最新绝对值大全(零点分段法、化简、最值)..

合集下载

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值年夜全(零点分段法、化简、最值)之阿布丰王创作一、去绝对值符号的几种经常使用方法解含绝对值不等式的基本思路是去失落绝对值符号,使不等式酿成不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同.因此掌握去失落绝对值符号的方法和途径是解题关键. 1利用界说法去失落绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或 2利用不等式的性质去失落绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集.对含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典范的转化与化归的数学思想方法.3利用平方法去失落绝对值符号对两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值界说去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去失落绝对值,尤其是解含参数不等式时更必需注意这一点.4利用零点分段法去失落绝对值符号所谓零点分段法,是指:若数x,2x,……,n x分别使含有|x-1x|,|x-2x|,……,|x-n x|的代数式中相应绝对值为零,称1x,2x,……,n x为相应绝对值的零点,零点1x,2x,……,n x将数轴分1为m+1段,利用绝对值的意义化去绝对值符号,获得代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项即是零,获得的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.零点分段法是解含绝对值符号的不等式的经常使用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化.5利用数形结合去失落绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解.数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于-+->或||||-+-<(m为正常数)类型不等式.对x a x b mx a x b m||||ax b cx d m+++>(或<m),当|a|≠|c|时一般不用.||||二、如何化简绝对值绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常呈现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部份的正负,借以去失落绝对值符号的方法年夜致有三种类型.(一)、根据题设条件例1:设化简的结果是().(A)(B)(C)(D)思路分析:由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去失落绝对值符号,这是解答这类问题的惯例思路.(二)、借助数轴例2:实数a、b、c在数轴上的位置如图所示,则代数式的值即是().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去失落绝对值符号扫清了障碍.解:原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点暗示的数总年夜于左边点暗示的数.3.离原点远的点的绝对值较年夜,牢记这几个要点就能沉着自如地解决问题了.(三)、采纳零点分段讨论法例3:化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采纳零点分段讨论法,本例的难点在于的正负不能确定,由于x是不竭变动的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解:令得零点:;令得零点:,把数轴上的数分为三个部份(如图)①那时,∴原式②那时,,∴原式③那时,,∴原式∴归纳点评:虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采纳此法的一般步伐是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(纷歧定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部份的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,获得问题的谜底.误区点拨千万不要想固然地把等都当做正数或无根据地增加一些附加条件,以免得犯毛病的结果.三、带绝对值符号的运算在初中数学教学中,如何去失落绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视.其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题.那么,如何去失落绝对值符号呢?我认为应从以下几个方面着手:(一)、要理解数a的绝对值的界说.在中学数学教科书中,数a的绝对值是这样界说的,“在数轴上,暗示数a的点到原点的距离叫做数a的绝对值.”学习这个界说应让学生理解,数a的绝对值所暗示的是一段距离,那么,不论数a自己是正数还是负数,它的绝对值都应该是一个非负数.(二)、要弄清楚怎样去求数a的绝对值.从数a的绝对值的界说可知,一个正数的绝对值肯定是它的自己,一个负数的绝对值肯定是它的相反数,零的绝对值就是零.在这里要让学生重点理解的是,当a是一个负数时,怎样去暗示a的相反数(可暗示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用).(三)、掌握初中数学罕见去失落绝对值符号的几种题型.1、对形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a 的3种情况,便能快速去失落绝对值符号.当a>0时,︱a︱=a(性质1:正数的绝对值是它自己);当a=0 时,︱a︱=0 (性质 2:0的绝对值是0) ;当 a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) .2、对形如︱a+b︱的一类问题首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去失落绝对值符号进行化简.当a+b>0时,︱a+b︱=(a+b) =a +b (性质1:正数的绝对值是它自己);当a+b=0 时,︱a+b︱=(a+b) =0 (性质 2:0的绝对值是0);当 a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数).3、对形如︱a-b︱的一类问题同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去失落绝对值符号进行化简.但在去括号时最容易呈现毛病.如何快速去失落绝对值符号,条件非常简单,只要你能判断出a与b的年夜小即可(不论正负).因为︱年夜-小︱=︱小-年夜︱=年夜-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b .口诀:无论是年夜减小,还是小减年夜,去失落绝对值,都是年夜减小.4、对数轴型的一类问题,根据3的口诀来化简,更快捷有效.如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),即可获得︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b .5、对绝对值符号前有正、负号的运算非常简单,去失落绝对值符号的同时,不要忘记打括号.前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!6、对绝对值号里有三个数或者三个以上数的运算万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比力,年夜于0直接去绝对值号,小于0的整体前面加负号.四、去绝对值化简专题练习(1)设化简的结果是( B ).(A)(B)(C)(D)(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值即是( C ).(A)(B)(C)(D)(3) 已知,化简的结果是 x-8 .(4) 已知,化简的结果是 -x+8 .(5) 已知,化简的结果是 -3x .(6) 已知a、b、c、d满足且,那么a+b+c+d= 0 (提示:可借助数轴完成)(7) 若,则有( A ).(A)(B)(C)(D)(8) 有理数a、b、c在数轴上的位置如图所示,则式子化简结果为( C ).(A)(B)(C)(D)(9) 有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是(B ).(A)0 (B)1 (C)2 (D)3(10) 化简 =(1)-3x (x<-4) (2)-x+8(-4≤x≤2) (3)3x(x>2)(11) 设x是实数,下列四个结论中正确的是( D ).(A)y没有最小值(B)有有限多个x使y取到最小值(C)只有一个x使y取得最小值(D)有无穷多个x使y取得最小值五、绝对值培优教案绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)、函数中距离等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .绝对值的代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值的几何意义从数轴上看,a 暗示数a 的点到原点的距离(长度,非负) ;b a -暗示数a 、数b 的两点间的距离.3.绝对值基赋性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 培优讲解(一)、绝对值的非负性问题【例1】若3150x y z +++++=,则x y z --=.总结:若干非负数之和为0,.(二)、绝对值中的整体思想【例2】已知4,5==b a ,且a b b a -=-,那么b a +=. 变式1. 若|m -1|=m -1,则m_______1; 若|m -1|>m -1,则m_______1;(三)、绝对值相关化简问题(零点分段法)【例3】阅读下列资料并解决有关问题:我们知道()()()0000<=>⎪⎩⎪⎨⎧-=x x x x x x ,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式21-++x x 时,可令01=+x 和02=-x ,分别求得2,1=-=x x (称2,1-分别为1+x 与2-x 的零点值).在有理数范围内,零点值1-=x 和2=x 可将全体有理数分成不重复且不遗漏的如下3种情况:(1)那时1-<x ,原式=()()1221+-=--+-x x x ;(2)那时21<≤-x ,原式=()321=--+x x ;(3)那时2≥x ,原式=1221-=-++x x x .综上讨论,原式=()()()221112312≥<≤--<⎪⎩⎪⎨⎧-+-x x x x x 通过以上阅读,请你解决以下问题:(1) 分别求出2+x 和4-x 的零点值;(2)化简代数式42-++x x变式1.化简 (1)12-x ; (2)31-+-x x ;23++-x x 的最小值是a ,23+--x x 的最年夜值为b ,求b a +的值. (四)、b a -暗示数轴上暗示数a 、数b 的两点间的距离.【例4】(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___.(2)若数轴上的点A 暗示的数为x ,点B 暗示的数为―1,则A 与B两点间的距离可以暗示为 ______________.(3)结合数轴求得23x x -++的最小值为,取得最小值时x 的取值范围为 ___.(4)满足341>+++x x 的x 的取值范围为 ______ .(5) 若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围. (五)、绝对值的最值问题 【例5】(1)当x 取何值时,3-x 有最小值?这个最小值是几多?(2)当x 取何值时,25+-x 有最年夜值?这个最年夜值是几多?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【例6】.已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最年夜值与最小值.课后练习:1、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值.2.若1++b a 与2)1(+-b a 互为相反数,则a 与b 的年夜小关系是( ).A .b a >B .b a =C .b a <D .b a ≥3.已知数轴上的三点A 、B 、C 分别暗示有理数a ,1,一l,那么1+a 暗示( ).A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和23x x -++,可以看出,这个式子暗示的是x 到2的距离与x 到3-的距离之和,它暗示两条线段相加:⑴那时x >,发现,这两条线段的和随x 的增年夜而越来越年夜;⑵那时x <,发现,这两条线段的和随x 的减小而越来越年夜;⑶那时x ≤≤,发现,无论x 在这个范围取何值,这两条线段的和是一个定值,且比⑴、⑵情况下的值都小.因此,总结,23x x -++有最小值,即即是到的距离5. 利用数轴分析71x x +--,这个式子暗示的是x 到7-的距离与x 到1的距离之差它暗示两条线段相减:⑴那时x ≤,发现,无论x 取何值,这个差值是一个定值;⑵那时x ≥,发现,无论x 取何值,这个差值是一个定值;⑶那时x <<,随着x 增年夜,这个差值渐渐由负变正,在中点处是零. 因此,总结,式子71x x +--那时x ,有最年夜值;那时x ,有最小值;9.设0=++c b a ,0>abc ,则c b a b a c a c b +++++的值是().A .-3B .1C .3或-1D .-3或110.若2-<x ,则=+-x 11;若a a -=,则=---21a a .12.设c b a 、、分别是一个三位数的百位、十位和个位数字,而且c b a ≤≤,则a c c b b a -+-+-可能取得的最年夜值是.4、当b 为______时,5-12-b 有最年夜值,最年夜值是_______当a 为_____时,1+|a +3 |有最小值是_________.5、当a 为_____时,3+|2a -1 |有最小值是________;当b 为______时,1- | 2+b|有最年夜值是_______.2、已知b 为正整数,且a 、b 满足| 2a -4|+b =1,求a 、b 的值.7.化简:⑴13x x -++;⑵213x x +-+4、如果2x +| 4-5x|+ |1-3x |+4恒为常数,求x 的取值范围.7、若|5||2|7x x ++-=,求x 的取值范围.。

