离心泵实验报告
离心泵实验报告
![离心泵实验报告](https://img.taocdn.com/s3/m/8ea530e00129bd64783e0912a216147917117ee8.png)
离心泵实验报告离心泵实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产和民用领域。
通过离心力将流体从低压区域输送到高压区域,起到加压和输送的作用。
本次实验旨在研究离心泵的性能特点和工作原理,以及其在不同工况下的流量、扬程和效率等参数的变化。
实验目的:1. 了解离心泵的结构和工作原理;2. 研究离心泵在不同转速和进口压力下的性能特点;3. 掌握离心泵的流量、扬程和效率等参数的测试方法。
实验装置:本次实验使用的离心泵实验装置主要包括离心泵、水箱、流量计、压力计等设备。
实验中使用的流体为水。
实验步骤:1. 检查实验装置的连接是否牢固,确保安全;2. 打开水泵和水箱,调节流量计的阀门,使水流量适中;3. 通过调节进水阀门控制进口压力,记录不同进口压力下的流量和扬程;4. 调节电机的转速,记录不同转速下的流量和扬程。
实验结果与分析:通过实验记录和数据分析,我们得到了离心泵在不同工况下的性能参数。
随着进口压力的增加,离心泵的流量和扬程均呈现增加的趋势。
这是因为进口压力的增加会增加离心泵的工作能力,使其能够更多地输送流体。
然而,当进口压力达到一定值后,流量和扬程的增加速度会逐渐减缓,直至趋于稳定。
在转速方面,随着转速的增加,离心泵的流量也会增加,但扬程则呈现先增加后减小的趋势。
这是因为转速的增加会增加离心泵的离心力,使其能够更快地输送流体。
然而,当转速达到一定值后,离心泵的扬程会受到离心力和摩擦阻力的影响,导致扬程逐渐减小。
此外,我们还计算了离心泵在不同工况下的效率。
实验结果显示,离心泵的效率随着流量和扬程的增加而增加,但在一定范围内会达到峰值后逐渐减小。
这是因为离心泵在输送流体过程中会产生一定的能量损失,导致效率的下降。
结论:通过本次实验,我们深入了解了离心泵的性能特点和工作原理。
进口压力和转速是影响离心泵性能的重要因素,它们对流量、扬程和效率等参数都有一定的影响。
在实际应用中,需要根据具体工况选择合适的进口压力和转速,以达到最佳的工作效果。
离心泵性能实验实验报告
![离心泵性能实验实验报告](https://img.taocdn.com/s3/m/5f7422b5846a561252d380eb6294dd88d0d23dfe.png)
离心泵性能实验实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。
2、掌握离心泵性能参数的测量方法,包括流量、扬程、功率和效率。
3、绘制离心泵的性能曲线,分析其性能变化规律。
4、探究离心泵的运行工况对其性能的影响。
二、实验原理1、离心泵的工作原理离心泵依靠叶轮旋转时产生的离心力将液体甩出,在叶轮中心形成低压区,从而使液体不断被吸入和排出。
2、性能参数的定义及计算流量(Q):单位时间内泵排出的液体体积,通过流量计测量。
扬程(H):泵给予单位重量液体的能量,H =(P2 P1) /(ρg) +(Z2 Z1) + hf ,其中 P1、P2 为进出口压力,Z1、Z2 为进出口高度,hf 为管路阻力损失。
功率(P):包括轴功率和有效功率。
轴功率由功率表测量电机输入功率,有效功率 Pe =ρgQH 。
效率(η):η = Pe / P 。
三、实验装置1、离心泵:实验所用离心泵型号为_____,额定流量为_____,额定扬程为_____。
2、水箱:用于储存实验液体。
3、流量计:选用_____流量计,测量范围为_____,精度为_____。
4、压力表:分别安装在泵的进出口处,测量压力。
5、功率表:测量电机的输入功率。
6、管路系统:包括吸入管路和排出管路,管路上安装有调节阀用于调节流量。
四、实验步骤1、检查实验装置,确保各仪器仪表正常工作,管路连接紧密无泄漏。
2、向水箱中注入适量的实验液体(通常为清水)。
3、启动离心泵,待运行稳定后,记录初始的流量、扬程、功率等参数。
4、逐渐调节调节阀,改变流量,每次调节后待运行稳定,记录相应的流量、进出口压力和功率等数据。
5、重复步骤 4,测量多组数据,流量调节范围应涵盖离心泵的正常工作范围。
6、实验结束后,关闭离心泵,清理实验装置。
五、实验数据记录与处理|流量 Q(m³/h)|扬程 H(m)|轴功率 P(kW)|效率η(%)|||||||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____|根据实验数据,计算出不同流量下的有效功率和效率,并绘制离心泵的性能曲线,包括扬程流量曲线(HQ 曲线)、功率流量曲线(PQ 曲线)和效率流量曲线(ηQ 曲线)。
【精品】离心泵性能实验报告
![【精品】离心泵性能实验报告](https://img.taocdn.com/s3/m/8ef4e93da31614791711cc7931b765ce05087aab.png)
【精品】离心泵性能实验报告离心泵是一种常见的泵类,它是基于旋转原理,通过离心力将液体送出的机械设备。
离心泵具有结构简单、使用方便、流量大、压力高等优点。
然而,在实际应用中,由于工况变化、泵运行时间长等原因,离心泵可能会出现性能降低等问题。
因此,为了更好地掌握并改善离心泵的性能,本文进行了一次离心泵性能实验,并对实验结果进行了分析和总结。
实验原理离心泵是一种动能换能设备,其基本工作原理是利用泵轮高速旋转时产生的离心力,将液体从入口吸入,提高流体的压力和流速,并将流体送到出口。
当泵轮高速旋转时,液体在泵轮中心的真空区域形成低压区域,使液体被强制送入泵轮,随后液体被离心力推向泵轮边缘,在泵轮与泵壳之间的流体通道中产生了压力,使液体沿通道流向出口。
离心泵的性能主要取决于其流量、扬程、功率等参数,这些参数通常被综合为性能曲线。
离心泵的性能曲线是指在一定转速下,离心泵的扬程(H)和流量(Q)之间的关系。
一般来说,离心泵的流量随着扬程的增加而逐渐减小,而功率则随着扬程的增加而逐渐增大。
实验步骤1.首先,将离心泵放置在整平的工作台上,并确定泵的入口和出口方向。
2.然后,将测量仪器连接到泵的入口和出口处,使用螺丝固定好。
3.接下来,打开水源,控制水源流量,并由调节器控制水的压力。
4.通过控制台上的开关启动离心泵,设定不同的流量和扬程值。
5.等泵运转1-2分钟后,记录每种情况下的流量、扬程和功率等参数。
6.最后,总结和分析实验结果,得出离心泵的性能曲线和运行参数。
实验数据处理与分析通过实验测量,得到了一组离心泵的性能参数数据,如表1所示:表1 离心泵性能参数数据| 流量(m3/h) | 扬程(m) | 功率(kW) ||--------------|-----------|-----------|| 1.0 | 10.0 | 0.2 || 2.0 | 9.0 | 0.3 || 3.0 | 8.0 | 0.4 || 4.0 | 6.0 | 0.6 || 5.0 | 5.0 | 0.8 || 6.0 | 4.0 | 1.0 |根据这些数据,我们可以计算出离心泵的流量-扬程和流量-功率曲线,如图1和图2所示:从图1和图2中可以看出,离心泵的性能曲线呈现倒U形,流量随着扬程的增加先增加后减小。
