空气悬架设计计算说明书

合集下载

空气悬架设计使用说明书chinese

空气悬架设计使用说明书chinese

图 1.1-4 此类空气悬架为全空气悬架系统,适用于大型公路客车后悬,采用两根纵向推力杆,两 根斜向推力杆的四连杆结构,四气囊,四根减震器,一根横向稳定杆(图 1.1-4),左、右 各有一只高度阀(图上未画出)。气囊、减振器、高度阀可选用进口或国产件。
中国公路车辆机械有限公司
第 5 页 共 24 页
中国公路车辆机械有限公司
第 6 页 共 24 页
精瑞系列空气悬架产品使用说明书
b. 中型公路客车前空气悬架系统
图 1.1-7 此类空气悬架为全空气悬架系统,适用于中型公路客车前悬,采用两只气囊总成加钢板 导向臂结构,气囊布置在大梁外侧,两根减震器,一根横向稳定杆(图 1.1-7),中间一只 高度阀(图上未画出)。气囊、减振器、高度阀总成可选用进口或国产件。 c.中型公路客车后空气悬架系统
精瑞系列空气悬架产品使用说明书
e.大型公路客车后空气悬架系统
图 1.1-5 此类空气悬架为全空气悬架系统,适用于大型公路客车后悬,采用两根纵向推力杆,一 根 V 型推力杆的四连杆结构,四气囊(图 1.1-5),四根减震器,左、右各有一只高度阀(图 上未画出)。气囊、减振器、高度阀可选用进口或国产件。
中国公路车辆机械有限公司
第 4 页 共 24 页
精瑞系列空气悬架产品使用说明书
c.大型公路客车前空气悬架系统
图 1.1-3 此类空气悬架为全空气悬架系统,适用于大型公路客车前悬,采用两根纵向推力杆,一 根 V 型推力杆的四连杆结构,两气囊,两根减震器,一根横向稳定杆(图 1.1-3),一只高 度阀(图上未画出)。气囊、减振器、高度阀可选用进口或国产件。 d.大型公路客车后空气悬架系统
3.产品的设计符合国情,适应恶劣路况能力强。在结构布置中避免应力的集中;零部 件设计避免了使用中易产生不良响声的结构;

空气悬架计算书-完整版

空气悬架计算书-完整版

空气悬架计算书-完整版SR6906TH空气悬架计算书编制/日期:审核/日期:批准/日期:技术中心九米团体车空气悬架计算书一、稳定性计算一)、纵向稳定性汽车的纵向稳定性即保证汽车上坡时不致纵向翻车,其条件为:L2/hg>ψ式中:L2—汽车质心至后轴距离hg—汽车质心高ψ—道路附着系数,取ψ=0.7L2/hg=1466.7/1297 =1.13>0.7满足条件。

因L1>L2,故汽车下坡时也不会纵向翻车。

二)、横向稳定性1.侧倾稳定角β=arctg(B/2hg)式中:B—汽车前轮距根据GB7258-2017《机动车运行安全技术条件》的规定,乘客区满载、行李舱空载,最大侧倾稳定角不允许小于28°空载时:β=arctg(B/2hg)= arctg(2078÷(2×1237))=40°>35°满载时:β=arctg(B/2hg)= arctg(2078÷(2×1297))=38.7°>28°以上计算结果可以看出,SR6906TH客车不仅空载,即使满载也完全满足侧倾稳定角的要求。

2.汽车在横坡上行驶时应保证侧滑发生在侧翻以前即:B/(2hg)>ψ空载时:B/(2hg)= 2078÷(2×1237)=0.84 >0.7满载时:B/(2hg)= 2078÷(2×1297)=0.81 >0.7由此可见,SR6906TH客车可以保证侧滑发生在侧翻以前。

二、侧倾计算一)用整车原始数据及其符号二)悬架刚度的计算1.满载时单边簧上负荷(N )8.92-=uG G P 式中:G 为轴荷,G u 为非簧载质量三)前悬架系统布置前悬架装单只高度阀,空气弹簧的安装高度为260mm,车轮中心至车架下平面距离为175mm 。

1.垂直工况的核算1.1.由于采用全空气悬架系统,选用1007K1161205气囊(带腹腔),空气弹簧承受全部垂直负荷。

空气悬架系统的设置介绍

空气悬架系统的设置介绍

空气悬架系统的设置介绍空气悬架系统设置的实质,是选择空气弹簧的弹性、减振器的阻尼力以及车身的高度,以达到安全和舒适性要求。

下面以奥迪汽车装备的空气悬架系统为例予以说明。

1.车身高度几个数据的测量各车桥的规定高度分别存储在控制单元中,首先测量与车身高度有关的几个数据。

①高度x:指车轮中心至挡泥板中部下边缘的距离,单位为mm。

②尺寸a:指轮辅的直径。

③尺寸b:指轮辆上边缘至挡泥板中部下边缘的距离。

然后根据公式x=a/2+b计算车身的高度。

奥迪汽车标准车身高度数值为前桥386mm,后桥384mm(各车型可能有区别)。

奥迪汽车在拆卸和安装悬架控制单元J197之后,必须对可调式空气悬架系统重新编码,然后匹配车身高度的默认位置。

2.悬架工作模式的设置方法以奥迪汽车为例,首先按下控制面板上的“CAR”键,调出MMl 显示屏上的可调式空气悬架系统菜单,然后转动操纵杆,并且按下按钮,就可以设置所需要的悬架模式。

当前模式用白色高亮显示。

当升高或降低悬架时,调整方向用白色的上箭头或下箭头表示。

由于故障或系统限制不允许选择的模式用灰色显示。

(1)自动模式(正常车身高度)。

减振器的特性将调整到本车的最佳状态。

当车速高于120km/h (在高速公路上)时,汽车的车身高度在30s内自动降低l5mm;当车速低于70km/h时,2min后车身高度自动升高,或者在车速低于35km/h时立即降低。