绝对值的化简方法口诀

绝对值的化简方法口诀

绝对值的化简方法口诀绝对值是一种常用的数学概念,可以理解为一个数离0的距离。

在数学中,我们常用竖线(| |)来表示绝对值。

在解题过程中,如果我们能够简化绝对值表达式,就能更方便地进行计算。

以下是一些化简绝对值表达式的方法,可以帮助我们更好地理解和应用绝对值。

1. 定义法:绝对值的定义是一个数与0的距离,即 |x|= x,当x ≥ 0时成立;当 x < 0时,|x| = -x。

根据这个定义,我们可以直接计算出绝对值的值。

2. 分段函数:绝对值也可以用分段函数的形式表示。

例如,|x|可以表示为以下分段函数:当x ≥ 0时,|x| = x;当 x < 0时,|x| = -x。

这种表示方法可以帮助我们更好地理解和分析绝对值的性质。

3. 取正负号:绝对值的一个重要性质是,它可以通过取正负号来化简。

具体而言,对于任意实数 x,有以下规律:|x| = x,当x ≥ 0时;|x| = -x,当 x < 0时。

通过这个规律,我们可以将绝对值化简为正负号的形式,更容易进行进一步的计算。

4. 去掉绝对值符号:在一些特殊情况下,我们可以直接去掉绝对值符号而不影响等式的成立。

例如,|x| = |y|可以推出 x = y 或x = -y,因为绝对值代表的是距离,只要两个数的距离相等,它们本身也应该相等。

5. 加减性质:绝对值具有加减性质,即|a ± b| ≤ |a| ±|b|。

这个性质可以帮助我们化简绝对值表达式,将其转化为更简单的形式。

6. 分解绝对值:有时候,我们可以通过将绝对值表达式分解成多项式的形式来进行化简。

例如,|2x - 1|可以分解为以下两种情况:当 2x - 1 ≥ 0时,|2x - 1| = 2x - 1;当 2x - 1 < 0时,|2x - 1| = -(2x -1) = -2x + 1。

通过这种分解方法,我们可以更好地处理含有复杂符号的绝对值表达式。

7. 利用不等式性质:绝对值还可以通过利用不等式的性质进行化简。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值大全(零点分段法、化简、最值)..