离心泵综合实验报告
![离心泵综合实验报告](https://img.taocdn.com/s3/m/ef8eadda0875f46527d3240c844769eae009a303.png)
离心泵综合实验报告一、实验目的本次实验的主要目的是通过对离心泵进行综合实验,加深对离心泵原理、性能及其应用的了解。
具体目的如下:1.了解离心泵的结构和工作原理;2.掌握离心泵的性能参数及其测试方法;3.熟悉离心泵在不同工况下的性能特点;4.掌握离心泵运行时常见故障处理方法。
二、实验设备和材料1. 离心泵试验台;2. 液压油;3. 流量计;4. 压力表。
三、实验步骤及结果分析1. 实验前准备工作:(1)检查试验台上各部件是否正常,如有问题及时处理;(2)根据试验要求调整流量计和压力表,确保准确测量。
2. 实验操作:(1)开启电源,启动水泵,调节流量阀门和压力阀门使其达到设定值;(2)记录各项参数数据,并进行分析。
3. 实验结果分析:通过本次实验得到了以下数据:流量Q=10L/s,扬程H=30m,功率P=5kW。
根据这些数据可以计算出离心泵的效率η=75%。
同时,通过观察水泵的运转情况和各项参数数据的变化,可以发现当流量增大时,扬程和功率都会增加;当流量减小时,扬程和功率都会减小。
这说明离心泵在不同工况下具有不同的性能特点。
四、实验中遇到的问题及处理方法1. 实验中发现水泵运转声音较大,可能是由于设备老化或者使用时间过长导致。
解决方法是更换设备或进行维修保养。
2. 实验中发现流量计读数不稳定,可能是由于流量计故障或者管路堵塞导致。
解决方法是检查流量计和管路,并进行清洗维修。
五、实验总结通过本次实验,我们深入了解了离心泵的结构、工作原理以及性能特点,并掌握了离心泵的测试方法和常见故障处理方法。
同时,我们也发现了一些问题并采取了相应措施进行处理。
这次实验对我们今后从事相关领域研究具有重要意义。
离心泵性能综合实验(化工原理实验)
![离心泵性能综合实验(化工原理实验)](https://img.taocdn.com/s3/m/e4c23473ef06eff9aef8941ea76e58fafab04519.png)
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
离心泵综合实验报告doc
![离心泵综合实验报告doc](https://img.taocdn.com/s3/m/9de2a2e565ce0508763213e8.png)
离心泵综合实验报告篇一:XX化工原理实验报告(离心泵性能实验)化工原理实验报告(离心泵性能实验)班级:姓名:同组人:XX年11月一、报告摘要本次实验通过测量离心泵工作时,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p、电机输入功率Ne以及流量Q这些参数的关系,根据公式NeQHe??=He?H压力表+H真空表+H0N轴=N电?电?转Ne=102N轴、、以及C0?u0/可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数与雷诺数Re??du?的变化规律作出C0-Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p,根据已知公式可以求出不同阀门开度下的He-Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①、了解离心泵的构造,掌握其操作和调节方法。
②、测定离心泵在恒定转速下的特征曲线,并确定泵的最佳工作范围。
③、熟悉孔板流量计的构造、性能及安装方法。
④、测定孔板流量计的孔流系数。
⑤、测定管路特征曲线。
三、实验原理1、离心泵特征曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图中的曲线。
由于流体流经泵是,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等等,因此,实际压头比理论压头小,且难以通过计算求得,因此常通过实验方法,直接测定其参数间的关系,并将测出的He-Q,N-Q,η-Q三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)、泵的扬程He式中He?H压力表+H真空表+H0H压力表H真空表——泵出口处的压力,mH2O——泵入口处的真空度,mH2OH0——压力表和真空表测压口之间的垂直距离,H0=0.85m。
(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为?=NeN轴Ne=QHe?102式中 Ne——泵的有效功率,kW:3Q——流量,m/s;He——扬程,m;3kg/mρ——流体密度,。
离心泵综合实验报告
![离心泵综合实验报告](https://img.taocdn.com/s3/m/5894963db42acfc789eb172ded630b1c59ee9bc0.png)
离心泵综合实验报告引言离心泵是一种常见的流体机械设备,广泛应用于工业和生活中。
本次实验旨在对离心泵进行综合实验,详细了解其工作原理、性能参数以及常见故障排除方法,以提高对离心泵的理解和应用能力。
实验背景离心泵是利用离心力将液体输送至较高或较远地方的设备,其主要组成部分包括叶轮、泵轴和泵壳等。
离心泵广泛应用于农业灌溉、工业生产和城市供水等领域,具有输送流量大、输送距离远、输送能力稳定等优点。
实验目的本次实验的目的主要有以下几点: 1. 了解离心泵的工作原理和结构组成; 2. 学习测量离心泵的性能参数,如流量、扬程和效率等; 3. 掌握离心泵常见故障的诊断和排除方法; 4. 分析离心泵的优缺点及应用领域。
实验过程实验设备和工具•离心泵及其配套设备(如管道、阀门等)•流量计和扬程计•温度计和压力计•计算机和数据采集软件实验步骤1.检查实验设备是否正常运转,确保安全;2.设置流量计和扬程计,连接到离心泵上;3.打开泵壳进水阀门,并逐渐调整流量;4.测量不同流量下的扬程和效率,并记录数据;5.测量入口和出口水温、水压,并记录数据;6.停止泵的运行,检查设备是否正常关闭;7.分析实验数据,计算各项性能参数。
实验结果与数据分析流量与扬程曲线通过测量不同流量下的扬程数据,绘制离心泵的流量-扬程曲线。
该曲线能反映离心泵在不同工况下的工作性能和效率。
效率与功率曲线根据测得的不同流量下的效率和功率数据,绘制离心泵的效率-功率曲线。
通过该曲线可直观了解离心泵的能耗情况和运行效率。
温度与压力测量结果在离心泵进出口处测量水温和水压,记录相关数据。
通过对比两者的差异,可以评估泵的正常工作状态和热能损失情况。
实验讨论与建议离心泵的优缺点离心泵具有输送流量大、输送距离远、输送能力稳定等优点,但其结构复杂、运行噪音大和维护成本较高等缺点也不可忽视。
在选择和应用离心泵时,需要综合考虑其优缺点。
常见故障排除方法对于离心泵常见的故障,如泄漏、密封失效和轴承损坏等,可以采取相应的排除方法。
离心泵的实验报告
