机械振动和机械波的联系与区别
大学物理机械振动和机械波ppt课件
2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。
机械振动和机械波知识点总结分析
机械振动和机械波一、知识构造二、重点知识回忆1机械振动〔一〕机械振动物体〔质点〕在*一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
〔二〕简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最根本的振动。
研究简谐振动物体的位置,常常建立以中心位置〔平衡位置〕为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k*,其中“-〞号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能〔重力势能和弹性势能〕都随时间做周期性变化。
〔三〕描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A 〞表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
〔四〕单摆:摆角小于5°的单摆是典型的简谐振动。
机械振动和机械波知识精讲 人教版
机械振动和机械波知识精讲一. 本周教学内容:机械振动和机械波 二. 知识结构:三. 知识要点: 1. 机械振动:(1)机械振动:物体在平衡位置附近做往复运动,叫机械振动。
(2)回复力:使振动物体返回平衡位置的力叫回复力。
* 回复力时刻指向平衡位置,是以效果命名的,它是振动物体在振动方向上的合外力,回复力不一定等于合外力。
2. 简谐运动:(1)简谐运动:物体在跟位移大小成正比,且总是指向平衡位置的力作用下的振动。
受力特征:kx F -=(2)描述简谐运动的物理量振幅A :标量,是描述简谐运动的特征量,反映振动的强弱和振动的空间范围。
周期T :频率f :描述振动快慢的物理量,其大小是由振动系统本身的性质决定的。
另外还有位移x ,回复力F ,加速度a ,速度v ,动能k E ,势能p E3. 单摆:(1)单摆:在一条不可伸长的,忽略质量的细线下端拴一质点,上端固定,构成的装置叫单摆。
(2)单摆可以看成是简谐运动的条件是︒<10α。
(3)单摆的周期公式gl T π2= * 单摆具有等时性,在小振幅摆动时,单摆的振动周期跟振幅和振子的质量都没关系。
4. 简谐运动的图象(1)物理意义:表示振动物体的位移随时间变化的规律 * 振动图象不是质点的运动轨迹。
(2)特点:简谐运动的图象是正弦(或余弦)曲线(3)作图:以横轴表示时间,纵轴表示位移,用平滑曲线连接各时刻对应的位移的末端。
(4)应用:从简谐运动的图象中我们可以直观地读取振幅A ,周期T 及各个时刻的位移x 。
同时还可以判定回复力、加速度的方向。
5. 简谐运动的能量振动过程是一个动能和势能不断转化的过程,在任意时刻动能和势能的和等于振动物体总的机械能。
没有损耗时,振动过程中总机械能守恒,振幅越大,振动能量越大。
阻尼振动的振幅逐渐减小,因此阻尼振动的机械能不守恒。
6. 阻尼振动、受迫振动、共振(1)阻尼振动:振幅逐渐减小的振动,叫做阻尼振动。
说说机械振动与机械波的关系
说说机械振动与机械波的关系作者:华庆付来源:《物理教学探讨》2008年第22期1 基本知识回顾机械振动在介质中传播而形成的波。
按介质中质点振动方向和波传播方向间的关系,可分为横波和纵波两种:质点振动方向与波传播方向垂直的叫横波;在一条直线上的则叫纵波。
固体中既能传播横波又能传播纵波;液体和气体中只能传播纵波。
机械波的产生:机械振动在介质中的传播过程叫机械波。
机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。
有机械波必有机械振动,有机械振动不一定有机械波。
但是,已经形成的波跟波源无关,在波源停止振动时仍会继续传播,直到机械能耗尽后停止。
2 典型例题2.1 质点的振动B.介质振动的能量由波源向周围传播C.介质中各质点振动的形式由波源向周围传播D.介质中各质点只是在各自的平衡附近振动而没有发生迁移解析波在传播过程中,质点的振动形式和能量向远处传播,而质点不随波迁移。
答案点拨机械振动在媒质中的传播形成了机械波,在波的传播过程中,伴随着的是能量的移动,而质点只是在一定范围内完成周期性的振动,这一点我们要牢记在心。
2.2 机械振动与机械波的关系例2 关于振动和波的关系,下列说法正确的是A.有机械波必有振动B.有机械振动必有波C.介质中各质点都在各自的平衡位置附近振动D.离波源远的质点振动得慢解析关于振动和波的关系需要明确的是:振动是形成波的必要条件,没有振动就没有波;但有振动而没有介质也不会形成波。
所以,选项A正确而选项B错误。
同时要注意:当波形成以后,其中的各质点只是在各自的平衡位置附近振动而不发生迁移。
所以,选项C正确。
离波源远的质点在一波源开始振动的时候还没有振动,经过一段时间,波传播到了该质点所在位置时,质点才开始振动;一旦质点开始了振动,则每个质点的振动快慢(周期)一样。
故本题答案为2.3 波的图象与质点振动方向例3 如图所示,是某时刻的波动图象,其中质点P沿y轴正方向运动,则波的传播方向如何?质点A的振动方向如何?解析一、平移法:质点P沿y轴正方向运动,只有将波形向右平移质点P才沿y轴正方向运动,因而波向右传播。
超声波简答题集锦
超声波简答题1、是机械振动和机械波?二者有何区别?物体沿着直线或曲线在某一平面位置附近作往复周期性的运动,称机械振动。
机械振动在弹性介质中传播就产生机械波,振动是产生波动的根源,而波动是振动这一运动方式在介质中的传播2、是振动周期和振动频率?二者有何关系?振动物体完成一次全振动所需要的时间称振动周期,用T表示。
常用单位为S。
振动物体在单位时间内完成全振动的次数称振动频率,有f表示。
常用单位Hz,1Hz表示1S内完成1次全振动,即1Hz=1次/秒。
由周期和频率的定义可知,二者互为倒数,即:T=1/f。