绝对值大全(零点分段法、化简、最值)..

1 绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x xx x ,有|x |<c (0)(0)cx c c c ;|x |>c (0)0(0)(0)xc x c c x cxR c 或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b |>c (c >0)可为ax b >c 或ax b <-c ;|ax b |<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论―a ≤|x |≤b a ≤x ≤b或-b ≤x ≤-a ‖来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有―单项‖绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值化简十种方法

绝对值化简十种方法

绝对值化简十种方法绝对值是数学中的一个重要概念,它表示一个数与0的距离,因此它的值总是非负的。

在数学中,我们经常需要对绝对值进行化简,以便更好地理解和计算问题。

下面将介绍十种常见的绝对值化简方法。

1. 绝对值的定义:|x| = x (x≥0) 或 |x| = -x (x<0)。

根据这个定义,我们可以将绝对值化为一个简单的表达式。

2. 绝对值的性质:|x| = |-x|。

这个性质告诉我们,绝对值的值与它的符号无关,只与它的绝对值大小有关。

3. 绝对值的加法:|x+y| ≤ |x| + |y|。

这个不等式告诉我们,两个数的绝对值之和不会超过它们的和的绝对值。

4. 绝对值的减法:|x-y| ≥ |x| - |y|。

这个不等式告诉我们,两个数的绝对值之差不会小于它们的差的绝对值。

5. 绝对值的乘法:|xy| = |x| |y|。

这个公式告诉我们,两个数的绝对值之积等于它们的绝对值的积。

6. 绝对值的倒数:1/|x| ≤ 1/x。

这个不等式告诉我们,一个数的倒数的绝对值不会超过它本身的绝对值的倒数。

7. 绝对值的平方:|x|² = x² (x≥0) 或 |x|² = (-x)² (x<0)。

这个公式告诉我们,一个数的绝对值的平方等于它本身的平方。

8. 绝对值的立方:|x|³ = x³ (x≥0) 或 |x|³ = -x³ (x<0)。

这个公式告诉我们,一个数的绝对值的立方等于它本身的立方或相反数的立方。

9. 绝对值的导数:d/dx |x| = x/|x|。

这个公式告诉我们,一个数的绝对值的导数等于它本身除以它的绝对值。

10. 绝对值的积分:∫|x|dx = x|x|/2 + C。

这个公式告诉我们,一个数的绝对值的积分等于它本身乘以它的绝对值除以2再加上一个常数C。

以上是十种常见的绝对值化简方法,它们在数学中的应用非常广泛。

初一数学绝对值化简与零点分段法(含详细解答)

初一数学绝对值化简与零点分段法(含详细解答)

初一数学绝对值与零点分段【例1】数a 、b 在数轴上对应的点如图所示,试化简a b b a b a a ++-+--.【例2】a 、b 为有理数,且a b a b +=-,试求ab 的值.【例3】若0.239x =-,求131********x x x x x x -+-++------- 的值.【例4】化简:3x-【例5】化简:3121x x ++-.【例6】求21++-x x 的最小值。

【例7】求代数式111213x x x ++-++的最小值.【例8】如果m 为有理数,求代数式1356m m m m -+-++++的最小值.设a b c d <<<,求x a x b x c x d -+-+-+-的最小值.【例9】若a 、b 、c 为整数,且19991a b c a -+-=,试计算c a a b b c -+-+-的值.【例10】将1,2,…,100这100个正整数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式()12a b a b -++中进行计算,求出其结果,50组都代入后可求得50个值,求这50个值的和的最大值.课后练习:【练习1】⑴已知数a 、b 、c 在数轴上的位置如图所示,化简a b a b b c +++--⑵如图,根据数轴上给出的a 、b 、c 的条件,试说明a b b c a c -+---的值与c 无关.【练习2】化简:⑴1x -;⑵5x +;⑶523x x ++-【练习3】若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-=.【练习4】利用绝对值的几何意义完成下题:已知2x =,利用绝对值的几何意义可得2x =±;若21x +=,利用绝对值的几何意义可得1x =-或3-.已知125x x -++=,利用绝对值在数轴上的几何意义得x =.利用绝对值的几何意义求12x x -++的最小值.52x x ++-的最小值为.214x x x ++-+-的最小值.7326x x x x ++++-+-的最小值.归纳:若1221n a a a +<<< ,当x 时,1221n x a x a x a +-+-++- 取得最小值.若122n a a a <<< ,当x 满足时,122n x a x a x a -+-++- 取得最小值.初一绝对值与零点分段(详细解答)【例1】数a 、b 在数轴上对应的点如图所示,试化简a b b a b a a ++-+--.解析由图可知0a <,0b >,而且由于a 点离原点的距离比b 点离原点的距离大,因此0a b +<.我们有a b b a b a a++-+--()()()a b b a b a a =-++-+---()2a b b a b a --+-+--b =.【例2】a 、b 为有理数,且a b a b +=-,试求ab 的值.解析当0a b +≥时,由a b a b a b +=+=-得b b =-,故此时0b =.当0a b +<时,由()a b a b a b a b +=-+=--=-,得a a -=,故此时0a =.所以,不管是0a b +≥还是0a b +<,a 、b 中至少有一个为0,因此,0ab =.【例3】若0.239x =-,求131********x x x x x x -+-++------- 的值.解:原式=)1996()2()()1997()3()1x x x x x x --⋅⋅⋅------+⋅⋅⋅+-+-()1996()2(199731-+⋅⋅⋅+-++-+⋅⋅⋅+-+-=x x x x x x 999)19961997()45()231=-⋅⋅⋅+-+-+=(【例4】化简:3x-解;原式=⎩⎨⎧≥-<-)3(,33,3x x x x )(【例5】化简:3121x x ++-.解析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简31x +,只要考虑31x +的正负,即可去掉绝对值符号.这里我们是分13x -≥是一个分界点.类似地,对于21x -而言,12x =是一个分界点.为同时去掉两个绝对值符号,我们把两个分界点13-和12标在数轴上,把数轴分为三个部分(如图所示),即13x <-,1132x -<≤,12x ≥.这样我们就可以分类讨论化简了.(1)当13x <-时,原式()()31215x x x =-+--=-;(2)当1132x -<≤时,原式()()31212x x x =+--=+;(3)当12x ≥时,原式()()31215x x x =++-=.即15,31131212,3215,2x x x x x x x x ⎧<-⎪⎪⎪++-=+<⎨⎪⎪⎪⎩-当时;当-≤当≥时评注解这类题目,可先求出使各个绝对值等于零的变量字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数成分几个部分,根据变量字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.【例6】求21++-x x 的最小值。