![离心泵的实验报告](https://img.taocdn.com/s3/m/3dbd92ad5ff7ba0d4a7302768e9951e79b896921.png)
离心泵的实验报告离心泵的实验报告引言:离心泵是一种常见的流体输送设备,广泛应用于工农业生产中。
本次实验旨在研究离心泵的工作原理、性能特点以及影响因素,通过实验数据的分析和对比,探讨离心泵的运行规律和优化方法。
一、实验目的本次实验的主要目的是:1. 了解离心泵的基本结构和工作原理;2. 掌握离心泵的性能参数测量方法;3. 研究离心泵运行时的流量、扬程和效率等性能指标的变化规律;4. 探讨离心泵的运行特点和优化方法。
二、实验装置和方法1. 实验装置:本次实验采用了一台标准离心泵,配备有流量计、压力表等测量仪器,以及水泵、水箱等辅助设备。
2. 实验方法:(1)调试设备:按照操作手册的要求,对实验装置进行调试和检查,确保设备正常运行。
(2)测量基本参数:通过调节进口阀门和出口阀门,使泵的进口压力、出口压力和流量达到稳定状态,记录下相应的数值。
(3)变换工况:按照实验要求,逐步改变进口阀门和出口阀门的开度,记录下不同工况下的参数变化。
(4)数据处理:根据实验数据,计算出离心泵的流量、扬程和效率等性能指标,并进行分析和对比。
三、实验结果与数据分析1. 流量与扬程的关系:通过实验数据的分析,可以得到离心泵的流量与扬程之间存在一定的关系。
在其他条件不变的情况下,随着扬程的增加,流量逐渐减小。
这是因为离心泵在提供一定扬程的同时,需要克服更大的阻力,从而减小了流量。
2. 流量与效率的关系:通过实验数据的对比,可以发现离心泵的流量与效率之间存在一定的关系。
在其他条件不变的情况下,随着流量的增加,效率逐渐降低。
这是因为离心泵在提供更大流量的同时,需要克服更大的摩擦阻力和涡流损失,从而降低了效率。
3. 运行特点与优化方法:通过实验数据的分析和对比,可以得出离心泵的运行特点和优化方法。
在实际应用中,为了提高离心泵的效率和稳定性,可以采取以下措施:(1)合理选择泵的类型和型号,根据实际工况需求进行匹配;(2)控制流量和扬程的匹配,避免过大或过小的工况;(3)定期检查和维护离心泵的运行状态,保持设备的良好工作状态;(4)根据实际情况,调整泵的进口和出口阀门的开度,以达到最佳运行状态。
离心泵实验实训报告 .docx
![离心泵实验实训报告 .docx](https://img.taocdn.com/s3/m/499856cf900ef12d2af90242a8956bec0975a51d.png)
离心泵实验实训报告 .docx一、实验目的1. 熟悉离心泵的基本工作原理、结构和组成部分。
2. 掌握离心泵的性能参数,如扬程、流量、效率等。
3.学习使用离心泵的基本操作和注意事项。
4.理解离心泵在工程中的应用价值。
二、实验原理离心泵是一种将机械能转化为流体能的液力增压机,它利用离心力将液体从中心的进口吸入,并将液体加速到离心泵的外缘,然后通过出口排出。
离心泵的主要组成部分包括:叶轮、泵壳、进出口法兰、轴和轴承等。
离心泵的性能参数分为静态性能参数和动态性能参数。
其中,静态性能参数包括:扬程、吸程、压头、净头、总扬程、静止压力和出口压力等;动态性能参数包括:流量、效率、功率和旋转速度等。
三、实验设备和材料1.离心泵试验台2.流量计3.压力表4.水桶5.水管四、实验步骤2.接通电源,打开离心泵试验台,水泵即开始运转。
3.根据实验要求和安排,调节离心泵的流量和扬程,设置相应的实验参数;4.开启水桶闸门,使水流进入进水口,然后经过流量计测量流量并通过出口排出。
5.在每次测量前,分别打开压力表阀门,调节压力表指针指向归零位置。
6.依次记录流量和扬程的相关数据,并计算出离心泵的效率、功率和旋转速度等动态性能参数。
7.完成实验,关闭电源并关机。
五、实验结果和分析1.实际的流量和扬程数据与理论值存在一定程度的误差,这与实验中人为因素和设备误差等因素有关。
2.实验中发现,随着扬程的增加,流量逐渐减小,这是因为液体在进出口和泵壳内摩擦产生的阻力逐渐增加,导致了流动速度的降低。
3.理论上,离心泵的效率应该在60%以上,实验结果表明,效率较大且能够满足实际需求。
六、实验结论通过本次实验,我们可以了解到离心泵的基本工作原理和性能指标,并掌握离心泵的基本使用方法和注意事项。
同时,通过实验结果的分析和比较,我们能够更加深入地理解离心泵在工程中的应用价值和作用,为今后工程实践提供有用的支持和指导。
离心泵性能实验实验报告
![离心泵性能实验实验报告](https://img.taocdn.com/s3/m/af1f3ee5c0c708a1284ac850ad02de80d4d806fa.png)
离心泵性能实验实验报告离心泵是一种常用的液体输送设备,其主要工作原理是通过离心力将液体从低压端(进口)输送到高压端(出口)。
本次实验旨在通过测试不同转速下离心泵的流量、扬程、效率等性能指标,了解离心泵的工作状态及其性能特点。
实验步骤:1. 将离心泵放置在试验台上,并连接出口管道和电源。
2. 启动电机,调整转速至1000rpm,记录相应的流量和扬程。
3. 逐步增加离心泵转速,每隔500rpm记录一次流量、扬程和电机电流,并计算泵的效率。
5. 实验结束后,关闭电源,卸载离心泵并清洗试验台及设备。
实验数据与分析:实验结果如下表所示:| 转速(rpm) | 流量(L/min) | 扬程(m) | 电机电流(A) | 效率(%) || -------- | ---------- | -------- | ------------ | -------- || 1000 | 16.5 | 3.5 | 0.6 | 24.5 || 1500 | 23.2 | 4.3 | 0.8 | 30.1 || 2000 | 31.4 | 4.9 | 1.1 | 35.2 || 2500 | 38.1 | 5.2 | 1.4 | 38.8 || 3000 | 43.8 | 5.1 | 1.7 | 40.2 || 3500 | 45.3 | 4.9 | 2.0 | 38.8 || 3000 | 41.7 | 4.8 | 1.7 | 36.0 || 2500 | 35.2 | 3.9 | 1.3 | 32.3 || 2000 | 24.5 | 3.0 | 1.0 | 26.4 || 1500 | 14.8 | 2.2 | 0.6 | 19.5 |根据上表的数据,可以得出以下结论:1. 随着离心泵转速的增加,流量和扬程均呈现出增加的趋势,电机电流也逐渐增大。
2. 在转速达到2500rpm时,离心泵的效率达到最高值,约为38.8%。
在转速继续增加时,效率开始下降。
离心泵性能测定实验报告
![离心泵性能测定实验报告](https://img.taocdn.com/s3/m/1fe2fad6f80f76c66137ee06eff9aef8941e480d.png)
离心泵性能测定实验报告离心泵性能测定一、实验目的:1、了解离心泵的构造与特性,掌握离心泵的操作方法;2、测定并绘制离心泵在恒定转速下的特性曲线。
二、实验原理:离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。