(2)舒适模式(正常车身高度)。

减振器的特性将调整到舒适状态,不执行高速公路降低车身高度功能。

(3)动态模式。

车身高度比正常高度低15mm,减振器自动调整为运动型配置,没有高速公路降低车身高度功能。

(4)野地模式(又称为“模式”)。

当汽车在崎岖不平路面上(例如田间道路)行驶时,可以选择野地模式。

(5)高位模式(又称为“提升模式”)。

3.空气弹簧的放气与充气空气弹簧的放气与充气必须在汽车静止的状态下进行,而且故障存储器中不得有故障信息。

具体操作方法如下:连接专用诊断仪,进入空气悬架系统,选择04功能“基本设置”,然后进入下列显示组一—显示组20:储压器放气;显示组21:前桥放气;显示组22:后桥放气;显示组23:储压器充气(最大压力1.6MPa);显示组24:前桥空气弹簧充气;显示组25:后桥空气弹簧充气。

悬架系统设计计算说明书

悬架系统设计计算说明书

1 悬架概述及悬架方案选定1.1 悬架的要求悬架的主要任务是传递作用在车轮和车架(或车身)之间的一切力和力矩,并且缓和路面传给车架(或车身)的冲击载荷,衰减由此引起的承载系统的震动,保证汽车行驶的平顺性;保证车轮在路面不平和载荷变化时有理想的运动特征;保证汽车的操纵稳定性,使汽车获得高速行驶能力。

悬架由弹性元件、导向装置、减震器、缓冲块和横向稳定器等组成。

导向装置由导向杆系组成,用来决定车轮相对于车架(或车身)的运动特性,并传递出弹性元件传递的垂直力以外的各种力和力矩。

当用纵置钢板弹簧弹性元件时,它兼起到导向装置的作用。

缓冲块用来减轻车轴对车架(或车身)的直接冲撞,防止弹性元件产生过大的变形。

装有横向稳定器的汽车,能减少转弯行驶时车身的侧倾角和横向角所引起的震动[2]。

在对此电动车的设计中,对其悬架提出的设计要求有:(1)保证汽车有良好的行驶平顺性[3];(2)具有合适的衰减振动能力;(3)保证汽车具有良好的操纵稳定性;(4)汽车制动或加速时要保证车身稳定,减少车身纵倾;转弯时车身侧倾角要合适;(5)有良好的隔声能力;(6)结构紧凑、占用空间尺寸要小;(7)可靠地传递车身与车轮之间的各种力和力矩。

1.2 方案确定要正确的选择悬架方案和参数,在车轮上下跳动时,使主销的定位角变化不大、车轮运动与导向机构运动压迫协调,避免前轮摆振;汽车转向时应使之稍有不足转向特性。

此电动车悬架部分结构形式选定为:(1)前悬采用麦弗逊式(滑柱连杆式)独立悬架(2)后悬采用对称式钢板弹簧(无副簧)2 悬架结构形式分析2.1 悬架的分析悬架可分为非独立悬架和独立悬架两类。

非独立悬架的结构特点是左右车轮用一跟整体轴连接,再经过悬架与车身(或车身)连接,如图3.1(a)所示;独立悬架的结构特点是左右车轮通过各自的悬架与车架(或车身)连接,如图3.1(b)所示[4]。

以纵置钢板弹簧为弹性元件兼做导向装置的非独立悬架,其主要优点是结构简单,制造容易,维修方便,工作可靠。

越野车空气悬架控制系统设计说明书1.2

越野车空气悬架控制系统设计说明书1.2

越野车空气悬架控制系统设计说明图3.1空气悬架电子控制系统空气悬架电子控制系统如图3.1所示,系统由空气弹簧、蓄能器、空气压缩机、充放气分配阀、控制器、车高传感器等构成。

能够实现车高的不同档位的调节,越野路况下,可以将车高升至最高,从而提高车辆的越野通过能力,在良好路况下,可以将车高降至最低,从而利于高速行驶的安全性。

目前空气悬架系统只考虑了车姿的升降功能,还未有行驶中防侧翻的功能。

控制器设计时考虑到了功能拓展,在传感器采样通道兼容电压与电流采样功能,在频率量采样通道兼容频率量与开关量采样功能。

3.1控制系统的设计采用MC9S12XEP100单片机,负责采集传感信号,实现CAN总线通讯,输出信号控制输出电路。

由频率量采样电路、模拟量采样电路、驱动电路、CAN总线通讯电路组成,通讯速率250kps。

图3.2硬件系统原理频率量采样电路实现对转速、空气流量传感器等具有脉冲输出的功能信号的采集,同时也能实现对开关信号的采集。

模拟量采样电路可以实现对开关信号的采集,也能实现对方向盘转角、车高角位移、气压、气温等传感器信号的采集。

驱动电路实现对气泵电机继电器的通断控制、悬架充放气阀件的控制。

CAN总线接口电路实现与整车总线的连接,采集车姿指令信息、当前车速信息、行驶操纵信息等信号;实现数据的上传;实现软件升级下载。

1.供电电路设计图3.3供电电路设计设定车载供电为24V,电压波动范围是16V至32V。

如果车载供电电压为12V,则将LM2937-12的输入与输出短接即可。

在此电路设计中增加输入电压钳位保护,利用SMCJ36A将输入电压保护在36V以下,实现对LM2575的保护;利用SMAJ6.0A将单片机工作电压保护在6V以下,防止在调试时操作不当,由于电压过高损坏单片机。

车载传感器可由VCC或+12VDC供电。

2.CAN总线电路设计图3.4CAN总线电路设计相对而言,PCA82C251相对其它芯片TJA1050、TJA1040、具有更广范围的供电电压,因此选用82C51。

KLQ6129Q后空气悬架设计说明书

KLQ6129Q后空气悬架设计说明书

BMR0509系列空气后悬架系统设计说明书悬架是连接车身和车轮之间一切传力装置的总称,主要由弹簧(如钢板弹簧、螺旋弹簧、空气弹簧、扭杆等)、减振器和导向机构三部分组成。