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数摘要:1.绝对值与零点分段法的概念2.零点分段法在化简绝对值中的应用3.例题1:化简代数式x2x44.例题2:化简代数式x-1x2x-45.例题3:化简代数式2-3x6.例题4:化简代数式2x-1-x-27.例题5:求yx-1-x5 的最大和最小值8.绝对值的非负性在求解中的应用9.零点分段法的优点与局限性10.结论正文:一、绝对值与零点分段法的概念绝对值是一个数与0 之间的距离,因此它总是非负的。

在数学中,绝对值常用于表示一个数的大小,而不考虑它的正负。

零点分段法是一种求解绝对值方程的方法,它通过寻找代数式中各因式的零点,将绝对值符号去掉,从而简化方程。

二、零点分段法在化简绝对值中的应用在化简绝对值时,我们需要找到代数式中各因式的零点。

零点就是使代数式等于0 的x 值。

通过将代数式分解为因式的乘积,我们可以找到这些零点。

然后,我们将代数式中的绝对值符号去掉,并将各因式替换为它们在零点处的值。

这样,我们就可以得到化简后的代数式。

三、例题1:化简代数式x2x4这个代数式可以分解为x2(x2+2),因此,我们需要找到使x2+2=0 的x 值。

这个方程没有实数解,因此,我们不能使用零点分段法化简这个代数式。

四、例题2:化简代数式x-1x2x-4这个代数式可以分解为(x-1)(x+2)(x-2),因此,我们需要找到使这三个因式分别为0 的x 值。

这些零点分别为x=1, x=-2, x=2。

将这些零点代入原代数式,我们可以得到化简后的代数式为:|x-1|(x+2)(x-2) = (x-1)(x+2)(x-2) = x(x+2)(x-2)五、例题3:化简代数式2-3x这个代数式不能被进一步分解,因此,我们无法使用零点分段法化简它。

六、例题4:化简代数式2x-1-x-2这个代数式可以分解为(2x-1)-(x+2),因此,我们需要找到使这两个因式分别为0 的x 值。

这些零点分别为x=1/2, x=-2。

绝对值大全(零点分段法、化简、最值)之欧阳美创编

绝对值大全(零点分段法、化简、最值)之欧阳美创编

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或 2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x|2=2x可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数x,2x,……,n x分别使含有1|x-x|,|x-2x|,……,|x-n x|的代数式中相应绝对值为1零,称x,2x,……,n x为相应绝对值的零点,零点1x,1x,……,n x将数轴分为m+1段,利用绝对值的意义化去绝对2值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

初一数学压轴题:绝对值化简求值

初一数学压轴题:绝对值化简求值

初一数学压轴题:绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简【北大附中期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

【解析&答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号得几种常用方法解含绝对值不等式得基本思路就是去掉绝对值符号,使不等式变为不含绝对值符号得一般不等式,而后,其解法与一般不等式得解法相同。

因此掌握去掉绝对值符号得方法与途径就是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值得意义,即||=,有||〈;||>2利用不等式得性质去掉绝对值符号利用不等式得性质转化||<或||>(>0)来解,如||〉(>0)可为>或<-;||〈可化为-<+<,再由此求出原不等式得解集。

对于含绝对值得双向不等式应化为不等式组求解,也可利用结论“≤||≤≤≤或-≤≤-”来求解,这就是种典型得转化与化归得数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值得不等式,利用||=可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量得取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其就是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,就是指:若数,,……,分别使含有|-|,|—|,……,|—|得代数式中相应绝对值为零,称,,……,为相应绝对值得零点,零点,,……,将数轴分为+1段,利用绝对值得意义化去绝对值符号,得到代数式在各段上得简化式,从而化为不含绝对值符号得一般不等式来解,即令每项等于零,得到得值作为讨论得分区点,然后再分区间讨论绝对值不等式,最后应求出解集得并集。

零点分段法就是解含绝对值符号得不等式得常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。

5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值得几何意义画出数轴,将绝对值转化为数轴上两点间得距离求解。