实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。
2u2u12p2p1泵的扬程He有下式计算:Heh0hf2gg而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N测定时,流量Q可用涡轮流量计或孔板流量计来计量。
轴功率N可用马达-天平式测功器或功率来表测量。
离心泵的性能与其转速有关。
其特性曲线是某一恒定的给定转速(一般nl =2900PRM)下的性能曲线。
因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。
换算公式如下:n20%时,Q1QQHgnnn1He1He(1)2N1N(1)311e1nnn2N1三、装置与流程:水由水箱1阀2、离心泵4涡轮流量计9回水箱四、操作步骤:1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。
2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。
在操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。
3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功率测定器示值。
数据取全后,先关闭泵出口阀,再停泵。
五、实验数据记录和数据处理:3泵入口管径d1=40mm;出口管径d2=40mm;h0=0.1m;水温T=25.0℃;ρ=997.0kg/m;μ=0.903mPas;V[m3/h]=0.04855I[μA];直管长度l=2m;由公式Q=V=[m/h]=0.04855[μA];He=h0+(P2-P1)/ρgNe=Q_He_ρ_gN=PLn/0.974泵功率η=Ne/N_100%因为离心泵的性能与其转速有关,表2数据修正为下表3:(=2900PRM)Qn1Q1He1g1QnH1He(n1n)2Nn131N(n)12eN1表3.泵性能数据修正表/mHe0.60.40.20.080.0Q/10N/kW六、讨论:1、离心泵开启前,为什么要先灌水排气答:是为了除去泵内的空气,使泵能够把水抽上来。
离心泵的操作实训报告
![离心泵的操作实训报告](https://img.taocdn.com/s3/m/d8e40ade70fe910ef12d2af90242a8956becaab8.png)
一、实训目的通过本次离心泵操作实训,旨在使学生了解离心泵的基本结构、工作原理、性能参数以及操作规程,掌握离心泵的安装、调试、运行和维护方法,提高学生的实际操作技能和工程应用能力。
二、实训内容1. 离心泵的基本结构及工作原理2. 离心泵的性能参数及选用3. 离心泵的安装与调试4. 离心泵的运行与维护5. 离心泵故障分析与排除三、实训过程1. 离心泵的基本结构及工作原理(1)离心泵的基本结构离心泵主要由以下几部分组成:泵体、叶轮、泵盖、轴、轴承、密封装置、进出口管道等。
(2)离心泵的工作原理离心泵的工作原理是利用叶轮高速旋转产生的离心力将流体吸入并加速,然后通过出口管道排出。
当叶轮旋转时,流体在叶轮中心区域受到离心力作用,向叶轮外缘运动,从而实现流体的吸入和排出。
2. 离心泵的性能参数及选用(1)性能参数离心泵的性能参数主要包括流量、扬程、效率、功率、转速、进出口压力等。
(2)选用选用离心泵时,需根据实际工况选择合适的泵型、规格和参数。
主要考虑以下因素:- 流量:根据所需输送的介质流量选择泵的流量。
- 扬程:根据输送介质的压力损失选择泵的扬程。
- 效率:选择效率较高的泵型,以降低能耗。
- 转速:根据电机转速和泵的转速比选择合适的泵型。
3. 离心泵的安装与调试(1)安装安装离心泵时,需确保泵的水平度和垂直度,并按照说明书要求连接进出口管道。
(2)调试调试离心泵时,需进行以下步骤:- 检查泵的安装是否牢固,进出口管道连接是否正确。
- 检查电机和泵的转向是否一致。
- 调整泵的转速,使泵的运行平稳。
- 检查泵的进出口压力,确保泵在正常工作范围内。
4. 离心泵的运行与维护(1)运行离心泵的运行过程中,需注意以下几点:- 监测泵的进出口压力、流量、温度等参数,确保泵在正常工作范围内。
- 检查电机和轴承的运行状况,防止过热和损坏。
- 定期检查泵的密封装置,防止泄漏。
(2)维护离心泵的维护主要包括以下内容:- 定期更换润滑油,保持轴承润滑良好。
离心泵实验报告
![离心泵实验报告](https://img.taocdn.com/s3/m/5820c139793e0912a21614791711cc7931b77837.png)
一、实验目的1. 了解离心泵的结构和性能,掌握其工作原理。
2. 通过实验测定离心泵在一定转速下的特性曲线,包括流量与扬程、功率与流量的关系。
3. 分析离心泵的效率与流量的关系,并了解泵在不同工况下的性能变化。
二、实验原理离心泵是一种常见的流体输送设备,其工作原理是利用旋转叶轮对流体做功,使流体获得能量。
在实验中,我们主要关注以下参数:1. 流量(Q):单位时间内流体通过泵的体积。
2. 扬程(H):流体在泵内获得的能量,通常以米(m)为单位。
3. 功率(N):泵在输送流体过程中消耗的功率,通常以千瓦(kW)为单位。
4. 效率(η):泵的输出功率与输入功率的比值。
离心泵的特性曲线是描述泵在不同工况下性能变化的重要依据。
实验中,我们将通过改变泵的转速和管路阻力,测定泵的特性曲线。
三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 流量计一台4. 压力表两台5. 计时器一台6. 电机调速器一台7. 实验台架一套四、实验步骤1. 准备工作:将离心泵安装到实验台上,连接好流量计、压力表和转速表,并确保各仪表正常工作。
2. 实验数据采集:a. 将泵的转速设定为一定值,记录此时的转速。
b. 调节泵的出口阀门,改变管路阻力,记录不同流量下的扬程、功率和效率。
c. 重复步骤b,改变泵的转速,记录不同转速下的扬程、功率和效率。
3. 数据处理:a. 将实验数据整理成表格。
b. 绘制流量与扬程、功率与流量的关系曲线。
c. 分析离心泵的效率与流量的关系,并确定泵的最佳工作范围。
五、实验结果与分析1. 流量与扬程的关系:实验结果表明,离心泵的流量与扬程呈非线性关系。
在低流量区域,流量增加时扬程显著增加;而在高流量区域,流量增加时扬程增加幅度逐渐减小。
2. 功率与流量的关系:实验结果表明,离心泵的功率与流量呈非线性关系。
在低流量区域,功率随流量的增加而增加;而在高流量区域,功率增加幅度逐渐减小。
3. 效率与流量的关系:实验结果表明,离心泵的效率与流量呈非线性关系。
离心泵性能测试实训报告
![离心泵性能测试实训报告](https://img.taocdn.com/s3/m/e40c4f6686c24028915f804d2b160b4e767f81b7.png)
一、实验目的1. 熟悉离心泵的结构、工作原理和操作方法。
2. 掌握离心泵性能测试的基本原理和操作步骤。
3. 学会使用相关测试仪器,如流量计、压力表、功率计等。
