8、抽气系统 ;9、膜厚 测量仪 ;21、右侧离子束 ;22、右侧沉积束 ;31、左侧离子束 ; 32、左侧沉积束;41、旋转轴;42、镀膜工件;71、辅源离子束;81、分子泵;82、机械泵;83、插板 阀 ;84、管路。
发明内容 [0005] 本实用新型的目的在于针对上述问题,提供一种双离子束共溅射纳米膜设备,以 实现多层高质量连续薄膜的共溅射沉积,膜质吸附能力强、均匀性好、致密、内应力小等优 点。 [0006] 为解决以上技术问题,本实用新型的技术方案是: [0007] 一种双离子束共溅射纳米膜设备,包括: [0008] 真空室,一种金属壳体,本底真空不低于1×10-5Pa。 [0009] 左侧离子源和右侧离子源,分别安装在所述真空室的左右上方,是一种聚焦离子 源,可产生聚焦的左侧离子束和右侧离子束。 [0010] 工件组件,安装在所述真空室的正上方,由电机驱动旋转轴,实现安装在所述旋转 轴下部的镀膜工件行星旋转。 [0011] 左侧靶台和右侧靶台,分别安装在所述真空室的左右中部位置,所述左侧离子束 和右侧离子束正好聚焦在左侧靶台和右侧靶台上表面。 [0012] 辅源,安装在所述真空室的正后下方,能发射平行或发散辅源离子束,对准镀膜工 件进行原位剥离清洗。 [0013] 膜厚测量仪,安装在镀膜工件位置的侧位,对沉积在所述镀膜工件上表面的薄膜 进行膜厚测量。 [0014] 抽气系统,安装在所述真空室的正下方,并与所述真空室连通,对真空室抽真空。 [0015] 所述左侧靶台和右侧靶台是水冷靶台。 [0016] 所述抽气系统由分子泵、机械泵、插板阀、管路组成。 [0017] 与现有技术相比 ,本实用新型所具有的有益效果为:由于采用左右侧二个溅射主 源、左右侧二个靶台 、一个辅源 ,可一直性安装最多八 种单 质或合金靶材 ,实现不破坏真空
欧姆龙推出弹性光波导膜
![欧姆龙推出弹性光波导膜](https://img.taocdn.com/s3/m/7a8646c218e8b8f67c1cfad6195f312b3169eb7b.png)
欧姆龙推出弹性光波导膜
佚名
【期刊名称】《上海化工》
【年(卷),期】2004(29)8
【总页数】1页(P43-43)
【关键词】欧姆龙公司;弹性光波导膜;光波导材料;丙烯酸类树脂;压印技术
【正文语种】中文
【中图分类】TQ320.73;TQ320.721
【相关文献】
1.硅基底萍膜波导在VLSI光互连中的应用研究 [J], 祖继锋;余宽豪
2.拜耳聚氨酯喷涂弹性体防水厚膜喷涂涂层系统应用成功/氰特推出改性UV固化环氧丙烯酸树脂/从生物农药到生物医药 [J],
3.杜邦太阳能光伏解决方案推出新型PV5200系列光伏组件封装膜 [J],
4.欧姆龙推出弹性光波导膜 [J],
5.欧姆龙推出新型住宅光伏逆变器配备无功功率控制功能 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厂家
IPG 我司集成 IPG 进口 中国 precitec precitec precitec Kuka 我司集成 我司集成 我司集成
数量
备注
含税单价(万元)
1
含一分二光闸
1
4
947
1
1
1
最大承载功率 20kW 62
1
最大承载功率 20kW 66
1
最大承载功率 6kW 37
1 89
1
1
80
1
2
2 MIRACLE MICRO
系统含税总价(人民币:万元)
注:1.报价为 17%含税价,到货地点为客户指定的国内主要城市
2.光纤激光器功率>15KW,最后配置型号根据出口许可证为准
3.付款方式:合同签订后付款 50%;发货前付款 50%
IPG flirx APT 我司集成 我司集成
2
1
30
1
138
1
17
3
12
1
干燥过滤压缩空气
5
1 MIRACLE MICRO
序 名称
号
1
光纤激光器
2
激光器用空调房
3
操作光纤
4
冷水机
5
稳压电源
高功率光纤输出准直头 6
(焊接头的准直部分)
7
激光定焦输出头(焊接头)
8
激光变焦输出头(切割头)
9
运动执行机构
10 机器人底座及拖链
11 控制系统
12 储气罐
1
高功率激光器系统报价
规格/描述
YLS-15000 定制 20m 长,300μm 芯径 与激光器配套 150kVA YW52 模块,含同轴 CCD YW52,含护镜污染监测报警功能, 焦距 600mm 标配,焦距范围:优于 300mm KR60 HA 标配 西门子 PLC/触摸屏 标配
202
13 出机配件及备品配件(易损件)
客户现场安装调试培训
许可证申请及利润 14
包装运输保险
售后服务一年质保(上门服务)
标配 / / / / 系统含税总价(人民币:万元)
我司集成
1
/
/
/
/
/
/
/
/
5 178 1466
以下为选配项
1
辅助激光器
2
温度监控系统
3
烟尘净化装置
4
变相管C 6530sc 4000m³/h 风量 可覆盖波长 1064nm,1070nm,1319nm 标配