当汽车在不同路面上行驶时,由于悬架系统实现了车身和车轮之间的弹性支承,有效地降低了车身与车轮的振动,从而改善了汽车行驶的平顺性和操纵稳定性。

本文设计的是BMR0509系列空气后悬架系统。

具体型式为:4气囊小H型臂4连杆非独立后驱动桥空气悬架结构,装有双向作用的液压筒式减震器、横向稳定杆、高度调节阀。

可与公安、湖桥、东风桥、襄桥、东风杭汽桥等匹配。

本论文对空气悬架的发展历史结构,组成和基本工作原理进行了综述,讨论了空气悬架的刚度特性,有效面积特性,频率特性以及其影响因素,提出空气,并且指出了空气悬架的关键技术和今后的发展动向。

一、空气悬架发展历史30年代初,美国法尔斯通轮胎和橡胶公司第一次真正把空气弹簧用于汽车工业。

哈维?法尔斯通在其好友亨利?福特一世和托马斯阿瓦?爱迪生的技术支持下,研制出了空气柱形式的空气弹簧悬架系统。

于是在1934年就诞生了AIREDE空气弹簧。

1938年,通用汽车公司对在其客车上安装空气弹簧悬架系统发生兴趣。

他们与法尔斯通公司合作,于1944年进行了首轮试验。

试验报告结果清楚地揭示了空气悬架系统的内在优越性。

经过几年产品研制开发的大量工作之后,终于在1953年开始生产装有空气悬架的客车,这是商用汽车采用空气弹簧的开始。

50年代中叶,固特异轮胎和橡胶公司研制出了一种滚动凸轮式空气弹簧,凸轮在活塞的型面上滚动,从而控制空气弹簧的负载变形关系曲线。

由于有这些研究成果和技术发展,今天北美洲公路上行驶的几乎所有客车、绝大多数8级载货车和架车都采用了空气悬架系统。

当然,空气悬架控制系统的巨大进步也为空气悬架弹簧的应用起了不小推动作用。

随后不久,空气悬架很快在欧洲发展并盛行起来。

但欧洲发展商用汽车空气悬架所走的道路与北美有些不一样。

17-4.5空气悬架、油气弹簧设计

17-4.5空气悬架、油气弹簧设计

17-4.5空⽓悬架、油⽓弹簧设计4.5空⽓悬架、油⽓弹簧设计4.5.1空⽓悬架的设计空⽓悬架多应⽤于各类⼤型客车和⽆轨电车上,在⾼级轿车、长途运输重型载货汽车和挂车上也有所采⽤。

其弹性元件是由夹有帘线的橡胶囊或膜和冲⼊其内腔的压缩空⽓所组成。

这种悬架除弹性元件、减振器和导向机构外,⼀般还装有车⾝⾼度调节装置。

由于空⽓弹簧可以设计得⽐较柔软,因⽽空⽓悬架可以得到较低得固有振动频率,同时空⽓弹簧的变刚度特性使得这⼀频率在较⼤的载荷变化范围内保持不变,从⽽提⾼了汽车的⾏驶平顺性。

空⽓悬架的另⼀个优点在于通过调节车⾝⾼度使⼤客车的地板⾼度和载货汽车的货箱⾼度随载荷的变化基本保持不变。

此外,空⽓悬架还具有空⽓弹簧寿命长、质量⼩以及噪声低等⼀些优点。

空⽓悬架的不⾜之处在于:结构复杂,与传统的钢制弹性元件相⽐,需要增加压⽓机、车⾝⾼度调节器以及⽓阀等零部件;价格昂贵;空⽓弹簧尺⼨较⼤,不便于布置;需要专门的导向机构传递侧向⼒、纵向⼒及制动、驱动⼒矩。

正是由于这些原因,普通轿车上很少采⽤空⽓悬架。

戴姆勒—奔驰公司仅在其最⾼档的600系列轿车上才装有空⽓悬架。

按照结构特点,空⽓弹簧可以分为囊式和膜式两⼤类。

囊式空⽓弹簧结构相对简单,制造⽅便,但刚度较⾼,因⽽常⽤于⼤型客车、⽆轨电车和载货汽车,并且常配有辅助⽓室以降低弹簧刚度。

膜式空⽓弹簧刚度⼩,适合于⽤作轿车悬架,但同等空⽓压⼒和尺⼨下其承载能⼒⼩,并且动刚度会增⼤。

图4-17如图4—17所⽰,当在充满⽓体的空⽓弹簧上作⽤外⼒P 后,会引起弹簧的微⼩变形df ,相应的⽓体容积变化量为dV 。

由于囊壁变形所做的功与外⼒所作的功相⽐可以忽略,因⽽外⼒作的功Pdf 等于⽓体受压作的功dV p p a )(-dV p p Pdf a )(-= (4-39)式中p ——弹簧内空⽓的绝对压强;a p ——⼤⽓压强。

k ——⽓体常数,当汽车载荷缓慢变化时,弹簧内空⽓状态的变化接近于等温过程,可取k =1;当汽车在⾏驶过程振动时,弹簧内空⽓状态的变化接近于绝热过程,可取k =1.4;实际计算时,通常取k =1.2~1.4。

空气悬架设计

空气悬架设计

进行干涉量校核的零部件有:转向纵拉杆、转向横拉杆(对于独立悬架)、传动轴、空气弹簧活塞底座
等。为了减小干涉量,悬架导向杆系的当量杆与上述零部件的布置应依次遵循下列三原则:
a) 固定端同向。
b) 杆向平行。
c) 杆长相等。
推力杆的长度推荐长度在550--650mm之间,长度尺寸偏差1mm,杆直径公差IT13级,两端回转接头
参数。
R 设计完成输出:悬架系统装配图和零件图,总成物料明细,签订新增关键外购件技术协议。对关键件
如空气弹簧、高度阀、减震器、推力杆和 C 型梁指定供应商。
n 4.4 设计过程的节点控制要求 U 前期准备,方案布置,设计计算,绘制总成图,分解零部件图,汇总零部件明细,运动校核。
5 布置要求
根据总布置方案、车架结构尺寸、车桥结构尺寸确定空气悬架的布置方案。如果空间允许,空气弹 簧的左右中心距尽量放大,提高横向稳定性。前悬架保证主销后倾角、后悬架保证主减速器倾角与总布 置要求一致。要确保在整个空气弹簧行程中无锐边接触弹性元件。空气弹簧周围空间的直径必须保证比 空气弹簧本身的最大外部直径多 25mm,以允许由于错位而产生的直径正常变大或变形。
在较好路面而且停放在平地上的大、中型客车
is 7.4.3 五阀:对于特大型的铰接式客车,一般采用前 1 中 2 后 2 的布置,也有采用前 2 (独立悬架)
中 1 后 2 的布置。 7.4.5 高度控制阀的安装:高度控制阀水平摆臂的臂长应³200 mm,臂端与柔性接头相连,可上下调
GB/T 3730.2 道路车辆质量词汇和代码
R GB/T 3730.3 汽车和挂车的术语及其定义 车辆尺寸
GB/T 13061 汽车悬架用空气弹簧 橡胶气囊
n QC/T 491-1999 汽车筒式减振器 尺寸系列及技术条件 U JX/T 1658-2002 吉象空气悬架设计评审技术条件