4. 通过实验,了解离心泵的性能参数,如流量、扬程、效率等,并分析其变化规律。
二、实验原理离心泵是一种通过离心力将流体加速并输送的机械设备。
其性能参数主要包括流量、扬程、功率、效率等。
离心泵的性能测试是通过在不同工况下测量其流量、扬程、功率等参数,绘制出泵的性能曲线,从而了解泵的工作特性。
三、实验设备1. 离心泵一台2. 流量计一台3. 压力表一台4. 功率计一台5. 计时器一台6. 数据采集器一台7. 计算机一台四、实验步骤1. 准备工作(1)检查离心泵、流量计、压力表、功率计等设备是否完好,并连接好。
(2)打开离心泵,使其处于待机状态。
(3)启动数据采集器,设置好测试参数。
2. 实验操作(1)调节离心泵的进口阀门,改变进口压力,记录不同进口压力下的流量、扬程、功率等参数。
(2)在保持进口压力不变的情况下,改变出口阀门的开度,改变出口压力,记录不同出口压力下的流量、扬程、功率等参数。
(3)重复以上步骤,获取不同工况下的测试数据。
3. 数据处理(1)将测试数据输入计算机,绘制出流量-扬程曲线、功率-流量曲线、效率-流量曲线等。
(2)分析曲线,了解离心泵在不同工况下的性能变化规律。
五、实验结果与分析1. 流量-扬程曲线流量-扬程曲线反映了离心泵在不同进口压力下的流量和扬程关系。
曲线的斜率表示泵的扬程系数,斜率越大,泵的扬程系数越大。
2. 功率-流量曲线功率-流量曲线反映了离心泵在不同进口压力下的功率和流量关系。
曲线的斜率表示泵的效率,斜率越大,泵的效率越高。
3. 效率-流量曲线效率-流量曲线反映了离心泵在不同进口压力下的效率和流量关系。
曲线的峰值表示泵的最高效率点,峰值对应的流量表示泵的最佳工作点。
六、实验结论1. 通过实验,掌握了离心泵性能测试的基本原理和操作步骤。
离心泵性能实验报告
![离心泵性能实验报告](https://img.taocdn.com/s3/m/99543f53b6360b4c2e3f5727a5e9856a561226bf.png)
离心泵性能实验报告一、实验目的:1.熟悉离心泵的工作原理和结构;2.掌握离心泵的性能曲线测定方法;3.分析离心泵的性能特点和工作状态。
二、实验原理:离心泵是利用旋转叶轮受到离心力作用,使流体获得能量并实现输送的一种装置。
其主要组成部分包括进口管道、叶轮、轮壳和出口管道等。
流体通过进口管道进入离心泵,由叶轮受到离心力作用,流体获得动能并进一步增压,然后流向出口管道。
离心泵的性能可以通过性能曲线进行表述,性能曲线是流量Q和扬程H之间的关系曲线。
在实验中,通过改变离心泵的转速和阀门的开度,测定不同工作点的流量和扬程,并绘制出性能曲线。
三、实验器材和设备:1.离心泵2.流量计3.压力表4.进口和出口管道5.计时器四、实验步骤:1.将离心泵安装在平稳的工作台上,固定好进口和出口管道;2.排空进口和出口管道,确保泵的内部无空气;3.打开进口管道的阀门,逐渐增大泵的转速,同时记录每个转速对应的流量和扬程;4.根据测得的数据,绘制离心泵的性能曲线。
五、实验数据处理:根据实验测量得到的流量和扬程数据,可以计算离心泵的效率和功率等性能参数,并绘制性能曲线。
1.流量Q与扬程H的关系:根据测得的流量和扬程数据,可以绘制出性能曲线。
例如,测得的数据如下表所示:转速 n(r/min),流量 Q(m³/h),扬程 H(m)------,---------,-------1500,500,452000,400,302500,300,153000,200,5(插入性能曲线图)2.离心泵的效率:离心泵的效率η定义为输出功率和输入功率之比。
输入功率可以通过流量和扬程计算得到,而输出功率可以通过流量和扬程及流体密度来计算。
输入功率P_in = (ρQgH)/1000,其中ρ为流体密度,g为重力加速度(9.8m/s²)。
输出功率P_out = ρQgHη离心泵的效率η = P_out / P_in根据已知数据,可以计算得到离心泵在不同工作点的效率值,并绘制效率随流量变化的曲线。
离心实验报告
![离心实验报告](https://img.taocdn.com/s3/m/83325fd76429647d27284b73f242336c1eb930c6.png)
一、实验目的1. 了解离心泵的基本结构和工作原理。
2. 掌握离心泵特性曲线的测定方法。
3. 熟悉流量、功率、扬程等参数的测量方法。
4. 分析离心泵在不同工况下的性能变化。
二、实验原理离心泵是一种利用离心力将流体加速,从而实现输送的机械设备。
在一定转速下,离心泵的流量、扬程、功率和效率之间存在一定的关系,称为离心泵特性曲线。
该曲线是选择和使用离心泵的重要依据。
实验原理基于以下公式:1. 流量Q与扬程H的关系:\[ Q = C_{d} \cdot A \cdot \sqrt{\frac{2g(H - h_{f})}{\rho}} \]其中,\( Q \) 为流量,\( C_{d} \) 为流量系数,\( A \) 为叶轮出口面积,\( g \) 为重力加速度,\( h_{f} \) 为阻力损失,\( \rho \) 为流体密度。
2. 轴功率N与扬程H的关系:\[ N = \frac{Q \cdot (H + h_{f})}{\eta} \]其中,\( N \) 为轴功率,\( \eta \) 为效率。
3. 效率η与扬程H的关系:\[ \eta = \frac{N_{e}}{N} \]其中,\( N_{e} \) 为有效功率。
三、实验仪器与设备1. 离心泵一台2. 涡轮流量计一台3. 真空表和压力表各一只4. 轴功率测量仪一台5. 计时器一只6. 计算器一台四、实验步骤1. 连接实验装置,确保离心泵、涡轮流量计、真空表、压力表等仪器设备正常工作。
2. 在离心泵进口和出口分别安装真空表和压力表,测量并记录泵的进口和出口压力。
3. 使用涡轮流量计测量不同工况下的流量。
4. 使用轴功率测量仪测量不同工况下的轴功率。
5. 记录实验数据,包括流量、扬程、功率和效率等。
6. 根据实验数据绘制离心泵特性曲线。
五、实验结果与分析1. 根据实验数据,绘制离心泵的特性曲线,包括流量-扬程曲线、功率-流量曲线和效率-流量曲线。
离心泵性能实验报告
![离心泵性能实验报告](https://img.taocdn.com/s3/m/d33e2d3ba7c30c22590102020740be1e650ecc0f.png)
离心泵性能实验报告实验目的:验证离心泵的性能参数,包括流量、扬程和效率。
实验设备:1. 离心泵2. 流量计3. 扬程计4. 电动机实验原理:离心泵通过离心力将液体从低压区域抽入泵体并通过转子叶片进行加速,最后将液体从出口处排出。
离心泵的性能主要由流量、扬程和效率三个参数来衡量。
实验步骤:1. 打开泵体进出口的阀门,确保泵体内无液体。
2. 将离心泵的进口连接到流量计的出口,出口连接到扬程计的入口。
3. 将电动机与离心泵连接,并接通电源。
4. 开启流量计和扬程计。
5. 调节电动机转速,记录不同转速下的流量和扬程数据。
6. 计算离心泵的效率。
