线性电势扫描伏安法

合集下载

线性扫描伏安法实验

线性扫描伏安法实验

实验线性伏安法研究硫酸体系极化行为一.实验目的1. 掌握线性伏安法的基本原理;2.了解上述方法的实验操作和极化曲线的含义。

3.评估析氧和析氢极化的特性。

二、实验内容线性伏安法是以一线性变化电位施加于电解池上,以所得的电流---电极电位曲线为基础的分析和研究方法。

所施加扫描电位与时间的关系为:E=Ei-vt,电流与被测物质浓度c、扫描速度v等因素有关。

本实验是在电解池中注入0.05MH2SO4溶液,插入两个电极(工作电极与辅助电极),阴极将发生还原反应:2H++2e=H2,阳极将发生氧化反应:H2O=1/2O2+2H++2e。

为了测量工作电极的电极电势,需在电解池中加入一个参比电极(通常用甘汞电极),工作电极和参比电极连上电位计可测出电极电势,由于参比电极的电极电势是已知的,故可得到工作电极的电极电势。

实验中以较慢速率连续改变电位(扫描),记录相应的电流值,绘制成图即得极化曲线图,由图可求得极化电极电势。

I0 E电流-电势图三、实验主要仪器设备和材料1.仪器: ZHDY智能恒电位仪,铂、石墨为工作电极(研究电极),可根据不同需要选用不同工作电极,铂电极为对电极(辅助电极),饱和甘汞电极为参比电极。

2.试剂:硫酸水溶液,试剂为分析纯,使用二次重蒸水。

四、实验方法、步骤1. 在电解池中放入适量硫酸水溶液,插入工作电极、辅助电极和饱和甘汞电极。

然后将恒电位仪的接线分别与相应的电极连接,打开恒电位仪。

2. 测阴极极化曲线:打开电脑“ZHDY智能恒电位仪”程序,点击“设置”菜单中“实验设置”,选择“线性伏安法”,设定初始电位0V,终止电位-0.50V,静止时间为1秒,扫描速度0.002 V∙s-1,采样间隔为1mv,灵敏度为1mA/v,点击“确定”。

再点击“联机”,点“确定”,再点击“开始”菜单,即开始记录线性扫描伏安图,结束后,点“停止”。

保存图形。

然后在“实验设置”中改变扫描速度为0.005 V∙s-1,重复测定一次。

线性扫描溶出伏安法

线性扫描溶出伏安法

线性扫描溶出伏安法
线性扫描溶出伏安法(LinearScanVoltammetry,简称LSV)是一种非常重要的化学分析技术,可以用来测量含有活性物质的溶液中离子或分子的浓度,从而可以准确地分析出各种有机和无机化合物。