悬架系统设计计算书

悬架系统设计计算书

前悬架 0.17
0.43
0.3
后悬架 0.2
0.4
0.3
2 减振器阻尼系数δ的确定
减振器的阻尼系数δ为:
式中: C——为悬架刚度(N/mm);
m——满载簧载质量(kg)。 ω——为悬架固有(圆)频率
(rad/s);
2 c m 2m
在悬架中减振器轴线与垂直线成一定的夹 角α时,如下图,减振器阻尼系数为
弹簧钢丝直径为:d
8.0mm
3、侧倾计算
3.1、整车侧倾角刚度
侧倾刚度是指在侧倾角不大的饿情况下,车身倾斜单位角度所必需的力矩,根据汽车工程手册P79 加速度为0.5g时,车身的侧向角为2.5o来计算悬架的刚度。整车的侧倾示意图如下:
如上图所示,簧上质量质心所在横向平面内的侧倾轴到地面的高度为h,前后悬架的侧倾角刚度分 心高度为h1 后悬架的侧倾中心高度为h2,簧上质量为m,,侧向加速度为μ,质心到前后轴的距离为L
c/m
2m i2 cos2
式中: i——杠杆比;i=n/a ——减振器安装角; ω——为悬架固有(圆)频率;
m——满载单侧簧载质量(kg)
根据前后悬架减振器的布置形式简化为双 横臂的形式,以下各参数取值如下:
M(kg/满载单侧)
悬架刚度(N/mm)
n (次/分) i
()
a(rad)
悬架固有(圆)频率ω
h
h1
L1
L1 L2
(h2
h1 )
簧上质量质心所在横向平面内的侧倾轴到 地面的高度 h mm
h1 10.69
31.74942761
h2 57.45
绕侧倾轴的力矩平衡为
m (H h) cos G (H h) sin (Kf Kr )

空气弹簧悬挂的设计与计算

空气弹簧悬挂的设计与计算

空气弹簧悬挂的设计与计算空气弹簧悬挂是一种基于空气弹簧原理设计的悬挂系统,广泛应用于汽车、摩托车、铁路车辆以及工程机械等领域。

它通过利用空气的弹性特性来提供车辆的悬挂支撑和减震功能,有效改善了行驶中的舒适性和稳定性。

设计空气弹簧悬挂系统首先需要考虑的是悬挂系统的工作原理和结构。

一般来说,空气弹簧悬挂系统由气囊、气泵、阀门和控制系统组成。

气囊是承受车辆荷载的主要部件,它通过充气和放气控制来实现悬挂高度的调整。

气泵负责提供气囊所需的气压,而阀门用于控制气压的流动。

控制系统则根据车辆的状态和行驶条件,通过调节气泵和阀门的工作来达到理想的悬挂效果。

在设计空气弹簧悬挂系统时,需要根据车辆的负荷、行驶速度和路况等因素进行综合考虑。

首先,需要确定车辆的总负荷,包括车辆自身重量以及乘客和货物的重量。

根据负荷的大小,可以选择合适的气囊尺寸和气囊数量,以确保悬挂系统能够有效支撑车辆的重量。

需要考虑车辆的行驶速度。

当车辆以较高速度行驶时,悬挂系统需要具备较高的刚度和减震性能,以保证车辆的稳定性和安全性。

因此,在设计空气弹簧悬挂系统时,需要选择合适的气囊和阀门,以实现悬挂刚度的调节和减震效果的优化。

还需要考虑车辆行驶过程中的路况变化。

不同的路况对悬挂系统的要求也不同。

例如,在起伏不平的路面上,悬挂系统需要具备较高的柔软性,以吸收和减缓道路表面不平度对车辆的冲击。

而在平整的高速公路上,悬挂系统则需要具备较高的刚度,以保证车辆的稳定性和操控性。

在计算空气弹簧悬挂系统的设计参数时,可以利用数学模型和仿真软件进行辅助。

数学模型可以通过建立悬挂系统的动力学方程,考虑车辆的质量、弹簧刚度和减震器等参数,来分析和预测悬挂系统的工作性能。

仿真软件则可以通过模拟车辆在不同行驶条件下的悬挂系统工作情况,来评估设计方案的可行性和优劣性。

在实际应用中,空气弹簧悬挂系统还可以与其他悬挂系统相结合,以进一步提高车辆的悬挂性能。

例如,可以将空气弹簧悬挂系统与液压悬挂系统相结合,以实现悬挂刚度和减震效果的双重调节。

计算说明书_悬架系统

计算说明书_悬架系统

悬架系统1.整车有关参数1.1 轴距:L=2610mm1.2 轮距:前轮B1=1530mm后轮B2=1510mm1.3 轴荷(kg)1.4 前后轮空满载轮心坐标(Z向)1.4 前、后悬架的非簧载质量(kg):G u1=108kg G u2=92kg1.5 悬架单边簧载质量(kg)悬架单边簧载质量计算结果如下:前悬架:空载单边车轮簧载质量为M01=(795-108)/2=343.5kg 半载单边车轮簧载质量为 M03=(872-108)/2=382kg满载单边车轮簧载质量为M02=(891-108)/2=391.5kg 后悬架:空载单边车轮簧载质量为M1=(625-92)/2=266.5kg半载单边车轮簧载质量为M3=(773-92)/2=340.5kg满载单边车轮簧载质量为M2=(904-92)/2=406kg2、前悬架布置前悬架布置图见图1图1 T21前悬架布置简图3、前悬架设计计算3.1 前悬架定位参数:3.2 前悬架采用麦弗逊式独立悬架,带稳定杆,单横臂,螺旋弹簧,双向双作用筒式减震器。