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数(原创版)目录1.绝对值和零点分段法的概念2.零点分段法化简绝对值的方法3.例题 1:x-1x2x-4 的化简4.例题 2:2-3x 的化简5.例题 3:2x-1-x-2 的化简6.例题 4:yx-1-x5 的最大和最小值展开7.绝对值的非负性和零点的概念8.零点分段法在求解绝对值问题中的应用9.例题 5:x2x4 的化简10.例题 6:求 yx-1-x5 的最大和最小值正文一、绝对值和零点分段法的概念绝对值是一个数与 0 的距离,因此它总是非负的。

在数学中,绝对值符号(| |)表示取一个数的绝对值。

例如,|3| = 3,|-3| = 3。

零点分段法是一种求解绝对值方程的方法,它通过寻找方程的零点,将绝对值符号去掉,从而简化方程。

二、零点分段法化简绝对值的方法在化简绝对值时,我们需要找到使得绝对值内部的表达式等于 0 的x 值,这个 x 值被称为零点。

将 x 值代入原方程,可以去掉绝对值符号,从而简化方程。

三、例题 1:x-1x2x-4 的化简我们需要化简代数式 x2x4。

首先找到 x2 和 x4 的零点,即 x=0 和x=2。

将这些零点代入原式,我们可以得到:x2x4 = (x-1)(x2-4) = (x-1)(x+2)(x-2)因此,原式化简后为:(x-1)(x+2)(x-2)。

四、例题 2:2-3x 的化简这是一个简单的代数式,没有绝对值符号。

我们可以直接求解它的零点:2 - 3x = 0解得:x = 2/3。

因此,原式化简后为:2 - 3(2/3) = 2/3。

五、例题 3:2x-1-x-2 的化简我们需要化简代数式 2x-1-x-2。

首先找到 2x-1 和 x-2 的零点,即 x=1 和 x=2。

将这些零点代入原式,我们可以得到:2x-1-x-2 = (2x-1)(x-2) = (x-1)(2x-1)因此,原式化简后为:(x-1)(2x-1)。

六、例题 4:yx-1-x5 的最大和最小值展开我们需要求解 yx-1-x5 的最大和最小值。

最新中考总复习——绝对值的综合应用

最新中考总复习——绝对值的综合应用

绝对值的综合应用
一、知识梳理
要点一:绝对值的化简
(1)对含有绝对值的式子进行化简,方法如下:
①判断绝对值符号中式子的符号(正负); ②根据绝对值的代数意义:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
,去掉绝对值符号;
③化简整理得出最后结果.
易错点:
判断正误:
1.若0,a >则a a =. ( )
2.若a a =,则0a >.( )
(2)零点分段法
零点:使得绝对值符号内的式子为0的未知数的值,称为绝对值的零点.
零点分段法:对于含多个绝对值的情况,我们往往用零点分段法进行化简.零点把数轴分成了若干个小段,在每一小段上,绝对值内式子的符号都是能够判定的,因此可以利用绝对值的代数意义把绝对值符号去掉,从而达到化简的目的.
例如:化简.
要点二:绝对值的几何意义
(1)a b -的几何意义:数轴上表示数a 的点与表示数b 的点之间的距离.
例如:73-:数轴上7表示的点和3表示的点之间的距离;
2x -:数轴上x 表示的点和2表示的点之间的距离;
37x x -+-:数轴上x 表示的点和3、7表示的两点的距离之和.
12x x +--
(2)利用几何意义求最值:对于含有多个绝对值符号的式子,我们还可以利用绝对值的几何意义求最值.解题的关键是将题中所给的含有绝对值的式子
理解成某两点之间的距离,求的是这些距离之和(或差)的最值.
二、知识体系。

绝对值大全

绝对值大全

绝对值大全(零点分段法、化简、最值)零点分段法:此方法在初中主要运用于多个绝对值式子的加减化简。

因为含有参数的绝对值化简,化简的结果是随着参数的情况而改变的(绝对值的代数意义),所以需要用零点分段法将参数的情况分类化,然后将每一类化简得出即可。

首先要明确两个词义:1、零点:是使式子等于0时,未知数的值;如2x-3的零点就是方程2x-3=0的解:x=1.5,且一般来说,一个题目中有几个不相同的绝对值,就有几个式子,就对应有几个零点,如|x|+|x+1|应该有两个式子,对应有两个零点,而|x+3|就只有一个式子,只有一个零点。

2、分段:分段是指将题目中所求出的所有零点在数轴上标出,并且将数轴分割成小段;如有两个零点时,在数轴上标出后可以发现数轴被这两个点分成了3段,一般来说,有n个不相同的零点就应该把数轴分成n+1段。

一、步骤通常分三步:⑴求出所有式子的零点;⑵将所有求得的零点在数轴上标出来,然后将数轴分段表示出来;⑶在分出的段中,每一段上讨论原式子的正负形,并将绝对值求出。

例:(1)化简:|x+1|+|x-1|分析:首先,在这个题中,应该明确知道有两个式子,对应应该有两个零点,分别将他们求出,得到x+1的零点为x=-1,x-1的零点为x=1;其次,在数轴上标出两个零点,并可以看出它们将数轴分割为3段:将每一段表示出来:第一段:x<-1;第二段:-1≤x<1;第三段:1≤x(注:也可以表示为:第一段:x≤-1;第二段:-1<x≤1;第三段:1<x;分段中必须在零点左右两段中必须而且只能有一段包含零点,比如上面例题中,在第一段表示出零点x≤-1后,第二段就不可以含有零点,所以第二段若表示成-1≤x<1是错误的。