3、是弹性介质?同样作为传声介质,固体、液体、汽体有哪些不同?在介质内部,各质点间以弹性力联系在一起,这样的介质称为弹性介质。
一般固体、液体、气体都可视为弹性介质。
但前者与后者存在区别,固体内部可以存在拉、压应力和剪切应力,而液体或气体内部不存在拉应力或剪切应力,只可以传递压应力。
纵波是靠拉、压应力传播的,所以在固体、液体、气体中都可以传播,而横波或表面波的传播需要剪切应力,所以它们只能在固体中传播,而不能在液体或气体中传播。
4、什么是波动频率、波速、波长?三者有何关系?波动过程中,任一给定点在1秒钟内所通过的完整波的个数称波动频率。
波动频率在数值上同振动频率,用f表示,单位Hz波动中,波在单位时间内所传播的距离称为波速,用C表示单位为米/秒同一波线上相邻两振动相位相同的质点间的距离称波长,用表示。
波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离。
波长与波速成正比,与频率成反比。
当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
5、什么是超声波?工业应用频率范围是多少?在超声波探探伤中应用了超声波哪些特性?频率高于20000Hz的机械波称为超声波,工业探伤所用的频率一般在0。
5—10MHz之间,对钢等金属材料的检验,常用的频率为1----5MHz之间。
超声波的主要特点是频率高,波长短,能量密度大,在工业探伤中主要利用了超声波的以下特性:(1)超声波方向性好。
高中物理-【机械波与机械振动】知识点总结
103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。
简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。
在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。
(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。
②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。
(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。
②某时刻振动质点离开平衡位置的位移。
③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。
机械振动和机械波知识点总结(最新整理)
机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
(完整版)机械振动和机械波知识点总结
机械振动考点一简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2. 简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A:振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f:物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T=1/f.(2) 简谐运动的表达式①动力学表达式:F =-kx,其中“-”表示回复力与位移的方向相反.②运动学表达式:x=Asin (ωt+φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3) 简谐运动的运动规律回复力、加速度增大速度、动能减小①变化规律:位移增大时机械能守恒势能增大振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC=t CB;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC=t B′C′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同. 注意:做简谐运动的物体在一个周期内的路程大小一定为4A,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为 A 。
高三物理机械振动和机械波知识点总结
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线。
(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
机械振动和机械波知识点总结分析
机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
高中物理机械振动和机械波
3.受迫振动
(1)驱动力:作用于振动系统的周期性外力。
(2)受迫振动:物体在外界驱动力作用下的振动。 思考: 物体做受迫振动时,振动稳定后的频率与什么 有关?
视频
(3)受迫振动的特点
物体做受迫振动时,振动稳定后的频 率等于驱动力的频率,跟物体的固有频率 无关。
4.共振
(1)定义:驱动力的频率f等于物体的固有频 率f0时,受迫振动的振幅最大,这种现象叫 做共振。 (2)共振曲线
摆角 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 14º 15º 20º 30º 45º 60º 90º
正弦值 0.01754 0.03490 0.05234 0.06976 0.08716 0.10453 0.12187 0.13917 0.15643 0.17365 0.19081 0.20791 0.22495 0.24192 0.25882 0.34202 0.50000 0.70711 0.86603 1.00000
(2)图象法:由单摆周期公式不难推出:l=4gπ2T2,因此,分别测 出一系列摆长 l 对应的周期 T,作 l-T2 的图象,图象应是一条通过 原点的直线,求出图线的斜率 k=ΔΔTl2,即可利用 g=4π2k=4ΔπT2Δ2l求得 重力加速度值,如图所示.