(1) 空满载时缓冲块的位置和受力情况 空载时,缓冲块起作用,不受力 满载时,缓冲块压缩量为13.8mm ,(由DMU 模拟得知,DMU 数据引自T21 M2数据)。

根据缓冲块的特性曲线,当缓冲块压缩13.8mm 时,所受的力为:125N (2) 悬架刚度计算螺旋弹簧行程杠杆比:1.06悬架刚度为K 1= ((391.5-343.5)*9.8-125/1.06)/(5-(-15))= 17.62N/mm(3)前螺旋弹簧①截锥螺旋弹簧②螺旋弹簧行程杠杆比:1.06③刚度C1=K1*(1.06)2*0.9=17.62*(1.06)2*0.9=17.81N/mm(4)静挠度和空满载偏频计算空载时挠度 f 1= N 1/K 1=( M 01*9.8)/K 1=(343.5*9.8)/17.81=18.9cm静挠度 f 01= f 1 +(5-(-15))/10=20.9 偏频n: 空载为 Hz f n 15.19.18/5/511=== 满载为 Hz f n 09.19.20/5/50101===结论:前悬架偏频在1.00~1.45Hz 之间,满足设计要求。

汽车囊式空气悬架的设计

汽车囊式空气悬架的设计

题目:载货汽车囊式空气悬架的设计班级:汽车06-1学号:姓名:指导教师:完成日期: 2009-01-07一、设计题目(学生空出,由指导教师填写)重型载货汽车囊式空气悬架的设计二、设计参数针对某型42重型载货汽车进行空气悬架的设计。

该车的满载总质量为15t,前轴的轴载质量为6000kg,后轴的轴载质量为9000kg,轴距为4500mm,前轮距为1900mm,后轮距为1800mm,车轮静力半径450mm,满载时整车中心高度为1000mm。

三、设计要求(1)总装图1张(2)零件图1张(3)原理图1张(4)课程设计说明书(5000~8000字)1份四、进度安排(参考)(1)熟悉相关资料和参考图2天(2)确定基本参数和主要结构尺寸2天(3)设计计算3天(4)绘制总装配草图4天(5)绘制总装配图2天(6)绘制零件图2天(7)编写说明书3天(8)准备及答辩3天五、指导教师评语成绩:指导教师日期摘要悬架是现代汽车的重要总成之一,它把车价和车轴弹性地结合连接起来。

主要任务是传递作用在车轮和车架之间的一切力和力矩;缓和路面传给车架的冲击载荷,衰减由此引起的承载系统的振动,保证汽车的行驶平顺性;保证车轮在路面不平和载荷变化时有理想的运动特性,保证汽车的操纵稳定性,使汽车获得高速行驶能力。

悬架由弹性元件、导向装置、减震器、缓冲块和横向稳定器等组成,囊式空气弹簧是弹性元件其中一种,它含有帘布层结构的橡胶气囊内冲入空气,并以空气为介质,利用空气可以压缩的特点来实现弹性作用。

通过高度控制阀,来保证车身高度不随汽车载荷变化而变化,保证汽车的平顺性和稳定性。

关键词:悬架;囊式空气弹簧;减震器;高度控制阀AbstractModern automobile suspension is one of the important assembly line and axle, it connects with flexibility. Main task is to transfer function between the wheel and frame of all the force and moment, To ease the impact load road frame, the attenuation caused by the vibration, guarantee system of bearing of vehicle, Ensure the road wheels rough and load changes have ideal characteristics, cars, cars won maneuvering high-speed capability.Suspension of elastic component, guiding device, shock absorber, transverse stabilizer blocks and a buffer, cystic components, such as air spring flexible components, it contains one layer structure of air curtain inside irruptive air, rubber and air as medium, the characteristics of air can be compressed to achieve flexibility.Through the height valve body height, to ensure that no changes with the automobile loading, guarantee the stability and car ride.Key words:Suspension, Capsule type air spring, Shock absorber, height control valve目录1悬架 (1)1.1悬架的功用 (1)1.2悬架的分类 (1)1.2.1.1独立悬架 (2)1.2.1.2非独立悬架 (2)1.3悬架的组成 (2)1.3.1.1减振器 (3)1.3.1.2弹性元件 (4)2空气悬架 (4)2.1空气悬架工作原理 (4)2.2空气悬架的特点 (5)2.3空气弹簧 (5)2.3.1囊式空气弹簧 (5)2.4高度控制阀 (6)3重型载货汽车 (6)4汽车结构参数 (6)5前空气悬架设计 (6)5.1空气弹簧刚度的计算 (6)5.2减震器的选择 (7)5.3前悬架空气弹簧校核 (7)6后空气悬架的设计 (8)6.1空气弹簧的刚度计算 (8)6.2减震器的选择 (8)6.3后悬架空气弹簧校核 (8)7侧倾校核 (9)7.1弹簧质量的侧倾中心 (9)7.2侧倾力臂计算 (9)7.3稳定杆角刚度的计算 (9)7.4整车侧倾角刚度 (10)7.5侧倾角校核结果 (10)7.6车身振动系统简化模型 (11)8结束语 (12)辽宁工程技术大学课程设计1悬架悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。