线性扫描溶出伏安法是一种改进的电化学技术,它可以涵盖范围广泛的多种化学物质。

线性扫描溶出伏安法的工作原理是运用一个沉积电极,并在溶液中横向扫描一系列不同的电势,以及在沉积电极上强制电迁移。

每次扫描都会在沉积电极上形成一层新的电解质,此外,溶液中的活性物质将会参与电迁移过程,并在沉积电极的表面形成新的电解质分子。

最后,再将扫描的电势作图,从而得出电势应力和浓度之间的关系,从而可以准确地测出溶液中离子或分子含量的变化。

线性扫描溶出伏安法有很多优点,首先,它可以迅速准确地测量溶液中离子或分子的含量,从而使得科学家可以更好地分析化合物的结构和特性。

其次,它使用了简单的电化学装置,灵活而又方便,可以在实验室或室内简单条件下进行实验,可以在很短的时间内获得准确的测定结果,也可以在不同的实验条件下重复进行实验。

此外,线性扫描溶出伏安法还有许多实用性功能,其中包括调节实验条件、改变电势、获得准确的参数设定、确定电解质聚集程度、搜寻特异性离子等。

它还可以通过在测量过程中适当地控制扫描速率来提高测量的准确性和灵敏度,因此,它在很多科学研究和分析中都得到了极大的发展。

综上所述,线性扫描溶出伏安法是一种具有重要意义的分析技术,可以准确地识别各种有机物质和无机物质,而且操作也非常简单,属于具有广泛应用前景的电化学技术。

第4章--线性扫描伏安法分析

第4章--线性扫描伏安法分析
又例如,Cd(Ⅱ)和Zn(I)的半波电位分别为-0.6V和-1.2V左右,在示波极 谱中,只要将起始电位放在-1.0V,就能在大量Cd(Ⅱ)存在下,测定少 量i还p ,的要而Z大nZ。(Ⅱn(Ⅱ)。)能这产是生因i为p ,在Z-1n.0(ⅡV后)量,虽C少d(,Ⅱ但)只它能的产ip生可扩能散比电大流量iCd d,(Ⅱ而)不的是id
25℃时
对于阳极过程的峰电位
25℃时
3.影响峰电流的因素 (1)正去比极化剂浓度c*:当其它条件一定时,峰电流ip与被测物质的浓度c*成 这是线性扫描极谱法定量分析的基础。 (2)电极反应电子数n:当其它条件一定时,得 对决于定同极一谱浓图度峰的的不宽同度离 ,子n愈,大其,n峰愈的大宽,度ip愈愈大窄,,反如之图,7所则示愈。小。同时也
徐国宪等和高鸿等曾验证Randles—Sevcik方程式,认为 Sevcik的常数值过低,Randles的常数比较正确。
2.峰电位与半波电位的关系
可逆电极反应的峰电位Ep,与去极化剂的性质和底液的组成 有关,而与去极化剂的浓度无关。它与经典极谱的半波电位 E1/2有一定的关系。
对于阴极过程的峰电位
锯齿波发生器1产生快速线性变化电压通过电阻R加在电解池2的两极上, 产生的电流在电阻R上引起电位降,将此电位降经垂直放大器3放大后, 输入至示波器5的垂直偏向板上,代表电流坐标;而将电解池两极的电 压经水平放大器4放大后,输入示波器的水平偏向板上,代表电位坐标, 因此,从示波器的萤光屏上就能直接观察电流一电压曲线。
的精确度和重现性,通常采用 简便的导数示波极谱法。 导数极谱是记录di/dE(或di/dt) 对E或d2i/dE2(或d2i/dt2)对E的 关系曲线,通常称为导数极谱 波。 前者为一次导数极谱波,呈一 正峰和一负峰;后者为二次导 数极谱波,呈两正峰和一负峰, 如图11所示。 由图可见,导数波具有较强的 图11 分辨能力。一次导数波两峰间 的流物电值质流的ip”值浓,度i在p’或成一二正定次比条导,件数可下波作与峰为反电定应 量分析的依据。

线性扫描伏安法测定废水中的镉实验报告

线性扫描伏安法测定废水中的镉实验报告

线性扫描伏安法测定废水中的镉实验报告一、实验目的本实验旨在通过线性扫描伏安法(Linear sweep voltammetry,LSV)测定废水中的镉(Cd)含量。

线性扫描伏安法是一种常用的电化学分析方法,具有高灵敏度、高选择性以及快速测量的优点。

通过本实验,能够提高对电化学分析方法的理解,掌握线性扫描伏安法的操作流程,并学会用该方法测定废水中的重金属离子。

二、实验原理线性扫描伏安法是一种在电极上施加线性电压扫描的电化学分析方法。

在一定的电位范围内,随着电压的改变,电流也会发生相应的变化。

本实验中,我们将使用此方法测定镉离子在电极上的氧化还原反应。

当电压逐渐增加时,镉离子会从溶液中还原并沉积在电极上,产生电流响应。

通过测量电流响应值,可以推算镉离子的浓度。

三、实验步骤1.准备实验仪器和试剂:线性扫描伏安仪、废水样品、镉标准溶液、恒电位仪、电解电极、磁力搅拌器等。

2.配制镉标准溶液:准确称取一定量的镉标准物质,用超纯水配制成浓度为1000mg/L的镉标准溶液。

3.绘制标准曲线:分别取适量的镉标准溶液,用超纯水稀释至不同浓度,分别为0.1mg/L、0.5mg/L、1.0mg/L、2.5mg/L、5.0mg/L。

在相同的实验条件下,利用线性扫描伏安仪进行测量,绘制电流响应值与镉浓度的关系曲线。

4.测定废水样品:将废水样品进行稀释,使其中镉离子浓度处于标准曲线范围内。

然后,用线性扫描伏安仪进行测量,记录电流响应值。

5.数据处理:根据测量的电流响应值和标准曲线,推算废水样品中镉离子的浓度。

四、实验结果及数据分析1.标准曲线数据:通过线性扫描伏安法测量不同浓度的镉标准溶液,得到电流响应值与镉浓度的关系曲线。

根据曲线拟合得到方程为:y = 0.113x +0.028 (R² = 0.995),其中y为电流响应值,x为镉浓度(单位:mg/L)。

2.废水样品测量结果:通过测量废水样品,得到电流响应值为0.45μA。

电化学测试锂离子电池稳态测量技术-线性电势扫描伏安法(LSVCV)

电化学测试锂离子电池稳态测量技术-线性电势扫描伏安法(LSVCV)

电化学测试锂离子电池稳态测量技术-线性电势扫描伏安法
(LSVCV)
锂离子电池电极材料在电池充放电过程中一般经历以下几个步骤:①溶剂化的锂离子从电解液内迁移到电解液/固体电极的两相界面;②溶剂化的锂离子吸附在电解液/固体电极的两相界面;③去溶剂化;④电荷转移,电子注入电极材料的导带,吸附态的锂离子从电解液相迁移至活性材料表面晶格;⑤锂离子从活性材料表面晶格向内部扩散或迁移;⑥电子从集流体向活性材料的迁移。

线性电势扫描法在电化学测量中有着广泛的应用,常用于:①判断电极体系中可能发生的电化学反应;②判断电极过程的可逆性;③判断电极反应的反应物来源;
④研究电极活性物质的吸脱附过程。