)然后在每一段上去看绝对值内式子的正负性,然后求出来。

解:由题意,得:零点为:①x+1=0得x=-1;②x-1=0得x=1;所以:①当x<-1时:原式=[-(x+1)]+[-(x-1)]=-x-1+(-x)+1=-2x②当-1≤x<1时:原式=(x+1)+[-(x-1)]=x+1+(-x)+1=2③当1≤x时:原式=(x+1)+(x-1)=x+1+x-1=2x(2)化简:|x|+|x+1|+|x-1|分析:首先,在这个题中,应该明确知道有三个式子,而不是两个,对应应该有三个零点,分别将他们求出,得到x的零点为x=0,x+1的零点为x=-1,x-1的零点为x=1;其次,在数轴上标出三个零点,并可以看出它们将数轴分割为四段解:由题意,得:零点为:①x=0;②x+1=0得x=-1;③x-1=0得x=1;所以:①当x<-1时:原式=(-x)+[-(x+1)]+[-(x-1)]=-x-1+(-x)+1=-3x②当-1≤x<0时:原式=(-x)+(x+1)+[-(x-1)]=(-x)+x+1+(-x)+1=-x+2③当0≤x<1时:原式=x+(x+1)+[-(x-1)]=x+x+1+(-x)+1=x+2④当1≤x时:原式=x+(x+1)+(x-1)=x+x+1+x-1=3x附注:关于零点分段法结果的检验方法:因为在分段时,发现零点这个点分在其左边或者其右边的段都是可以的,所以把零点的值代入其左右两段,看结果是否一样,如在例1中,把x=-1代入①与②的化简结果中可以得到结果值都是2,把x=1代入②与③的化简结果中可以得到结果值都是2,所以结果是正确的。

绝对值化简

绝对值化简

注:1、正数的绝对值是其本身。

即:a >0时│a │= a 。

2、负数的绝对值是其相反数。

即:a <0时│a │= -a 。

3、零的绝对值是零。

即:a=0时│a │= 0。

1、 常数化简:例:1、化简:ππ-+-34 2、化简:31412131-+- 解:∵π- 4<0,3 -π<0 解:∵2131-<0,3141-<0 ∴原式= 4 –π+π– 3 ∴原式=41313121-+- =4– 3 =4121- =1 =41 2、 给定范围化简:例:1、已知:1<x <4化简x x -+-41 2、已知:a <0,b >0化简abab b b a a ++ 解:∵1<x <4 解:∵a <0,b >0∴1-x<0,4-x>0 ∴原式=abab b b a a -++- ∴原式=x -1+4-x=3 = -1+1-1=-13、结合数轴化简:例:如图所示,根据有理数a 、b 、c 在数轴上的位置, 2、如图所示,根据有理数a 、b 、c 在数轴上的位置,化简c b b a -+--c 化简c b b a ++++c解:由数轴可知:a-b >0,b-c >0 c <0 解:由数轴可知:a+b >0,b+c >0,c <0∴原式= a-b+ b-c+ c=a ∴原式= a+b+ b+c – c= a+2b4、不定化简:例:1、试判断a - a 的正、负性 2、若│x │=x+2,求19x 95+3x+27的值。

解:当a >0时原式= a - a=0 解:当x >0时,x = x + 2即0=2(不成立,舍去) 当a <0时原式= a + a=2a <0 当x <0时,- x = x + 2即2x = - 2 ∴x = - 1 ∴ a - a ≤0 ∴原式=-19-3+27=5练习:一、化简:1、 796--++-2、235--++-3、712723+--+732- 4、53522+--+2-二、给定范围化简1、已知:1<x <4化简x x x x --+--4411 2、已知:a <0,b >0化简abab b b a b a b ++++--113、当时化简32-x +2x4、当x < - 5时化简52-x +6x5、设 化简6、已知x <-3,化简:|3+|2-|1+x |||7、若a +b <0,化简|a+b -1|-|3-a -b |. 8、设0<x <3,化简:│5-│-x-2││三、结合数轴化简:1、有理数a 、b 、c 在数轴上的位置如图所示,化简2、有理数a 、b 在数轴上的对应点如图所示,试判断下列四个式子, 中负数的个数.3、实数a 、b 、c 在数轴上的位置如图所示,化简4、设有理数a,b,c在数轴上的对应点如图所示,化简|b-a|+|a+c|+|c-b|5、若有理数a,b,c在数轴上的位置如图所示,其中0是原点,|b|=|c|(1)用“<”号把a,b,-a,-b连接起来;(2)b+c的值是多少?(3)判断a+b与a+c的符号。