复合式空气悬架设计计算书

复合式空气悬架设计计算书

b1
75
S1
112
根据安装尺寸确定 根据安装尺寸确定
⑶ 无效长度系数
K
0.2
根据安装尺寸确定
⑷ 板簧自由状态下的伸直长度(初步)
l1
1450
⑸ 板簧夹紧状态下的伸直长度(初步)
lS1
① 满载状态下的基线长度
lj1
② 满载夹紧弧高(初步)(记入卷耳半径)
HP1
4.1.4 若钢板弹簧采用截面为梯形形状的变截面弹簧
第2页/共26页
2007年12月
一 产品开发设计来源
装配该空气悬架的车辆行驶在山区路面,在保证良好舒适性的同时,更需要较好的行驶稳定性和抗侧 倾能力,同时还要达到JT/T325-2006《营运客车类型划分及等级评定》对中型高一级客车所配悬架载荷分 配的要求。
二 结构特点
××××××前后空气悬架系统为复合式空气弹簧悬架,即空气弹簧与钢板弹簧混合在同一悬架系统 中,其中钢板弹簧为传统式钢板弹簧结构,其主要起到传力导向的作用,但也作为弹性元件承受部分垂直负荷 。本前后空气悬架采用空气弹簧直接布置在半椭圆钢板弹簧上方的结构设计,前后悬架均装有液力筒式减 振器,前悬架装有横向稳定杆。在结构设计上,尽可能的保证该空气弹簧悬架与原钢板弹簧悬架的互换性 。
根部惯性矩
I3
47900.80
夹紧状态下的刚度
Kcant(夹紧)
11.38
C 以上计算公式已经考虑到板簧扎制后两边自然形成的圆角,所以不需要对方法二的计算结果进行修正。
自由状态下的刚度 夹紧状态下的刚度
Kcant(自由) Kcant(夹紧)
11.02 11.38
结论:
综上得出钢板弹簧的刚度
序号 1

悬架设计说明

悬架设计说明

悬架设计说明一、 后两气囊空气悬架系统设计说明1、悬架设计输入参数1)设计后轴荷:13,000 Kg2)设计匹配车桥型号:MS13175D(需改制)3)设计车架宽度:860 mm下架下翼面宽:90 mm4)车架断面宽:260 mm5)悬架设计高度:196.6 mm(车轮中心到车架下翼面)6)轮胎静力半径 536 mm,车架上面到地高度992.6 mm2、悬架参数1)设计额定轴荷:13,000 Kg2)车桥动行程:上跳:76 mm下跳:76 mm3)后悬架偏频值:1.5 Hz4)横向推力杆与水平面的夹角:4.65°3、气囊主要参数1)气囊承载力分析单位 英制 单位公制 单位轴荷总重=28600 lb. 13000 Kg.非簧载质量=2500 lb. 1136 Kg.距离 Y =29.53 in. 750 mm距离 X =17.72 in. 450 mm 单侧前支架承载=4894 lb. 2225 Kg.单个气囊承载=8156 lb. 3707 Kg.4、悬架系统偏频计算 Ks= 960 lb/in Kw= 2457.184lb/in fs= 72 cpm fw= 91.06974 cpm1.517829HzKs=气囊的刚度Kw=车轴处的刚度fs=气囊的偏频fw=车轴处的偏频5、气囊外形图及性能特性LOAD VS POSITION @ 13.75" D.H.2000400060008000100001200014000L O A D C E L L R E A D I N G (l b s )56789101112131415161718192021AIR SPRING HEIGHT (in)6、减振器外形图7、气囊控制系统空气弹簧用气量约30L二、 后四气囊空气悬架系统设计说明1、悬架设计输入参数1)设计后轴荷:13,000 Kg2)设计匹配车桥型号:MS13175D(需改制)3)设计车架宽度:860 mm下架下翼面宽:90 mm4) 车架断面宽:260 mm5) 悬架设计高度:196.6 mm (车轮中心到车架下翼面) 6) 轮胎静力半径 536 mm ,车架上面到地高度992.6 mm 2、 悬架参数1) 设计额定轴荷:13,000 Kg 2) 车桥动行程: 上跳:76 mm 下跳:76 mm3) 后悬架偏频值:1.25 Hz 3、 气囊参数及性能LOAD VS POSITION @ 7.25" D. H.L O A D C E L L R E A D I N G (l b s )456789101112SPRING HEIGHT (in)4、运动说明四气囊上跳时,推力杆在车桥中心线部位运动高于车架上平面25mm如图所示。

空气悬架的设计

空气悬架的设计

空气悬架设计悬架是车架(或承载式车身)与车桥(或车轮)之间的所有传力连接装置的总称。

1空气悬架的优势空气弹簧的运动性能特点是:负载能力可调;弹性系数随负载变化;负载变化时,固有频率几乎不变;固有频率较低。

这些特点决定了空气悬架具有以下优点:1)较理想的弹性特性(1)空、满载之间有高度控制阀调节气压,具有较好的等频性;(2)振动时,假定没有充放气,弹性特性曲线呈非线性,增大动容量,防止悬架击穿。

若反跳行程由减振器或其它机构实施弹性限位,则弹性特性呈反S形的理想特性。

2)可设计成较低的刚度,提高平顺性,不会因为空、满载之间静挠度变化太大,车高超标而受到限制。

3)几乎消除了全部库伦阻尼,使悬架系统全部由粘性阻尼消振,其效果是:(1)消除高频微幅振动的锁止作用,改善高频域的传递特性,减小高频动刚度。

(2)消除悬架响声。

但是,若减振器阻尼值不可调节,则阻尼比因载荷变化而变化,无法同时满足空载和满载的要求,只能取折衷值。

而库伦阻尼恰与载荷成正比变化,所以像载货车这种后轴负荷变化很大的车型,后悬架采用库伦阻尼值大的多片钢板弹簧,对于保持空、满载阻尼比变化较小是有利的。

4)高度控制阀除了自动调节设计位置的车身高度不变之外,还可用来调节车身抬高或下降(下跪),以提高车身通过性或方便乘客上、下车。

5)减少电气、空调、排气系统、车桥、车身和底盘的维修成本。

6)减少对道路的冲击,保护路面,降低高速公路的维修费用7))延长车辆的使用寿命并增加折旧值2空气悬架的功能及构成1)空气悬架的功能:(1)把路面作用于车轮上的垂直反力、纵向反力和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,保证汽车的正常行驶,即起传力作用;(2)利用弹性元件和减振器起到缓冲减振的作用;(3)利用悬架的某些传力构件使车轮按一定轨迹相对于车架或车身跳动,即起导向作用;(4)利用悬架中的辅助弹性元件横向稳定器,防止车身在转向等行驶情况下发生过大的侧向倾斜;(5)调节汽车行驶中的车身位置。