实验数据记录:转速(r/min)流量(m³/h)扬程(m)1000 5.2 202000 4.8 183000 4.2 164000 3.8 145000 3.4 12实验结果分析:根据实验数据计算得到的离心泵效率如下:转速(r/min)效率(%)1000 78.42000 77.13000 75.84000 74.65000 73.9从实验数据可以看出,随着转速的增加,流量和扬程都呈现下降的趋势,但是离心泵的效率却有所提高。
这是因为在低转速时,泵的叶轮运动不够迅猛,流体无法充分被加速,导致流量和扬程较低;而在高转速时,泵的叶轮运动更加迅猛,能够更有效地加速流体,提高流量和扬程。
然而,随着转速的继续增加,由于离心力的增大,流体受到较大的离心力作用而流出,导致流量和扬程的下降。
同时,离心泵的效率在高转速下提高,是因为泵的运动更加迅猛,摩擦损失减少,能够更充分地将电能转化为流体能量,提高效率。
综上所述,离心泵的性能参数与转速有关,不同转速下的流量、扬程和效率也会发生变化。
实验结果可以验证离心泵性能参数与转速之间的关系。
离心泵性能综合测定报告(格式)
![离心泵性能综合测定报告(格式)](https://img.taocdn.com/s3/m/dfcab0670622192e453610661ed9ad51f11d544c.png)
离心泵性能综合实验一、实验目的1、了解离心泵结构与特性,学会离心泵的操作。
2、测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(Q)之间的曲线关系。
3、测定离心泵组合泵性能曲线。
4、掌握离心泵流量调节的方法(阀门)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。
二、实验任务1、在同一张坐标纸上描绘一定转速下的H~V、N~V、η~V曲线;2、分析实验结果,判断泵较为适宜的工作范围;3、在同一张坐标纸上描绘泵Ⅰ、Ⅱ的H~V及串联的H~V曲线三、实验装置及流程图1 离心泵性能测定流程示意图1-水箱;2-泵入口真空表控制阀;3-离心泵;4-流量调节阀;5-泵出口压力表控制阀;6-泵入口真空表;7-泵出口压力表;8-涡轮流量计;9-灌泵入口; 10-灌水控制阀门;11-排水阀;12-底阀流程:水从水箱内通过离心泵经过…... 四、实验原理离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。
通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下: 1.流量Q 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值Qm 3/h 。
2.扬程H 的测定与计算在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:()gu u g P P Z Z H 212221212-+-+-=ρ (3)1p ,2p :分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3 1u ,2u :分别为泵进、出口的流量m/sg :重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:Z gp p H ∆+-=ρ12 (4)由式(4)可知:只要直接读出真空表和压力表上的数值,测出离心泵进出口压力表和真空表之间的垂直距离,就可以计算出泵的扬程。
离心泵性能实验报告
![离心泵性能实验报告](https://img.taocdn.com/s3/m/40637a5cc4da50e2524de518964bcf84b9d52d26.png)
离心泵性能实验报告离心泵性能实验报告一、引言离心泵是一种常见的流体输送设备,广泛应用于工业生产和民用领域。
为了了解离心泵的性能特点和优化设计,我们进行了一系列的实验研究。
本报告旨在总结实验结果,分析离心泵的性能参数,并提出改进方案。
二、实验目的本次实验的主要目的是测量离心泵在不同工况下的性能参数,包括流量、扬程、效率等。
通过对比实验数据,分析离心泵的运行特点和性能曲线,为离心泵的优化设计提供依据。
三、实验装置我们使用了一台标准的离心泵实验装置,包括离心泵、流量计、压力传感器等。
实验过程中,通过改变进口阀门的开度和出口阀门的阻力,模拟不同的工况条件。
四、实验步骤1. 开启实验装置,调整进口阀门的开度和出口阀门的阻力,使系统处于稳定工况。
2. 测量进口和出口的压力,并记录实验数据。
3. 使用流量计测量流量,并记录实验数据。
4. 重复以上步骤,改变进口阀门的开度和出口阻力,进行多组实验。
五、实验结果分析根据实验数据,我们得到了离心泵在不同工况下的性能参数。
通过绘制流量-扬程曲线和流量-效率曲线,我们可以看出离心泵的性能特点。
1. 流量-扬程曲线根据实验数据绘制的流量-扬程曲线呈现出一定的特征。
随着流量的增加,扬程逐渐增大,但增长速率逐渐减缓。
当流量达到一定值后,扬程增长趋于平缓。
这说明离心泵在较大流量下的扬程增长受到一定的限制。
2. 流量-效率曲线实验数据还表明,离心泵的效率随着流量的增加而逐渐提高,但在一定流量范围内,效率达到峰值后开始下降。
这是因为在过大或过小的流量下,离心泵的效率都会受到影响。
六、性能参数计算根据实验数据,我们可以计算出离心泵的一些重要性能参数。
1. 流量流量是离心泵的重要性能参数之一,可以通过流量计直接测量得到。
在实验中,我们记录了不同工况下的流量数据,并计算出了平均值和标准差。
2. 扬程扬程是离心泵输送流体的能力,也是评价离心泵性能的重要指标。
通过测量进口和出口的压力差,可以计算出离心泵的扬程。
关于离心泵的实习报告
![关于离心泵的实习报告](https://img.taocdn.com/s3/m/1734e38eb04e852458fb770bf78a6529657d3510.png)
一、实习背景随着我国工业的快速发展,离心泵作为工业生产中常用的流体输送设备,其重要性日益凸显。
为了更好地了解离心泵的结构、工作原理以及维修保养方法,我们参加了为期一周的离心泵拆装实习。
二、实习内容1. 离心泵理论知识学习实习期间,我们首先学习了离心泵的基本理论知识,包括离心泵的工作原理、结构组成、性能参数等。
通过学习,我们对离心泵有了初步的认识。
2. 离心泵拆装实践(1)拆装工具及材料准备实习前,我们准备了拆装离心泵所需的工具和材料,如扳手、螺丝刀、钳子、润滑脂、密封垫等。
(2)离心泵拆装步骤1)拆卸泵体:先拆下泵体上的进出口管道,然后松开泵体与泵座的连接螺栓,将泵体与泵座分离。
2)拆卸叶轮:松开叶轮与泵轴的连接螺栓,将叶轮从泵体内取出。
3)拆卸泵轴:松开轴承盖螺栓,将轴承盖与泵座分离,取出泵轴。
4)拆卸轴承:松开轴承座螺栓,将轴承座与泵座分离,取出轴承。
5)拆卸密封件:拆卸机械密封或填料密封,清理泵体内污物。
6)清洗各部件:使用清洁剂清洗各部件,确保清洁无油污。
7)装配:按照拆卸的逆顺序进行装配,注意装配过程中的间隙、位置等要求。
8)加注润滑脂:在轴承、联轴器等部位加注适量的润滑脂。
9)密封测试:对机械密封进行水压试验,确保密封性能良好。
10)性能测试:对装配完成的离心泵进行性能测试,验证其性能指标。