绝对值合集(零点分段法、化简、最值

绝对值合集(零点分段法、化简、最值

精心整理绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值的化简

绝对值的化简

绝对值的化简在数学中,绝对值是一个非常重要的概念。

它表示一个数离原点的距离,无论这个数是正数还是负数,它的绝对值总是正数。

在实际生活中,我们经常会遇到需要化简绝对值的情况,这不仅在数学课堂上有用,也在解决实际问题时非常有帮助。

本文将介绍绝对值的概念和化简方法,希望能帮助读者更好地理解和运用这一概念。

首先,让我们来回顾一下绝对值的定义。

对于一个实数x,它的绝对值通常表示为| x |,其定义如下:当x大于等于0时,| x | = x;当x小于0时,| x | = -x。

这个定义很容易理解,也很容易应用。

例如,对于-5这个数,它的绝对值就是5;对于3这个数,它的绝对值还是3。

这个概念在解决不等式、绝对值方程等数学问题时非常有用。

接下来,让我们来看一些化简绝对值的常见方法。

化简绝对值的关键在于分析绝对值内部的表达式,根据其正负情况进行讨论。

下面是一些常见的情况:1. 当绝对值内部的表达式为正数时,直接去掉绝对值符号即可。

例如,| 3 | = 3。

2. 当绝对值内部的表达式为负数时,去掉绝对值符号的同时改变表达式的符号。

例如,| -4 | = 4。

3. 当绝对值内部的表达式为变量时,需要根据变量的取值范围进行讨论。

例如,| x | = x 或 -x,具体取决于x的取值范围。

4. 当绝对值内部的表达式为复合表达式时,可以先化简内部的表达式,然后再根据上述规则进行化简。

例如,| 2x 3 | = 2x 3 或 -(2x 3),具体取决于2x 3的正负情况。

通过上述方法,我们可以化简各种复杂的绝对值表达式,从而更好地理解和应用绝对值的概念。

除了上述常见的方法外,还有一些特殊情况需要特别注意。

例如,当绝对值内部的表达式为一个平方时,可以利用平方的非负性进行化简。

具体来说,对于任意实数a,有a²≥ 0,即a²的绝对值为| a² | = a²。

这个性质在化简一些复杂的绝对值表达式时非常有用。

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题
式类型来解; ( 2)证明绝对值不等式主要有两种方法: A)去掉绝对值符号转化为一般的不等式证明: 换元法、 讨论法、 平方法; B)利用不等式: |a|-|b| ≦ |a+b| ≦ |a|+|b| ,用这个方法要对绝对值内的
式子进行分拆组合、 添项减项、 使要证的式子与已知的式子联系起来。
【绝对值必考题型】
1
11
Байду номын сангаас
1
1
【例 13 】计算
1
....
=

2
32
2007 2006
拼搏的你,背影很美!
努力的你,未来可期 ! 【例 14 】若 |a|+a=0 , |ab|=ab , |c|-c=0 ,化简: |b|-|a+b|-|c-b|+|a-c|= ________
【例 15 】已知数 a, b,c 的大小关系如图所示,
据性质去掉绝对值符号 .
② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相
反数; 0 的绝对值是 0 .
③ 绝对值具有非负性,取绝对值的结果总是正数或
0.
④ 任何一个有理数都是由两部分组成: 符号和它的绝对值, 如: 5 符号是负
号,绝对值是 5 . 【求字母 a 的绝对值】
①a
a( a 0) 0( a 0)
【例 2】一个数与这个数的绝对值相等,那么这个数是(

A .1 , 0 B.正数
C.非正数
D.非负数
【例 3】已知 |x|=5 ,|y|=2 ,且 xy > 0 ,则 x-y 的值等于(

A .7 或-7
B. 7 或 3 C.3 或-3 D . -7 或-3

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数(最新版)目录1.绝对值和零点分段法的概念2.零点分段法化简绝对值的方法3.例题 1:x-5y60,求 xy 的值4.例题 2:化简代数式 x2x4,x-1x2x-4,2-3x,2x-1-x-25.例题 3:求 yx-1-x5 的最大和最小值6.绝对值的非负性和偶数次方的非负性在化简中的应用7.总结:零点分段法化简绝对值的技巧和注意事项正文一、绝对值和零点分段法的概念绝对值是一个数到原点的距离,因此它总是非负的。

在数学中,绝对值符号用来表示一个数的绝对值,如|x|表示 x 的绝对值。

零点分段法是一种化简绝对值的方法,通过找到代数式中变量的零点,将绝对值符号去掉,从而简化表达式。

二、零点分段法化简绝对值的方法在化简绝对值时,我们需要找到代数式中变量的零点,然后将绝对值符号去掉。

例如,对于代数式|x-2|,我们需要找到 x=2 这个零点,然后将绝对值符号去掉,得到 2-x。

三、例题 1:x-5y60,求 xy 的值根据绝对值的非负性,我们可以得到 x-5=0,y=60。

因此,x=5,y=60,那么 xy=5*60=300。

四、例题 2:化简代数式 x2x4,x-1x2x-4,2-3x,2x-1-x-2对于这些代数式,我们可以先找到它们的零点,然后将绝对值符号去掉,化简成更简单的形式。

例如,对于 x2x4,我们可以将 x=0 和 x=4 作为零点,去掉绝对值符号后得到 4。

五、例题 3:求 yx-1-x5 的最大和最小值这个问题可以通过求导来解决。

首先,我们需要找到 y 和 x 的函数关系,然后将其对 x 求导,得到 y"。

接着,我们找到 y"=0 的点,这些点就是 yx-1-x5 的极值点。

最后,我们将极值点带入原函数,得到最大和最小值。

六、绝对值的非负性和偶数次方的非负性在化简中的应用绝对值的非负性意味着它的值总是大于等于 0,这可以作为一个隐藏的已知条件,用来出题。

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数

初中绝对值零点分段法化简例题10道奥数【引言】随着教育的发展,奥数题型越来越丰富,其中绝对值零点分段法是初中阶段数学学习中的一种重要方法。

为了帮助同学们更好地掌握这一知识点,本文将为大家提供10道初中绝对值零点分段法化简的例题解析,希望对大家有所帮助。

【绝对值零点分段法概述】绝对值零点分段法是一种求解含有绝对值方程的方法,主要适用于一元一次方程、一元二次方程以及含有绝对值的不等式。

其基本思想是将绝对值符号去掉,转化为分段函数的形式,然后根据分段函数的性质求解。

1.定义:对于含有绝对值符号的方程或不等式,通过变形,将其转化为分段函数的形式。

2.原理:利用绝对值的性质,即|x| = x(x≥0)和|x| = -x(x<0),将绝对值符号去掉,得到分段函数。

【初中奥数例题解析】下面我们将通过10道例题,来了解绝对值零点分段法在初中奥数中的应用。

1.题目1:简单绝对值方程求解|x - 3| = 2解析:将方程转化为分段函数形式,得到:x - 3 = 2(x - 3 ≥ 0)或-(x - 3)= 2(x - 3 < 0)解得:x1 = 5,x2 = 12.题目2:绝对值不等式求解|x + 1| ≤ 4解析:将不等式转化为分段函数形式,得到:x + 1 ≤ 4(x + 1 ≥ 0)或-(x + 1)≤ 4(x + 1 < 0)解得:-5 ≤ x ≤ 33.题目3:含有绝对值的一元二次方程求解|2x - 1| = 3解析:将方程转化为分段函数形式,得到:2x - 1 = 3(2x - 1 ≥ 0)或-(2x - 1)= 3(2x - 1 < 0)解得:x1 = 2,x2 = -1后续题目解析从略。