练习
某同学在正确操作和测量的情况下,测得多组摆长 L 和对应的周 期 T,画出 L-T2 图线,如图所示.出现这一结果最可能的原因是: 摆 球 重 心 不 在 球 心 处 , 而 是 在 球 心 的 正 ____ 方 ( 选 填 “ 上 ” 或 “下”).为了使得到的实验结果不受摆球重心位置无法准确确定的 影响,他采用恰当的数据处理方法:在图线上选 取 A、B 两个点,找出两点相应的横纵坐标,如 图所示.用表达式 g=________计算重力加速度, 此结果即与摆球重心就在球心处的情况一样。
机械振动和机械波知识点总结分析
机械振动和机械玻二、识回顾1机械振朋(一)机植振动物体(质点)在杲一屮心位置两侧所做的住复运动就叫做机植按动,物体能協围绕着平衡位 置做往貝运动,必然受到使它能場回到平飯位置的力即回复力。
回复力是以效果命白的力, 它可以是一f 力或一f 力的分力,也可H 是几个力的合力。
产生振动的必要条件是:a 、物体离开平ffiEi 后要受到回复力作用。
b 、KI 力足够小。
(二)简谐振动1. 定义:物体在服位移成正比,并且总是指向平働位置的回复力作用下的振动叫简iS 振动。
简谧娠朋是晟简单,最星本的"。
研究简谐按动物U 的位置,常常建立以屮心位置(平S ) 位置)力原点的坐标系,把物体的位移定义力物体倫离开坐标原点的位務。
因此简讹振动也 可说是物U 在眼位務大小成正比,方向服位移柑反的回复力作用卞的振动,即F=・k 儿其中 w 号表示力方向跟位務方向Mfio2. 简谐振动的条件:物体必须受到大小眼离开平働位置的位移成正比,方向跟位移方向相反 的回貝力作用。
3. 简诰振动是一种机械运动,有关机檢运动的闵念相规律都适用,简皓娠动的特点在干它是 一种周期性运动,它的位移、回貝力、速.度、加速厦以及朋能和势能(巫力势能相樨11势能) SffiNFO 周期性变化。
一、知识给构ill 戒 振 动 -X 机 械 波 4波形、图象 严波的干涉描写物理量 波的衍射 波动特征 周期、频率卜I(三)描述娠动的物理量,简谐按动是一种周期性运动,描述系竦的整体的振动情况常引人下面几个物理量。
1. 掾帽:振幅是捺动物U离开平画位置的最大卽离,常用字母"A”表示,它是标量,为正值,振幅是表示振动強弱的物理量,振編的大小表示了板动系统总«1植能的大小,简谐振动在振別过程中,朋能利势能相互转化而忠机植能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,頻率是一枚外掾子芫成全掾动的次数。
按动的周期T眼顺率/之间是倒数关系,R0T=1/^掠动的周期和顺率那是描述按动快慢的物卑量,简iOxh的周期和频率是由振动物体本身11喷决定的,与掠幅无关,所£12叫固有周期和囿有频率。
机械振动和机械波.(DOC)
机械振动机械波复习一、机械振动质点沿着直线或弧线绕平衡位置往复运动叫做机械振动.1.产生振动的必要条件 1有回复力(回复力是效果力) 2阻力很小回复力:振动的质点所受诸外力在指向平衡位置方向(振动方向)上的合力.例如;弹簧振子;弹簧的弹力提供振动的回复力单摆;重力在切线方向上的分力mgsinθ提供振动的回复力2.描述振动的物理量(1)振幅(A):振动质点离开平衡位置的最大距离振幅是标量,是表示质点振动强弱的物理量.(2)周期(T):振动质点经过一次全振动所需的时间.表示质点振动快慢的物理量.全振动:振动质点经过一次全振动后其振动状态又恢复到原来的状态.(3)频率(f):一秒钟内振动质点完成全振动的次数.(4)相位(拍):表示质点振动的步调的物理量3.简谐振动(1)简谐振动的特点:1)回复力的特点:F=-kx 是周期性变化的.可作为判别一个物体是否作简谐振动的依据.振动物体所受回复力的大小跟振动中的位移(x)成正比,方向始终与位移方向相反,指向平衡位置.注意:.位移必须从平衡位置起向外指向(2)加速度的特点振动物体的加速度跟位移大小成正比,方向与位移方向相反.(加速度方向和回复力方向一样永远指向平衡位置.),简谐振动是一种变加速运动.3)振动质点速度的特点:v=sin(ωt+ψ)(超纲)振动物体的速度的大小总是随位移的增大而减小,随位移的减小而增大.在平衡位置时,振动物体的速度最大.如表所示.4)振动中位移随时间变化规律:按正弦(或余弦)曲线变化[x=Acos(ωt+ψ)](超纲)5)振动物体能量的特点:机械能是恒量,遵守机械能守恒定律.振幅越大,能量越大.