锂离子电池基础科学问题(Ⅻ Ⅰ)——电化学测量方法. 凌仕刚,吴娇杨,张舒,高健,王少飞,李泓.
Das S R,Majumder S B,Katiyar R S. Kinetic analysis of the Li ionintercalation behavior of solution derived nano-crystalline lithiummanganate thin films[J]. Journal of Power Sources,2005,139:261-268.
Tang S B,Lai M O,Lu L. Li-ion diffusion in highly (003) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition[J]. Journal of Alloys and Compounds,2008,449(1-2):300-303.。

第4章 线性扫描伏安法分析

第4章  线性扫描伏安法分析
在低扫速下,表现为可逆行为的反应, 在高扫速时,可能显示出不可逆性。
❖ 当电子转移反应的速度与传质速度相比,不足以维持Nernst方程时, 体系由可逆过程向不可逆过程转变(见图10)。
图10 扫速对反应可逆性的影响 a.可逆过程 b.不可逆过程
❖ §4 导数示波极谱 ❖ 为减小前波的影响、提高测量
❖ 为使图形稳定、重现,在每滴汞成长至一定面积时才加一次电压,记 录一次电流一电压曲线。例如,国产JP一1A型示波极谱仪,在滴汞成 长的前5秒保持电压为起始电压(即停止扫描),在后2秒内加入扫描电压, 这样在汞滴后
❖ 期完成一次极谱图。由于汞滴 ❖ 后期面积变化率最小,可消除 ❖ 因面积变化带来的影响。汞滴 ❖ 成长至第7秒时,通过定时线路 ❖ 的继电器敲击电极强制滴落, ❖ 然后又开始新的汞滴,重复前5 ❖ 秒停扫,后2秒记录极谱图。这 ❖ 样每滴汞上的图形是稳定的, ❖ 重现的,如图4所示。
❖图2线性扫描i—E曲线
❖ §1.1线性扫描示波极谱与经典极谱的比较
❖ 线性扫描示波极谱的基本原理与经典极谱相似。其主要区 别在于经典极谱加入电压的速度很慢,一般为2V/10 min (约3mV/s),记录的电流一电压曲线呈S线,是许多滴汞上 的平均结果;而线性扫描示波极谱,则扫描速度很快,一般 为250mV/s,例如,国产JP一1A型和JP一2型示波极谱仪。 其电流一电压曲线呈峰形,是在一滴汞上得到的(见表1)。
❖ 获得导数极谱波的方法有多种,其中电阻电容导数电路具有结构简单和操作方 便等特点,因此,在一般示波极谱仪上均附设这种导数电路。
❖ 在垂直放大器的输入端,设有RC导数电路,如图12所示。恒定的直流不能通过 y轴放大器,然而可记录法拉第电流在电阻R上所产生电压降的变化率(即 R·di/dt),因此,在极谱波的残余电流和极限电流部分,导数电流维持在原点, 而极谱波上升的扩散电流部分,导数电流则发生变化。电极上的电压是随时间 呈线性变化的,而其改变率dE/dt为一常数。由于di/dt=di/dE·dE/dt,y轴显示 为di/dE值,所得的极谱波仍是di/dE对E的关系曲线。上述得到的一次导数极谱 波,如再次被导数,则得到二次导数极谱波。

(完整版)线性扫描伏安法

(完整版)线性扫描伏安法

线性扫描伏安法原理:线性扫描伏安法是在电极上施加一个线性变化的电压, 即电极电位是随外加电压线性变化记录工作电极上的电解电流的方法。

记录的电流随电极电位变化的曲线称为线性扫描伏安图,如图1。

可逆电极反应的峰电流如下:ip= 0.4463nFAD O1 /2 Co*( nF v /R T ) 1 /2= 2.69×105 n3 /2AD O1 /2v1 /2 Co* (1)不可逆过程ip=2.99×105 nA(αnα)1/2D O1 /2v1 /2 Co* (2)式中, n为电子交换数; A为电极有效面积; Do 为反应物的扩散系数; v为电位扫描速度; Co*为反应物(氧化态) 的本体浓度。

当电极的有效面积A不变时, 式(1) 也可以简化为:ip = k v1 /2 Co* (3)即峰电流与电位扫描速度v的1 /2次方成正比, 与反应物的本体浓度成正比。

这就是线性扫描伏安法定量分析的依据。

对于可逆电极反应, 峰电位与扫描速度无关,Ep = E1 /2±1.1R T / n F (4)可逆反映还有以下特点:1.当n=1时,对于可逆的电流峰的电位值只比平衡电位正28.5mV(可用于定性分析)2.电流的峰值可用于定量分析。