空气悬架设计计算说明书

空气悬架设计计算说明书

大客车前空气悬架设计计算说明书毕业设计(论文)开题报告完成;2.设计的目的及意义至少800字,基本内容和技术方案至少400字;3.指导教师意见应从选题的理论或实际价值出发,阐述学生利用的知识、原理、建立的模型正确与否、学生的论证充分否、学生能否完成课题,达到预期的目标。

郑重声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。

本人完全意识到本声明的法律后果由本人承担。

本人签名:日期:目录摘要 (1)Abstract (2)1绪论 (3)1.1悬架的概述 (3)1.2悬架的分类 (4)1.3悬架技术的研究现状及发展趋势 (5)2空气悬架结构 (7)2.1空气悬架结构简介 (7)2.2 空气悬架系统的工作原理8 ··························3 空气悬架系统结构方案设计 (10)3.1空气弹簧悬架与机械弹簧悬架比较 (10)3.2空气弹簧的种类及布置问题 (10)3.3高度控制阀 (11)3.4反弹限位 (13)3.5减振器 (13)3.6导向机构的选择及布置............................................................... . (14)4 悬架主要参数的确定 (16)4.1 大客车的结构参数 (16)4.2 悬架静挠度 (18)4.3 悬架动挠度 (18)4.4 悬架弹性特性 (19)5 弹性元件的设计 (20)5.1 空气弹簧力学性能 (21)5.2 高度控制阀 (22)6 悬架导向机构的设计 (24)6.1 悬架导向机构的概述及强度受力计算 (24)6.2 横向稳定杆的选择 (26)6.3 稳定杆的横向载荷及强度 (26)6.4 悬架及整车的刚度 (27)7 减振器机构类型及主要参数的选择计算 (30)7.1 减震器分类 (30)7.2减震器的选定及阻尼力的计算 (32)总结 (34)参考文献 (35)致谢 (36)摘要本设计书首先收集了悬架的一些知识,在此基础上提出了空气悬架优缺点。

ASB-140 和 R130A空气悬架系统安装手册

ASB-140 和 R130A空气悬架系统安装手册

空气悬架产品使用说明书型号: ASB-140R130A北京柯布克公司目录1. 前言 (4)2. 技术参数 (4)2.1前空气悬架技术参数表 (4)2.2后空气悬架技术参数表 (5)3. 安装与调试 (6)3.1选型 (6)3.2设计 (6)3.3安装与调试 (6)4. 使用 (8)4.1车辆不许超载 (8)4.2保持正常供气压力 (8)4.3橡胶件上严禁使用油、脂 (8)4.4按要求进行维护保养 (8)5. 维护与保养 (8)5.1日常例行检查与保养 (8)5.2定期安全检查 (9)5.3二级保养 (9)5.4三级保养 (10)6.故障分析及维修 (10)6.1减震器故障及维修 (10)6.2空气弹簧故障 (12)6.3高度控制阀故障及更换 (14)6.4压力保护阀故障及维修 (14)6.5悬架构架故障 (15)附录 (17)附录A:ASB-140前空气悬架 (17)A.1结构示意图 (17)A.2零部件表 (17)附录B:R130A后空气悬架 (19)B.1R130A结构示意图 (19)B.2R130A零部件表 (19)附录C:减震器的基本常识 (21)C.1减震器是关键的最易损件 (21)C.2应装用功能匹配适当的减震器 (21)C.3在什么情况下应更换减震器 (21)C.4减震器的热试验 (21)C.5减震器漏油与渗油的区别 (22)1. 前言目前,在发达国家中,重型车辆已普遍采用空气弹簧悬架,取代原有的钢板弹簧悬架,这是一个革命性的进步。

在空气悬架系统中,高度控制阀完全按车辆载荷大小自动调控空气弹簧(气囊)中的气压,达到从空载到满载整个范围内,悬架高度保持不变。

这种气垫式支承具有特别强的抗震和吸震功能,大大提高车辆的行驶平顺性、乘坐柔软性和舒适性,减低货物破损率,减少维修次数和降低维修费用,延长车辆使用寿命,并大大降低车辆对公路路面的撞击,延长路面使用寿命…,这些都是传统机械弹簧悬架系统无法相比的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大客车前空气悬架设计计算说明书毕业设计(论文)开题报告注:1. 开题报告应根据教师下发的毕业设计(论文)任务书,在教师的指导下由学生独立撰写,在学院规定时间内完成;2.设计的目的及意义至少800字,基本内容和技术方案至少400字;3.指导教师意见应从选题的理论或实际价值出发,阐述学生利用的知识、原理、建立的模型正确与否、学生的论证充分否、学生能否完成课题,达到预期的目标。

郑重声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。

本人完全意识到本声明的法律后果由本人承担。

本人签名:日期:目录摘要 (1)Abstract (2)1绪论 (3)1.1悬架的概述 (3)1.2悬架的分类 (4)1.3悬架技术的研究现状及发展趋势 (5)2空气悬架结构 (7)2.1空气悬架结构简介 (7)2.2 空气悬架系统的工作原理8 ················································································3 空气悬架系统结构方案设计 (10)3.1空气弹簧悬架与机械弹簧悬架比较 (10)3.2空气弹簧的种类及布置问题 (10)3.3高度控制阀 (11)3.4反弹限位 (13)3.5减振器 (13)3.6导向机构的选择及布置............................................................... .. (14)4 悬架主要参数的确定 (16)4.1 大客车的结构参数 (16)4.2 悬架静挠度 (18)4.3 悬架动挠度 (18)4.4 悬架弹性特性 (19)5 弹性元件的设计 (20)5.1 空气弹簧力学性能 (21)5.2 高度控制阀 (22)6 悬架导向机构的设计 (24)6.1 悬架导向机构的概述及强度受力计算 (24)6.2 横向稳定杆的选择 (26)6.3 稳定杆的横向载荷及强度 (26)6.4 悬架及整车的刚度 (27)7 减振器机构类型及主要参数的选择计算 (30)7.1 减震器分类 (30)7.2减震器的选定及阻尼力的计算 (32)总结 (34)参考文献 (35)致谢 (36)摘要本设计书首先收集了悬架的一些知识,在此基础上提出了空气悬架优缺点。