(2)简谐振动的规律:1)振动图象:振动位移-时间的函数图象.物理意义:a)从图象上可知振动的振幅A; b)从图象上可知振动的周期;c)从图象上可知质点在不同时刻的位移,d)从图象上可比较质点在各个时刻速度大小及符号(表示方向);e)从图象上可比较质点在各个时刻加速度的大小及符号.f)从图象可看出质点在不同时刻间的相差.2)简谐振动的周期:4.受迫振动(1)受迫振动产生条件:质点在周期性驱动力作用下的振动.(2)受迫振动特点:受迫振动的频率等于驱动力的频率,与物体的固有频率无关.(3)共振——受迫振动特例.当策动力的频率等于受迫振动物体本身的固有频率时,受迫振动的振幅达到最大值,二、机械波机械振动在弹性媒质中的传播运动叫机械波.我们应特别注意,在振动的传播过程中,每个参与传播振动的质点不沿振动传播方向定向移动(质点不随之迁移),它们只在各自的平衡位置附近振动.1.产生条件(1 )振动振动振源(2)传播振动的媒质2.波的分类(1)横波:振动方向与波的传播方向垂直;横波波型有波峰和波谷.只有在固体中传播(2)纵波:质点振动方向与波的传播方向在一条直线上;纵波波型有密部和疏部.在固体,液体,气体中均能传播3.描述波的物理量(1)频率(f):波的频率与波源的振动频率相同.在传播过程中是不变的(2)波速(v):波速是波传播的速度——质点振动状态传播的速度.取决于媒质的性质.同种媒质传播不同频率的同类机械波时,传播速度是相同的.(3)波长(λ):两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间的距离.或者说,在一个周期内波传播的距离的大小.波长是标量.(4)波长、频率和波速的关系:4.波的图象波传播过程中,在某一时刻媒质各质点的位移末端连线,图线上各质点均为媒质中振动的质点,横坐标表示质点的平衡位置,纵坐标表示质点的位移.物理意义:a)能表示出质点振动的振幅(A); b)能表示各质点振动的位移(y);c)能表示出波长(λ); d)能表示出各质点的振动方向、加速度大小及符号;e)能表示出各质点间的相位关系.特别注意:波的图象与振动图象的区别.5.波的一般性质(1)波的反射:(2)波的折射:(3)波的干涉:1)产生条件:相干波——两列波频率相同;(相差恒定);2)现象:在相干区域内,增强区与减弱区相间.其中Δs为该点至两波源的距离差(波程差).3)对干涉现象应注意:a)增强是指振动质点的能量增大,即振幅增大,并不是速度增大;减弱是振幅减小.b)增强区或减弱区位置是确定的,即增强点(域)始终增强;减弱区的点始终减弱.c)不论增强区或是减弱区,各质点都作与相干波源周期相同的振动,各质点振动的位移是周期性变化的.(4)波的衍射:波在煤质传播,可以绕过障碍物或小孔到继续传播形成明显衍射的条件障碍物或小孔的大小和波长相差不多或比波长小(5)波的共振:波在媒质中传播时,如果遇到的物体的固有周期和波的周期相同时,能够引起物体振幅最大的振动.6 波的多解问题 1波的空间,时间的周期性 2 波的称性 3波的双向性一. 机械振动和机械波的联系与区别1. 从产生条件看:振动是波动的成因,波动是振动在介质中的传播,2. 从运动现象看:振动是单个质点在平衡位置的往复运动;波动是介质中大量质点依次振动而形成的,而且质点并不随波的传播而迁移。
机械波
机械波1 波的产生、传播、分类、描述的物理量一、规律技巧1、机械振动在介质中的传播就形成机械波。
2、机械波的产生条件:振源和介质。
振源——产生机械振动的物质,如在绳波中绳子端点在手的作用下不停抖动就是振源。
介质——传播振动的介质,如绳子、水。
3、对机械波概念的理解(1)机械波是构成介质的无数质点的一种共同运动形式;(2)当介质发生振动时,各个质点在各自的平衡位置附近往复运动,质点本身并不随波迁移,机械波向外传播的只是机械振动的形式。
(3)波是传播振动形式和能量的一种方式。
(4)沿波传播方向,介质中各质点依次开始振动,距波源愈近,愈先开始振动.4、波的分类:按波的传播方向和质点的振动方向可以将波分为两类:横波和纵波。
(1)横波:质点的振动方向与波的传播方向垂直。
如绳波。
(2)纵波:质点的振动方向与波的传播方向在一条直线上。
如声波。
5.描述机械波的物理量(1)波长λ:沿着波的传播方向,两个相邻的在振动过程中对平衡位置的位移总是相等的质点间的距离。
单位:米(m)符号:λ①在横波中波长等于相邻两个波峰或波谷之间的距离;在纵波中波长等于相邻两个密部或疏部的中央之间的距离。