3.电流的上升非常快,n=1时从电流峰值的10%上升到电流峰值时的电位变化幅度为100mV。

但当电极反应为不可逆时(准可逆或完全不可逆) , 峰电位Ep 随扫描速度v增大而负(或正) 移。

电极表面上还原物的浓度受到电极电位的变化和扩散层的增大等因素的影响,随着扫描的进行电流急剧上升,属于前一种影响,而过了波峰,电流开始减少,则属于后一种原因。

由式(1)和(1)可见,不管电极反应是否可逆,ip都与Co*呈正比,这是线性扫描伏安法定量分析的依据。

图1中Ep与电活性物质的支持电解质有关,是定性分析的依据。

线性扫描伏安法可测定电活性物质的最佳浓度范围为10-2~10-4mol/L。

线性扫描溶出伏安法

线性扫描溶出伏安法

线性扫描溶出伏安法线性扫描溶出伏安法(LinearSweepVoltammetry,称LSV)是一种常用的电化学技术,它可以用来检测电极表面电子移动的变化,并能够反映出电极表面的电活性。

伏安法是指一种电化学技术,它的伏安曲线(Voltammetric)可以显示电池在不同电位下的电流图,以检测特定物质的活性。

线性扫描溶出伏安法就是将伏安技术用在溶出的环境中,通过改变溶出溶液的电位来研究物质的溶出现象。

线性扫描溶出伏安法是一种灵活的分析技术,由于该技术可以快速、精确、准确地分析样品,因此在分析中,它得到了广泛的应用。

该技术主要用于检测溶液中特定药物成份的浓度,并在医药、食品、环境以及其他行业中进行检测,以便快速、准确地获取结果,以便获得有效的数据。

在线性扫描溶出伏安法实验中,主要用于测量溶液中的电位,其原理是将不同的电位应用于溶液中,以检测溶液中的阳离子及其他特定物质的活性。

它的实验具有较快的扫描速度、低的输入功率,使研究者可以快速观察物质在不同电位下的反应情况。

此外,线性扫描溶出伏安法也可用于分析溶液中特定物质的活性,可以分析有机、无机以及金属离子,以及其他特定物质的浓度。

线性扫描溶出伏安法可以测试溶液中多种物质的浓度,这是它的一个重要优点。

它也可以用于研究电极的表面电子迁移和溶出现象,以便了解溶液中的电子移动情况,这对实验非常有用。

线性扫描溶出伏安法不仅可以模拟物质溶出、电极反应行为,还可以获得实验中物质的绝对浓度,以及物质在不同范围内的分布情况。

线性扫描溶出伏安法在电化学检测中被广泛使用,由于它具有快速、精确、准确的性能,并且实验迅速、无危害,使其在生物分析、药物分析和环境监测中得到了广泛的应用。

线性扫描溶出伏安法的优点主要在于其速度快、准确、可靠,在多种物质分析中可以提供快速精确的结果,而且不需要大量样品。

它也可以得到更准确的结果,能够模拟物质溶出及电极反应情况,用于研究电极表面的电活性的分析,以及物质的溶出及绝对浓度的分析。

线性电势扫描伏安法

线性电势扫描伏安法
线性电势扫描伏安法
目录
• 线性电势扫描伏安法概述 • 线性电势扫描伏安法的实验设置 • 线性电势扫描伏安法的数据处理与分析
目录
• 线性电势扫描伏安法的应用实例 • 线性电势扫描伏安法的未来发展与展望
01
线性电势扫描伏安法概述
定义与原理
定义
线性电势扫描伏安法是一种电化学分析方法,通过在电极上 施加线性电势扫描,测量电流响应来研究电极反应过程。
电极过程动力学分析
线性电势扫描伏安法可用于电极过程动力学分析,研究电 极反应的动力学规律,为电化学反应的设计和优化提供理 论依据。
新型电化学器件的研发
通过线性电势扫描伏安法,可以研究新型电化学器件的电 化学性能,如燃料电池、锂离子电池等,为器件的优化和 改进提供技术支持。
在环境监测中的应用
污染物检测
02
线性电势扫描伏安法的实 验设置
实验设备与试剂
电解池
用于盛放电解液,通常由玻璃或 塑料制成。
电极
包括工作电极、参比电极和辅助 电极,用于电化学反应的测量。
电源
提供实验所需电压和电流。
试剂
包括电解质、支持电解质、反应 物和添加剂等。
搅拌器
使电解液均匀混合。
恒温水浴
保持电解液温度恒定。
实验操作步骤
数据分析方法
曲线拟合
使用数学模型对实验数据 进行拟合,如高斯分布、 指数分布等。
统计分析
计算均值、中位数、方差 等统计量,评估数据的集 中和离散程度。
可视化分析
绘制图表、散点图等,直 观展示数据之间的关系和 趋势。
数据解释与结果解读
确定变量关系
通过数据分析确定自变量和因变 量之间的关系,如相关性、因果