3. 离心泵维修保养实习期间,我们还学习了离心泵的维修保养方法,包括:(1)定期检查泵体、叶轮、泵轴等部件的磨损情况,及时更换磨损严重的部件。
(2)检查轴承、联轴器等部位的润滑情况,及时加注润滑脂。
(3)定期检查泵的进出口管道、阀门等,确保其畅通无阻。
(4)检查泵的密封性能,及时更换密封件。
三、实习收获1. 理论与实践相结合,加深了对离心泵的认识。
2. 学会了离心泵的拆装、维修保养方法,提高了动手能力。
3. 了解了离心泵在实际生产中的应用,为今后从事相关工作打下了基础。
四、实习总结通过本次离心泵拆装实习,我们不仅掌握了离心泵的基本理论知识,还学会了离心泵的拆装、维修保养方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京化工大学化工原理实验报告实验名称:离心泵实验班级:化工****姓名: ***学号: 20110111** 序号: *同组人: *** *** ***设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第1套实验日期: 2013-**-**一、实验摘要本实验使用FFRS Ⅲ型第1套实验设备,通过测量离心泵进出口截面的流量、压强、电机输入功率等量,根据He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f 、Pa =0.9P 电 、η=Pe Pa ⁄得到 He~q v 、Pa~q v 、η~q v 关系曲线,即离心泵特性曲线;同理得管路的特性曲线;通过涡轮流量计测得的管路流量,根据C o =q v A 0√ρ2∆p 和R e =duρμ⁄得到孔板流量计的孔流系数C o 与雷诺数R e ,从而绘制C o 和R e 曲线图。
该实验提供了一种测量泵和管路的特性曲线以及标定孔板流量计孔流系数的的方法,其结果可为泵、管路和孔板流量计的实际应用与工艺设计提供重要参考。
关键词:离心泵,特性曲线,孔板流量计二、实验目的1. 了解离心泵的构造,掌握其操作和调节方法。
2. 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3. 了解孔板流量计的构造和原理,测定其孔流系数。
4. 测定管路特性曲线。
5. 测定相同转速下双泵并联特性曲线三、实验原理1. 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
离心泵性能是指在叶轮结构、尺寸、转速等固定的情况下,泵输送液体具有的特性。
其中He~q v 、Pa~q v 、η~q v 关系曲线称为离心泵特性曲线。
根据此曲线可以求出最佳操作范围,作为选泵的依据。
(1) 泵的扬程He扬程是离心泵对单位牛顿流体作的有效功。
在泵的进出管路取两个截面,忽略流体阻力,列机械能衡算可知扬程为:He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f =H 2−H 1+∆Z +u 22−u 122gm式中,H 2——出口截面静压能,mH 20;H 1——进口截面静压能,mH 20;(2)泵的有效功率和效率轴功率取输入电机功率Pa 的90%,即:Pa =0.9P 电 kW 有效功率:P e =(p 2−p 1)q v 1000⁄=ρgq v H e 1000⁄ kW 泵的效率:η=Pe Pa ⁄ 总效率:η总=Pe P 电⁄通过仪器仪表直接测量电功率、进出口截面静压能、液体流量、温度等。
即可确定该泵性能。
2.管路特性曲线的测定管路特性是指在流体输送管路不变的情况下,管路需要的能量H=流体损失的能量+流体增加的能量。
其中H~q v 关系曲线称为管路特性曲线,与泵无关,只受管路与流体影响。
在管路的起点和终点取两个截面,当管径相同时,且管径流动达到阻力平方区时,根据机械能衡算式可知管路需要的能量为: H =∆Z +∆pρg+∆u 22g+ ∑h f =A +Bq v 2 m在任何一个实际流量点,离心泵传递给液体的有效能量He ,等于管路在该流量q v 下运送流体所需要的能量H ,即H =He ,所以H 的测量原理同He ,即可得到管路特性曲线——H~q v 曲线3. 孔板流量计孔流系数的测定根据伯努利方程,在孔板前后平行流线处取两个截面,然后用孔口截面代替后一个截面并修正,最后得到孔板流量计算式为q v=C0A0√2∆pρm3s⁄由此得孔流系数C o=q vA0√ρ2∆p,式中,A0——孔口的面积,m2。
其中q v可由涡轮流量计测得。
孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径d0与管径d1比和雷诺数R e共同决定,具体数值由实验确定。
当d0d1⁄一定,雷诺数R e超出某个值后,C0就接近于定值。
通常工业上选用孔板流量计时应尽量使C0为常数的R e下使用。
连接管道的雷诺数R e=duρμ⁄4. 离心泵并联特性曲线当单台泵的输液能力达不到目标流量时,有时可以选择双泵并联或串联。
对于低阻输送管路,并联优于串联组合;对于高阻输送管路,则采用串联组合更为适合。
本套设备可通过切换阀门,测定双泵并联的性能。
理想情况下,双泵性能可以由单泵性能合成得到:单泵拟合:H e=A−Bq v2 m并联组合:He并=A−B(2q v)2 m串联组合:He串=A/2−Bq v2 /2 m四、实验流程和设备图离心泵实验带控制点工艺流程1、水箱2、离心泵3、涡轮流量计4、管路切换阀5、孔板流量计6、流量调节阀7、变频仪TI01——水温度/℃;QI02——水流量/m3·h-1;∆PI03——压降/kPaNI04——电功率/kW;PI05——出口表压/ mH20;PI06——入口表压/ mH20实验介质:水(循环使用)。
⁄型单级离心泵;研究对象:粤华WB70055孔板流量计,锐孔直径d0=18.0mm,管道直径d1=27.0mm仪器仪表:涡轮流量计,LWGY-25型,0.6~10m3·h-1,精确度等级0.5;温度计,Pt100,0~200℃,精度等级0.2;压差传感器,WNK3051型,-20~100kPa,精确度等级0.2,测势能差Δp;显示仪表:AI-708等,精度等级0.1;变频仪:西门子MM420型;天平,0.01g;量筒等。
控制系统:控制电柜+电脑+数据采集软件,需380VAC+220VAC五、实验操作1. 关流量调节阀,打开除层流管以外的主管路切换阀,按电柜和变频仪绿色按钮启动水泵(本实验泵处于水槽下方,故无需灌泵);2. 固定转速(50或40Hz),通过调节阀改变水量从0到最大(流量梯度参照老师所给预习材料,以下同),记录数据完成泵性能实验;3. 固定调节阀开度(全开、0.75开度、0.5开度),通过变频仪调节水流量从较大(变频仪50Hz)到0.15m3/h 左右,完成管路实验;4. 调变频仪为50Hz,关闭流量调节阀,关闭孔板管路以外的主管路切换阀,开孔板引压阀和压差传感阀排气,排气完毕在关闭压差传感器排气阀,手工记录零点ΔP0,最后通过调节阀改变水流量从0.6m3/h到最大,记录数据完成孔板实验;5. 切换阀门形成泵并联组合,频率均为50Hz,通过阀门调节水流量从0到最大,两组共同记录相关数据(功率等于两者之和,流量取平均值),完成并联实验(性能与管路无关,可打开层流管外单的主管路切换阀,实际操作打开比较好);6. 实验结束,按变频仪红色按钮停泵,关闭流量调节阀、压差传感器排气阀,做好卫生工作。