②质点振动一个周期,振动形式在介质中传播的距离恰好等于一个波长,即在一个周期里振动在介质中传播的距离等于一个波长。
③对波长的几点理解:a (1)“位移总相等” 的含义是“每时每刻都相等”。
这里要求的是每时每刻都相等。
如图所示,如E、F两点在图示的时刻位移是相等的,但过一段时间后,位移就不一定相等,所以E、F两点的距离就不等于一个波长。
b (2)位移总相等的两个质点,其速度也总是相等的。
c (3) 相距λ整数倍的质点振动步调总是相同的;相距λ/2奇数倍的质点振动步调总相反的。
(2)波速v:波的传播快慢,其大小由介质的性质决定的,在不同的介质中速度并不相同。
单位:米/秒(m/s)符号:v 表达式:v=λ/T(3)频率f:质点振动的周期又叫做波的周期(T);质点振动的频率又叫做波的频率。
高考物理知识点之机械振动与机械波
精品基础教育教学资料,仅供参考,需要可下载使用!高考物理知识点之机械振动与机械波考试要点基本概念一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
(2)回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
(3)“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
(1)由定义知:F∝x,方向相反。
(2)由牛顿第二定律知:F∝a,方向相同。
(3)由以上两条可知:a∝x,方向相反。
(4)v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
(1)振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
机械振动与机械波的联系与区别
数理化学习 ( 高中版 )
一个人沿波的传播方向前进, 波形升高的方向 叫上坡, 波形下降的地方叫下坡, 上坡处的质点 向下振动, 下坡处的质点向上振动, 记为 ∀ 正向 看, 上坡下, 下坡上. # 如图 1( b ) 所示.
例 2 如图 2所示, 图 ( a) 表示一列简谐波 在沿 x 轴传播时的波形图, 若以图示情况为计 时起点, 那么图 ( b) 的振 动图 线应 表示 的是
数理化学习 ( 高中版 )
各质点振幅 A = 2 cm. 波的频率
f=
v
=
100 0. 4
=
250 (H z), 振动从 O 传至 P 亦
即波从 O 传播至 P 所用时间
t=
s v
=
0. 6 100
=
0.
006 ( s)
再经 1 s, P 点全振动的次数为
n1 =
1 T
=
250次, 它将又振动到原位置, 故其
3. 质点运动方向的判定: 振动图象中质点 的速度方向与图象的起伏方向一致, 如图 1( a ) 的 A 点所示.
(二 ) 波动图象 1. 物理意义: 表示介质中在波的传播方向 上一系列质点在同一时刻 离开平衡位置的位 移, 如图 1( b) 所示, 随着时间的推移, 波的图象 是在更多的质点参与下延伸, 且原有图象要随 之变化. 2. 由图象可确定的物理量: 振幅、波长, 可 确定该时刻各个质点的位移、速度、加速度的方 向. 3. 质点振动方向的判定: 波动图象中质点 振动的速度方向可用 ∀ 上下坡 # 法则判定, 设想
0, 1, 2, 3, %)
那么
vP =
s t
=
2
30 + 8n
教科版 高中物理选修3-4 机械振动+机械波
(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。
②阻尼振动的振幅越来越小。
2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。
在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。
(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。
①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。
2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。
2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。