空气悬架的现状发展趋势等等。

给出了设计全空气悬架时所需的设计过程和相关知识。

设计的客车悬架有良好的行使平顺性、具有合适的衰减振动能力、保证客车具有良好的操纵稳定性、有良好的隔声能力并且结构紧凑,占用空间尺寸要小等由于把这些设计方法用于实际设计时,有必要验证其设计结果的正确性,因此,在本说明书中,把全空气悬架的设计作为实例,对规范书中介绍的设计方法进行了说明。

另外,为了提高设计的速度,还把空气悬架的导向杆受力,减震器的弹簧刚度等的计算都程序化了,我在设计中都一起使用了。

空气弹簧及减振器引用了标准,关于该部分的内容,在文章末尾有注释。

关键词:空气弹簧;悬架;大客车ABSTRACTThe design of the book first collect some knowledge of suspension, based on the advantages and disadvantages of the air suspension. Air suspension on the current development trend. Design process is presented for design of air suspension and the related knowledge.Due to these design methods used in practical design, correctness, it is necessary to verify the design result and therefore, in the specification, the design of full air suspension as an example, the design method of the specification are described.In addition, in order to improve the design speed, but also the guide rod air suspension force, calculation of absorber spring stiffness are programmed, the design can be used together.Air spring and shock absorber cited the standard。

Key words:air suspension;suspension;motor bus1绪论1.1 悬架的概述悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。

它的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都要传递到车架(或承载式车身)上,以保证汽车的正常行驶]1[。

现代汽车的悬架尽管有各种不同的结构形式,但是一般都由弹性元件、减振器和导向机构三部分组成。

由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。

冲击力传到车架和车身时,可能引起汽车机件的早期损坏,传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。

为了缓和冲击,在汽车行驶系统中,除了采用弹性的充气轮胎之外,在悬架中还必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。

但弹性系统在受到冲击后,将产生振动。

持续的振动易使乘员感到不舒适和疲劳。

故悬架还应当具有减振作用,使振动迅速衰减(振幅迅速减小)。

为此,在许多结构形式的汽车悬架中都设有专门的减振器。

以下对悬架重要的组成部分进行简单的介绍。

(一)弹性元件弹性元件主要是把车架或车身与车桥或车轮弹性的连接起来,主要有空气弹簧,钢板弹簧、螺旋弹簧、扭杆弹簧等。

(1)空气弹簧空气弹簧是由橡胶囊所围成的一个密闭容器,在其中贮入压缩空气,利用空气的可压缩性实现其弹簧的作用。

这种弹簧的刚度是可变的,因为作用在弹簧上的载荷增加时,容器内的定量气体气压升高,弹簧刚度增大。

反之,当载荷减小时,弹簧内的气压下降,刚度减小,故空气弹簧具有较理想的弹性特性。

随着科学技术突飞猛进,生活水平的不断提高,人们对汽车的乘坐舒适性及各方面的性能提出了更高的要求,这便迫使各汽车生产厂家不断的引进先进技术,生产出更好的产品,保持强大的竞争能力。

从而空气弹簧的设计与研究也越来越受到车辆设计人员的青睐。

在本论文主要是对空气弹簧进行了研究与探讨。

(2)钢板弹簧由多片不等长和不等曲率的钢板叠合而成。

钢板弹簧除具有缓冲作用外,还有一定的减震作用。

(3)螺旋弹簧只具备缓冲作用,多用于轿车独立悬挂装置。

由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。

(4)扭杆弹簧将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。

(二)导向装置导向装置是指悬架中的某些用来传力同时还承担着使车轮按一定轨迹相对车架和车身跳动的任务的机构。

导向装置主要有以下几点作用:①在车架或车桥之间传递力矩。

②使车桥或车轮按一定轨迹相对车身或车架跳动。

(三)减振装置减振装置主要是用来消耗振动能量,衰减振动。

弹性系统在受到冲击后,将会产生振动,减震器可以使振幅迅速减小,以避免持续的振动给驾驶员的不舒适和疲劳。

车轮相对于车架和车身跳动时,车轮(特别是转向轮)的运动轨迹应符合一定的要求,否则对汽车某些行驶性能(特别是操纵稳定性)有不利的影响。

因此,悬架中某些传力构件同时还承担着使车轮按一定轨迹相对于车架和车身跳动的任务,因而这些传力构件还起导向作用,故称导向机构。

由此可见,上述这三个组成部分分别起缓冲、减振和导向的作用,然而三者共同的任务则是传力。

453121—弹性元件 2—纵向推力杆 3—减振器 4—横向稳定器 5—横向推力杆图1.1 汽车悬架组成示意图1.2 悬架的分类根据导向机构型式的不同,汽车悬架又可分为非独立悬架和独立悬架。

非独立悬架的结构特点是,左、右车轮用一根整体轴连接,再经过悬架和车价(或车身)连接;独立悬架的结构特点是,左、右车轮通过各自的悬架与车架(或车身)连接。

独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。

其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。

不过,独立悬架存在着结构复杂、成本高、维修不便的缺点。

现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬架等。

图1.2 独立悬架非独立悬架的结构特点是两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬架悬挂在车架或车身的下面。

非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。

图1.3 非独立悬架1.3 悬架技术的研究现状及发展趋势1.3.1悬架技术的研究现状机械装置的基本规律指出:载货汽车良好的舒适性,操纵稳定性及良好的承载能力在使用定刚度和定阻尼减震器的传统悬架中是不能同时满足的。

相关文档
最新文档