22 电势扫描伏安 2015

22 电势扫描伏安 2015
15
E Eλ
Ei λ t
(1)纯扩散控制的可逆体系 电极过程符合Nernst方程,电荷转移速度非 常快,不影响电极反应的速度,电极反应由扩 散控制。
16
峰电位差(即氧化峰与还原峰电位差)△Ep大 小与扫描峰电位后继续扫描多少毫伏再回扫有 关。如果扫描足够的毫伏数,则有关系式:
Ep E pa E pc
22
2. 电极过程的可逆性
可逆、准可逆和完全不可逆电极反应的判据 如下:
可逆性 可逆 准可逆 电势响应性质
Ep与ν 无关,
E p 59 mV (25 0C ) n
电流函数性质 备注
ip

ip
与ν 无关 与ν 无关
i pa i pc
1
Ep随ν 移动,低ν 时,Δ Ep接近于 60/n(mV),但Δ Ep 随ν 的增加而增加 ν 增加10倍,Ep向扫 描方向移动30/α n (mV)
21
的,或者是电极反应产物完全不稳定或不能在 电极体系中存在。 根据每一个峰电流相对应的峰电位值,从标 准电极电位表和已掌握的知识可以推测出在所 研究电位范围内可能会发生的电极反应。因此 伏安曲线图可视为电化学电位谱图,可用于定 性分析或定量分析,它对于研究电极的电化学 性质或化合物的氧化还原性质都很有用。 一般来说,单程电位扫描伏安法的规律与循 环伏安法中该方向的扫描曲线规律完全相同。
对于半(准)可逆过程,虽然有一对氧化还原峰, △EP随扫描速度的增加而增加,Epa和Epc分别 向正方向和负方向移动。 对于不可逆过程,反扫没有电流。 19
循环伏安法是一个重要的电化学研究方法,
方便快速,可知道电极反应的可逆性、反应产物
的稳定性、氧化还原性的强弱及某些有关电极反

大学化学第五章循环伏安和线性扫描技术

大学化学第五章循环伏安和线性扫描技术

图8.9电极表面吸附物质在可逆条件下的循环伏安曲线
O和R在电极表面的吸附强度相同,
p '
O吸附及快速电极过程动力学的电流-电势曲 线由下式给出:
ic

nF AO,i (EO / ER )
1 (EO / ER ) 2
这里O,i是实验开始前,在电极面积为A的电极 上吸附O的表面浓度;=(nF/RT)v, EO和ER分别表 示O和R的吸附能,并且
事实上,一个电极反应的可逆性与扫描速度 有关。在低扫描速度下,一个电极反应表现可逆 性,而在高扫描速度下,即转变为不可逆特性。 体系随扫描速度的增加,从可逆到不可逆的变化 见图8.6。当电荷传递反应速率与质量传递相比, 不能维持Nernst 方程的关系,电极反应就从可逆 转向不可逆。
准可逆电极反应循环伏安曲线的特点:
ip,c 2.99105 n(cn ')1/2 AcODO1/ 2 1/2
与可逆的情况相同的是,峰电流密度与浓度、 扫描速率的平方根成正比,但是,此外还与传递 系数的平方根成正比。对于一个单电子不可逆过 程,且=0.5时,该峰电流只有同样条件下可逆过 程峰电流的78.5%。
峰电流也可以用下面的方式表示
图8.1 在循环伏安法中所加电势随时间的变化
I/mA.cm-2
c
250
b
200
a
150
100
50
0
-50 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
E/ V(vs.Ag/AgCl)
图1 不同方法制备的PtRu/C催化剂在酸性溶液中对甲醇电氧化的循环伏安图
电流由两部分构成,法拉第电流和双电层充电电流
5.5 流体力学电极的线性电势扫描

第七章 线性电势扫描法

第七章 线性电势扫描法

=

⎛ ⎜⎝

dt
⎞⎟⎠B→C=
常数(扫描速度)
电化学测量技术
10
iA / − iA = iB − iB / = Δ i
=
C
d
⎡ ⎢ ⎣
⎜⎛ ⎝

dt
⎟⎞ ⎠ A→ B
− ⎜⎛ ⎝

dt
⎟⎞ ⎠ B→
C
⎤ ⎥ ⎦
=
C
d
⎡ϕ
⎢⎣
B
T
− /
ϕ
2
A

ϕc − ϕB ⎤
T / 2 ⎥⎦
= 4C d Δϕ
(1) I p 与本体浓度c0 、D1/2、 n3/2成正比; (2) I p ∝ υ1 2成正比 [扫描速度越快,流过电极的Ip就越大];
(3) Φp 和 φp/2 两者相差2.2RT/nF或56.5/n(mV,25 ℃); (4) φ1/2 基本在 φp 和 φp/2 两者的中点; (5) φp 和 φp/2 两者都与电位扫描速度υ和本体浓度c0无
2
线性电位扫描法,也叫动电位扫描法,就是控制电
极电位 ϕ 以恒定的速度变化,即
dϕ = υ
dt
=常数,同
时测量通过电极的电流就可得到动电位扫描曲线。
i~ t i~ϕ
这种方法在电分析化学中常称为伏安法。此法又分
为单程动电位扫描法(A),三角波电位扫描法(周期 伏安法、循环伏安法、循环扫描法、CV法)(B)和连 续三角波电位扫描法(C)等。
,一般要大于
100 mV
,则其影响可
n
n
以忽略。
电化学测量技术
28
2、几个重要参数
E2