【总结与拓展】通过以上10道题目的解析,我们可以发现绝对值零点分段法在初中奥数中的应用十分广泛。

掌握这一方法,能够帮助我们更好地解决含有绝对值的数学问题。

以下是解题技巧总结和拓展思考:1.知识点总结:- 掌握绝对值的性质:|x| = x(x≥0),|x| = -x(x<0)- 熟练运用分段函数求解绝对值方程和不等式2.解题技巧总结:- 将绝对值符号去掉,转化为分段函数形式- 根据分段函数的性质,求解方程或不等式3.拓展思考:- 绝对值零点分段法在高中阶段是否仍然适用?如何拓展应用到更复杂的数学问题中?- 是否可以将绝对值零点分段法与其他数学方法相结合,提高解题效率?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。

5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。

数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于||||x a x b m -+->或||||x a x b m -+-<(m 为正常数)类型不等式。

对||||ax b cx d m +++>(或<m ),当|a |≠|c |时一般不用。

二、如何化简绝对值绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。

(一)、根据题设条件 例1:设化简的结果是( )。

(A )(B )(C )(D )思路分析:由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选(B ).归纳点评 只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.(二)、借助数轴例2:实数a 、b 、c 在数轴上的位置如图所示,则代数式的值等于( ).(A )(B )(C )(D )思路分析 由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解:原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.(三)、采用零点分段讨论法例3:化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解:令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式②当时,,∴原式③当时,,∴原式∴归纳点评:虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.三、带绝对值符号的运算在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视。

其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。

那么,如何去掉绝对值符号呢?我认为应从以下几个方面着手:(一)、要理解数a的绝对值的定义。

在中学数学教科书中,数a的绝对值是这样定义的,“在数轴上,表示数a的点到原点的距离叫做数a的绝对值。

”学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,那么,不论数a本身是正数还是负数,它的绝对值都应该是一个非负数。

(二)、要弄清楚怎样去求数a的绝对值。

从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零。

在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数(可表示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用)。

(三)、掌握初中数学常见去掉绝对值符号的几种题型。

1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。

当a>0时,︱a︱= a (性质1:正数的绝对值是它本身);当a=0 时,︱a︱= 0 (性质 2:0的绝对值是0) ;当 a<0 时;︱a︱= –a (性质3:负数的绝对值是它的相反数) 。

2、对于形如︱a+b︱的一类问题首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进行化简。

当a+b>0时,︱a+b︱= (a+b) =a +b (性质1:正数的绝对值是它本身);当a+b=0 时,︱a+b︱= (a+b) =0 (性质 2:0的绝对值是0);当 a+b<0 时,︱a+b︱= –(a+b)=–a-b (性质3:负数的绝对值是它的相反数)。

3、对于形如︱a-b︱的一类问题同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号进行化简。

但在去括号时最容易出现错误。

如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可(不论正负)。

因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b 。

口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。

4、对于数轴型的一类问题,根据3的口诀来化简,更快捷有效。

如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),便可得到︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b 。

5、对于绝对值符号前有正、负号的运算非常简单,去掉绝对值符号的同时,不要忘记打括号。

前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!6、对于绝对值号里有三个数或者三个以上数的运算万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比较,大于0直接去绝对值号,小于0的整体前面加负号。

四、去绝对值化简专题练习(1)设化简的结果是( B )。

(A)(B)(C)(D)(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值等于( C )。

(A)(B)(C)(D)(3) 已知,化简的结果是 x-8 。

(4) 已知,化简的结果是 -x+8 。

(5) 已知,化简的结果是 -3x 。

(6) 已知a 、b 、c 、d 满足且 ,那么a+b+c+d= 0 (提示:可借助数轴完成) (7) 若,则有( A )。

(A )(B )(C )(D )(8) 有理数a 、b 、c 在数轴上的位置如图所示,则式子 化简结果为( C ).(A )(B )(C )(D )(9) 有理数a 、b 在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是(B ).(A )0 (B )1 (C ) 2 (D )3 (10) 化简=(1)-3x (x<-4) (2)-x+8(-4≤x≤2) (3)3x(x>2) (11) 设x 是实数, 下列四个结论中正确的是( D )。

(A )y 没有最小值(B )有有限多个x 使y 取到最小值 (C )只有一个x 使y 取得最小值(D )有无穷多个x 使y 取得最小值五、绝对值培优教案绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)、函数中距离等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .绝对值的代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负) ;b a -表示数a 、数b 的两点间的距离.3.绝对值基本性质①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 培优讲解(一)、绝对值的非负性问题【例1】若3150x y z +++++=,则x y z --= 。

总结:若干非负数之和为0, 。

(二)、绝对值中的整体思想【例2】已知4,5==b a ,且a b b a -=-,那么b a += . 变式1. 若|m -1|=m -1,则m_______1; 若|m -1|>m -1,则m_______1;(三)、绝对值相关化简问题(零点分段法) 【例3】阅读下列材料并解决有关问题:我们知道()()()0000<=>⎪⎩⎪⎨⎧-=x x x x xx ,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式21-++x x 时,可令01=+x 和02=-x ,分别求得2,1=-=x x (称2,1-分别为1+x 与2-x 的零点值)。

相关文档
最新文档