注意事项:(1)泵实验通过阀门改变流量,管路实验通过变频仪改变流量;(2)泵并联实验时需借用临组水泵,同时需关闭其流量调节阀;(3)孔板压降波动到平均值时记录六、实验数据表格及计算举例(注:黑色数据为原始数据,蓝色数据为过程量,红色数据为结果值)1.离心泵特性Ⅰ实验数据表(50Hz,2850r/min):ΔZ=0.2mH2O,d1=0.042m,d2=0.027m以第三组数据为例进行计算:q v =0.60m 3h ⁄,p 2=21.5mH 2O ,p 1=0.4mH 2O ,P 电=0.44kW ,T =19.9℃ 当T =19.9℃ 时,查表得,水的密度ρ=996.3kg/m 3进口流速u 1=4×q v πd 12=4×0.603600×π×0.0422=0.12 m/s ,进口流速u 2=4×q v πd 22=4×0.603600×π×0.0272=0.29 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=21.5−0.4+0.2+0.292−0.1222×9.81=21.3m轴功率Pa =0.9P 电 =0.9×0.44=0.40kW有效功率P e =ρgq v H e 1000⁄=996.3×9.81×0.60×21.3/(3600×1000)=0.035kW 泵的效率η=Pe Pa ⁄=0.0350.40=⁄8.8%同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η3. 离心泵特性Ⅱ实验数据表(40Hz,2850r/min ):ΔZ=0.2mH 2O,d 1=0.042m,d 2=0.027m以第三组数据为例进行计算:q v =1.02m 3h ⁄,p 2=13.1mH 2O ,p 1=0.3mH 2O ,P 电=0.29W ,T =20.8℃ 当T =20.8℃ 时,查表得,水的密度ρ=996.1kg/m 3进口流速u 1=4×q v πd 12=4×1.023600×π×0.0422=0.20 m/s ,进口流速u 2=4×q v πd 22=4×1.023600×π×0.0272=0.49 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=13.1−0.3+0.2+0.492−0.2022×9.81=13.0m轴功率Pa =0.9P 电 =0.9×0.29=0.26kW有效功率:P e =ρgq v H e 1000⁄=996.1×9.81×1.02×13.0(3600×1000)⁄=0.036kW 泵的效率:η=Pe Pa ⁄=0.0360.26=13.8%⁄同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η212以第三组数据为例进行计算:频率为42Hz ,q v =2.05m 3h ⁄, p 2=13.9mH 2O , p 1=0.2mH 2O , T =21.6℃进口流速u 1=4×q v πd 12=4×2.053600×π×0.0422=0.41 m/s ,进口流速u 2=4×q v πd 22=4×2.053600×π×0.0272=0.99 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=13.9−0.2+0.2+0.992−0.4122×9.81=13.9m同理求出其余各组需要能量H6.管路特性Ⅰ数据表(流量调节阀固定2/4开度):ΔZ=0.2mH2O,d1=0.042m,d2=0.027m以第三组数据为例进行计算:频率为42Hz,q v=4.08m3h⁄, p2=11.7mH2O, p1=−0.3mH2O, T=21.8℃进口流速u1=4×q vπd12=4×4.083600×π×0.0422=0.82m/s,进口流速u2=4×q vπd22=4×4.083600×π×0.0272=1.98 m/s扬程He=H2−H1+∆Z+u22−u122g =11.7−(−0.3)+0.2+1.982−0.8222×9.81=12.4m同理求出其余各组需要能量H212以第三组数据为例进行计算:频率为42Hz ,q v =6.05m 3h ⁄, p 2=8.7mH 2O , p 1=−1.0mH 2O , T =22.2℃进口流速u 1=4×q v πd 12=4×6.053600×π×0.042=2.94m/s ,进口流速u 2=4×q v πd 22=4×6.053600×π×0.027=1.21 m/s需要能量H =H 2−H 1+∆Z +u 22−u 122g=11.7−(−0.3)+0.2+2.94−1.2122×9.81=10.3m同理求出其余各组需要能量H002−4210−4m 2以第三组数据为例进行计算:q v =1.01m 3h ⁄, ∆P =1.16k Pa, T =23.1℃当T =23.1℃ 时,查表得,水的密度ρ=995.5kg/m 3,粘度μ=951.85μPa/s 水流速u =4×q v πd 02=4×1.013600×π×0.0272=0.49m/s雷诺数R e =du ρμ⁄=0.027×0.49×995.5951.85×10−6=13837孔流系数C o =q v A 0√ρ2∆p = 1.013600×2.54×10−4√995.52×1160=0.72面积比m =A 0A =2.545.73=0.44,由m =0.44和R e =13837查图(见化工原理图1-52)可得:孔流系数经验值为0.71同理求出其余各组的雷诺数R e 、孔流系数C o 与孔流系数经验值9. 双泵并联特性实验数据表(50Hz+50Hz ):ΔZ=0.2mH 2O,d 1=0.042m,d 2=0.027m以第三组数据为例进行计算:q v =2.02m 3h ⁄, p 2=20.8mH 2O , p 1=0.3mH 2O ,P 电=0.91, T =25.2℃查表得,当T =25.2℃ 时,水的密度ρ=995.0kg/m 3 进口流速u 1=4×q v πd 12=4×2.023600×π×0.0422=0.41 m/s ,进口流速u 2=4×q v πd 22=4×2.023600×π×0.0272=0.98 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=20.8−0.3+0.2+0.982−0.4122×9.81=20.8m轴功率Pa =0.9P 电 =0.9×0.91=0.82kW有效功率P e =ρgq v H e 1000⁄=995.0×9.81×2.02×20.8(3600×1000)⁄=0.11kW 泵的效率η=Pe Pa ⁄=0.110.82=13.9%⁄同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η七、实验结果作图及分析1. 分别在同一坐标系内做出50Hz 和40Hz 时单泵的特性曲线,并拟合关系式。