第六章 线性电势扫描法

第六章 线性电势扫描法

p p 2 = 47.7 / αn
(mV,25℃)
式中 Ip:峰值电流,A; n:电极反应的得失电子数; S:电极的真实表面积,cm2;
DO:反应物的扩散系数,cm2/s;
0 C O :反应物的初始浓度,mol/cm3;
υ:扫描速率,V/s。

§6.5 单程线性扫描(浓差极化存在的情况) 单程线性扫描(浓差极化存在的情况)
B φ
A
C t

i为电流阶跃的幅度(即 i跃 = i A i A = i B i B ) ,Rr的计算公式为
' '
此时,三角波电势控制信号和相应 的电流影响曲线如上图所示:
Rr =
= = i斜 i B i A' i B ' iC

§6.4 小幅度三角波扫描测定Rr、Cd 小幅度三角波扫描测定
① 控制电势阶跃法测Cd,Rr→∞,i=ic; ② 控制电流阶跃法测Cd,Rr→∞, ↑,易测阶跃瞬间曲线的斜率; τ
C.
Cd =
i跃 2υ
,υ ↑,i跃 ↑,故选择高扫速;
D. RL→0,电极表面无高阻膜; E. 某电位下测Rr、Cd是近似值。

§6.5 单程线性扫描(浓差极化存在的情况) 单程线性扫描(浓差极化存在的情况)

§6.4 小幅度三角波扫描测定Rr、Cd 小幅度三角波扫描测定
6.4.1 RL→0,Rr→∞,测定 d , ,测定C
所以电流波形如左图所示。 三角波电势控制信号和相应的电流 影响曲线如下图所示:
i A' i A = i B i B '
d B A C B d = C d = Cd T 2 dt A至B dt B至C T 2

浙江大学-线性电势扫描伏安法

浙江大学-线性电势扫描伏安法
( Ez E ) dCd dt
dt
i iC i f
双电层充电电流iC为
iC
dC dq d [Cd ( E E z )] dE Cd ( Ez E ) d dt dt dt dt
一项很大,i-E曲线上出现伴随吸脱附过程的电流峰,称为
式中,Cd为双电层的微分电容,E为电极电势,Ez为零电荷电势。 双电层充电电流iC包括两个部分: 一个是电极电势改变时,需要对双电层充电,以改变界面的荷电状态的双电层 dE 充电电流,即 Cd dt dCd 另一个是双电层电容改变时,所引起的双电层充电电流,即 ( Ez E )
Rct
E
iB iA'
15
16
电极上有电化学反应发生,且溶液电阻不可忽略
在图中,可以通过外推法找到A’、B’、C’点,进而计算Cd和Rct。Cd的计算方法 如下:
适用范围和注意事项
小幅度三角波电势扫描法测量Cd时,适用于各种电极,包括平板电极和多 孔电极 测量双电层微分电容Cd时,可以有电化学反应发生。 采用控制电势阶跃法测定Cd时,必须控制电极处于理想极化状态,即电极 上没有电化学反应发生,Rct→∞,从而保证流过电极的电流全部用于双电层 充电;采用控制电流阶跃法测量Cd时,最好也要控制电极处于理想极化状 态,即电极上没有电化学反应发生,Rct→∞,从而使时间常数很大,易于测 量阶跃瞬间电势时间曲线的斜率。 采用小幅度三角波电势扫描法进行测量时,要求溶液电阻越小越好,最好 可进行补偿。 i 由于 Cd 测量Cd时,为了突出电流响应曲线上的突跃部分Δi,提高精 2v 度,应采用大的扫描速率v。同时,满足E 10mV,所以三角波的频率要 比较高。相反,研究电荷转移过程,测量Rct时,要尽量减小v,以突出线 性变化的法拉第电流部分。

第七章 线性电势扫描伏安法

第七章 线性电势扫描伏安法
根据零电流为基准求得。 阳极峰值电流iPa:
根据Eλ之后的阴极电流 衰减曲线为基线。
iPa的基线难以确定时,
一、可逆体系
对于产物稳定的可逆体系,循环伏安曲线的重要特征:
二、准可逆体系
判断电极反应是否可逆和不可逆的依据:
三、完全不可逆体系
第五节 多组分体系和多步骤电荷传递体系
一、平行的多组分电极反应体系
四、研究电活性物质的吸脱附过程
(a)反应物O弱吸附 (b)产物R弱吸附 (c)反应物O强吸附
(d)产物R强吸附
34 5
7
6
8
氧区:
氧的吸附、氧的析出以及吸附氧或氧化物的还原。
6 — 吸附氧或氧化物的还原 2 — 氧气析出 5 — 吸附氧或铂氧化物的形成
氢区:
氢的吸脱附反应和 析氢反应
7、8 — 阴极还原 产生吸附氢原子
循环伏安曲线:记录下的i-E曲线
循环伏安曲线规律: ,正向扫描与单扫描 曲线相同。
,回扫的伏安曲线与 Eλ值有关。 Eλ控制在越过峰值Ep足够 远时,回扫伏安曲线形状 受Eλ的影响可被忽略。
循环伏安曲线上的重要参数:
① 阴、阳极峰值电流iPc、iPa及其比值
② 阴、阳极峰值电势差值
阴极峰值电流iPc:
φ φ1
φt t
过电位变化起主导作用,电极 反应速率随所加电势的增加而 变大
② 随i增加,反应物浓 度下降,生成物浓度 增加,使 if 下降。
反应物流量下降 起主导作用,随 着时间的延长,δ 增大,扩散流量 下降,故电流下 降。
2. 扫描速度对响应曲线的影响 扫描速度不同,峰值电流不同。
i υ
φ(t)
3、4 — 吸附氢原 子氧化脱附反应

08-线性电势扫描伏安法2

08-线性电势扫描伏安法2
1、线性电势扫描法与控制电势、电流阶跃法 测量双电层微分电容的不同点是什么?
2、如何利用循环伏安法判断电极反应是否处 在可逆状态?
峰值电流在在langmuir吸附等温式条件下对于可逆电极反应阴极峰电势和阳极峰电势相等vip?21vip?acppee?如果反应物o的吸附作用比产物r的吸附作用更强吸附反应物o的电流峰会出现在比扩散反应物o的电流峰更负的电势下如图所示
第四节 循环伏安法
循环伏安法(cyclic voltammetry,CV):控制研究电极
根据Eλ之后的阴极电流 衰减曲线为基线。
iPa的基线难以确定时,
一、可逆体系
对于产物稳定的可逆体系,循环伏安曲线的重要特征:
二、准可逆体系
单步骤单电子的准可逆电极体系的循环伏安曲线以及其测
量参数是
的函数。
准可逆体系循环伏安曲线两组测量参数的特征为:
① ② 可逆体系的
比可逆体系的大,
, 并且伴随着扫速 ν 的增大而增大。
判断电极反应是否可逆和不可逆的依据:
值以及 随扫描速率 ν 的变化特征是判断电极 反应是否可逆和不可逆程度的重要判据。
(1)
,且不随 ν 变化,说明反应可逆;
(2) 反应。
,且随 ν 增大而增大,则为不可逆
(3) 这大。
大得越多,反应的不可逆程度就
三、完全不可逆体系
当电极反应完全不可逆时,逆反应非常迟缓,正向扫描产物 来不及发生反应就扩散到溶液内部了,因此在循环伏安图上观察 不到反向扫描的电流峰。
1(0.25v)
2(0.65v)
气体析出O2(0.8v)
3(0.46v) 4(0.2v)
e) 反向扫描至0.46V左右时,开始出现阴极电流峰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 传荷过程控制下的小幅度三角波电势扫描法
小幅度的三角波信号,频率较高,单向极化时间很短, 浓差极化忽略不计,电极处于电荷传递过程控制。
一、电极处于理想极化状态,且溶液电阻可忽略 在扫描电势范围内没有电化学反应发生,且Ru可忽略。
单程扫描过程中响应 电流恒定不变:
因为:
所以,在B点电势换向的瞬间,电流由
v对暂态极化曲线的形状和数值影响较大
3. 线性电势扫描伏安曲线与取样电流伏安曲线
相同点: 都是i-E关系曲线 不同点:
取样电流伏安曲线 在一系列不同幅值的电势阶跃后相同时刻采集电流数据。 对每个不同的E,极化时间是相同的。
线性电势扫描伏安曲线
电势连续线性变化时的电流绘制成i-E关系曲线。 不同电势下采集电流数据前所持续的时间是不同的,电 势、时间均在变化。
CO (0, t) et
CR (0, t)
整理后得到,积分方程
方程的解就是电流函数i(t),即电流-时间的函数。电势与时间呈 线性关系,可转换成电流-电势的关系曲线。
此方程不能解出精确的解析解,采用数值方式,解出其数值解。 数值解:在许许多多电势下计算出来其相应的电流值,然后将数 值列成表或绘制成曲线。 求解之前,将方程改成无因次形式:

忽略,由于扫描速度
恒定,所以双电层充电电流恒定不
变。
电化学反应电流 if
1
与过电势有关,在某电势范围i内f v有2 反应发生,具有响应的反应
电流。
1
if v2
扫描速度越快,ic相对越大;
扫描速度越慢,ic相对越小;
扫描速度足够慢时,ic相对于if可忽略不计,得到i~E的稳态 极化曲线。
1 、 i-E 曲线会出现“峰” i-E曲线如下图所示,出现电流的极大值称为峰值电流。
测量Rct时,扫描速率小,突出线性变化的法拉第电流部分。
第三节 浓差极化存在时的单程线性电势扫描伏安法
条件: 大幅度运用,浓差极化不可忽略,简单电极反应 只有反应物O存在,没有产物R。 进行阴极方向的单程线性电势扫描,电势关系为
初始电势Ei下没有电化学反应发生
一、可逆体系 1、伏安曲线的数值解
为叙述方便引入变量
单程电势扫描过程中,电流的线性变化值 拉第电流的变化值 ,所以传荷电阻Rct
,是法
注意:求算传荷电阻Rct时,要尽量减小扫描速率,以突出线 性变化的法拉第电流部分。 例:
三、电极上有电化学反应发生,且溶液电阻不可忽略
Ru较小时,此方法误差较小; Ru较大时,这样近似计算误差大。
四、适用范围及注意事项
线性电势扫描伏安法
第一节 线性电势扫描过程概述
线性电势扫描伏安法(LSV): 控制电极电势以恒定的速率变化,即连续线性变化,同时测
量通过电极的响应电流。 扫描速率:电极电势的变化率, 测量结果:i-t 或 i-E 曲线表示。 i-E 曲线也叫做伏安曲线。
线性电势扫描法也是暂态法的一种,v对暂态极化曲线的形状 和数值影响较大,只有v足够慢时,才可得到稳态极化曲线。
变为

二、电极上有电化学反应发生,且溶液电阻可忽略 总电流由双电层充电流和法拉第电流两部分组成,即
AB:
双电层充电电流

常数;
法拉第电流随时间线性变化;
因此,总的电流i也是线性变化 的。
B点电势换向的瞬间,电势值并没有发生变化,法拉第电流 不变,电流突跃是由双电层充电改变方向所引起的。由
可求出双电层电容
一方面: 电极反应速率随E增加而增加, 反应电流也增加;电极表面反应 浓度为零时,完全浓差极化达到 极限扩散电流。
另一方面: 随着反应的进行,电势继续扫描相当于极化时间延长,扩 散层厚度增加,扩散流量逐渐下降,电流下降。
相反的作用共同造成了电流峰。
峰前:
峰后:
① i随过电位变化而增大,故if 增大
无因次电势函数: 无因次电流函数:
无因次积分方程
无因次电势函数: 在数值解中转换为: 无因次电流函数: 在数值解中转换为:
电 势 坐 标 电 流 坐 标
2、峰值电流和峰值电势
峰值电势:
峰值电流:
如果实验测得的伏安曲线上电流峰较宽,峰值电位Ep就难以准确测定 所以常测定半峰电位Ep/2,即相应于峰高的一半电流(i=ip/2)时的电位
扫描速度越快,
流过电极的ip就越大。
4、超微电极
超微电极的电势扫描响应电流也由线性扩散电流和稳态电流 两部分组成。 扫描速度v很快
I Ip
Ip 2
p 1 p
φ
22
3、可逆电极体系伏安曲线的特点
(1) Ep、Ep/2 和 Ep-Ep/2 均与电位扫描速度υ和本体浓度c0无 关,是一定值。
(2) E1/2基本在两者的中点。
(3)
ip正比于
C 1 2
*
O
,已知D0可求n。
(4) ip CO* ,用于反应物浓度分析。
(5)
ip
1
v2
φ φ1
φt t
过电位变化起主导作用,电极 反应速率随所加电势的增加而 变大
② 随i增加,反应物浓 度下降,生成物浓度 增加,使 if 下降。
反应物流量下降 起主导作用,随 着时间的延长,δ 增大,扩散流量 下降,故电流下 降。
2. 扫描速度对响应曲线的影响 扫描速度不同,峰值电流不同。
i υ
φ(t)
① 小幅度三角波电势扫描法测量Cd时,适用于各种电极,平 板电极和多孔电极。
② 测量双电层微分电容式时,可以有电化学反应发生。
控制电势、电流阶跃法,都要求理想化电极,没有电化学反 应发生。
③ 溶液电阻越小越好,最好能被补偿。
④ 测量Cd时,扫描速率大,小幅ቤተ መጻሕፍቲ ባይዱ,频率较高;
Cd
i,跃 υ
2
↑,∆i跃
↑,故选择高扫速;
一、线性电势扫描过程中的响应电流的特点 线性扫描电势过程中的响应电流为:
,电极电势改变引起的双电层充电电流。 始终存在,不为零。
,双电层电容改变引起的双电层充电电流。
电极表面发生活性物质吸附时,双电层电容变化,出现吸脱附峰。 电极表面不存在活性物质吸附时,双电层电容不变,可忽略。
小幅度扫描时,电极表面不存在活性吸附物质,
二、 线性扫描的三种形式
A. 单程线性电势扫描
φ t
C. 连续三角波扫描 φ
B. 三角波扫描
φ t
t
三、 主要研究内容
1、 小幅度应用—电极电势幅度在10mV以内
测量电化学测量:Rct、Cd。
2、 大幅度应用
A. 定量分析; B. 判断反应的可逆性; C. 反应机理; D. 研究吸附现象; E. 工艺应用。
相关文档
最新文档