新高考数学第一次模拟试题(及答案)
2024年高考数学模拟试题含答案(一)
2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。
又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。
要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。
2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。
根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。
3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。
当n = 1时,a1 = (S1 + 1) / 2 = 1。
当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。
所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。
4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。
新高考数学第一次模拟试卷附答案
新高考数学第一次模拟试卷附答案一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+D .0.3 4.4y x =-+4.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+5.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的6.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种 B .10种C .18种D .20种9.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .10.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 A .12B .512C .14D .1611.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁12.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.17.函数()f x =________.18.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 19.已知1OA =,3OB =0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.23.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.24.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑25.已知(3cos ,cos )a x x =,(sin ,cos )b x x =,函数()f x a b =⋅.(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .3.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.4.A解析:A 【解析】 【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB 对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.5.D解析:D 【解析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.B【解析】【分析】【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C41=4种方法.所以不同的赠送方法共有6+4=10(种).9.A解析:A【解析】【分析】确定函数在定义域内的单调性,计算1x=时的函数值可排除三个选项.【详解】x>时,函数为减函数,排除B,10x-<<时,函数也是减函数,排除D,又1x=时,1ln20y=->,排除C,只有A可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.10.B解析:B【解析】记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=23×14+13×34=512故选B.11.C解析:C【解析】【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.【详解】由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.12.B解析:B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<15.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。
新数学高考第一次模拟试卷及答案
新数学高考第一次模拟试卷及答案一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1122.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .3.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .244.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 5.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>7.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 3 8.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .29.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32410.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2511.在ABC ∆中,A 为锐角,1lg lg()lgsin 2b A c+==-,则ABC ∆为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=则BC=______ A 3B 7C 2D 23二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 15.复数()1i i +的实部为 .16.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 17.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.18.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程.22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.23.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.24.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 25.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.3.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.4.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果. 详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++23232324log log l 23og log 82>+⋅+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:2a b ab +≥和不等式222a b ab +≥的应用,属于中档题7.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.8.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.9.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算10.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.11.D解析:D 【解析】 【分析】 【详解】试题分析:由1lg lg()lgsin 2b A c+==-22lglg 22b bc c =⇒=且2sin A =A 为锐角,所以45A =,由2b =,根据正弦定理,得22sin )cos sinBC B B B ==-=+,解得cos 090B B =⇒=,所以三角形为等腰直角三角形,故选D. 考点:三角形形状的判定.12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=|3BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .14.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.15.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.16.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z |==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭复数为a bi -.17.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.18.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识 解析:374【解析】【分析】利用已知条件目标可转化为232345334x y z x x y ⎛++=-++ ⎝⎭,构造()33f x x x =-,()2454g y y ⎛=-+ ⎝⎭,分别求最小值即可. 【详解】解:323x y z ++= ()3236x y x ++-- 234534x x y ⎛=-++ ⎝⎭令()33f x x x =-,()2454g y y ⎛=+ ⎝⎭, ()()()2'33311f x x x x =-=-+,0x >,()f x 在()0,1上递减,在()1,+∞上递增,所以,()()min 12f x f ==-当y =()g y 有最小值:()min 454g y = 所以,323x y z ++的最小值为4537244-+= 故答案为374【点睛】 本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.19.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴 解析:【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.20.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化解析:1【解析】【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a .【详解】因为222,cos ,sin x y x y ρρθρθ=+==,由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+,,【点睛】 (1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.三、解答题21.(Ⅰ)22413y x +=, 24y x =.(Ⅱ)330x +-=,或330x -=. 【解析】 试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △的面积为m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)解:设直线AP 的方程为()10x my m =+≠,与直线l 的方程1x =-联立,可得点21,P m ⎛⎫-- ⎪⎝⎭,故21,Q m ⎛⎫- ⎪⎝⎭.将1x my =+与22413y x +=联立,消去x ,整理得()223460m y my ++=,解得0y =,或2634m y m -=+.由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可学*科.网得直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,令0y =,解得222332m x m -=+,故2223,032m D m ⎛⎫- ⎪+⎝⎭.所以222223613232m m AD m m -=-=++.又因为APD ,故22162232m m m ⨯⨯=+,整理得2320m -+=,解得3m =3m =±.所以,直线AP 的方程为330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.22.(Ⅰ)见解析(Ⅱ)111132C A DE V -=⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分所以三菱锥C ﹣A 1DE 的体积为:==1. 12分 考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积23.(15(2)0,1.m n =⎧⎨=⎩【解析】【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长;(2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解. 【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以()2212215z z +=+-=. (2)若212z z =,则()221m i ni -=-, 所以()2212m i n ni -=--,所以2122m n n ⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩ 【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围.24.(Ⅰ)证明见解析;(Ⅱ323+. 【解析】【分析】【详解】试题分析:(Ⅰ)因为PH 是四棱锥P-ABCD 的高.所以AC ⊥PH,又AC ⊥BD,PH,BD 都在平面PHD 内,且PH BD=H.所以AC ⊥平面PBD.故平面PAC ⊥平面PBD.(Ⅱ)因为ABCD 为等腰梯形,AB CD,AC ⊥.所以因为∠APB=∠ADR=600所以,HD=HC=1.可得等腰梯形ABCD 的面积为S=12所以四棱锥的体积为V=13x (33+ 考点:本题主要考查立体几何中的垂直关系,体积的计算.点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有“几何法”和“向量法”.利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程.本题(I )较为简单,(II )则体现了“一作、二证、三计算”的解题步骤.25.(1) 当0a ≤时,()f x 的单调递减区间是(0,)+∞,无单调递增区间;当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭ (2) 211b e -≤ 【解析】【分析】【详解】分析:(1)求导()f x ',解不等式()0f x '>,得到增区间,解不等式()0f x '<,得到减区间;(2)函数f (x )在x=1处取得极值,可求得a=1,于是有f (x )≥bx ﹣2⇔1+1x ﹣lnx x ≥b ,构造函数g (x )=1+1x ﹣lnx x ,g (x )min 即为所求的b 的值 详解:(1)在区间()0,∞+上, ()11ax f x a x x-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()0,∞+上单调递减;当0a >时,令()0f x '=得1x a=, 在区间10,a ⎛⎫ ⎪⎝⎭上,()0f x '<,函数()f x 单调递减, 在区间1,a ⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增.综上所述:当0a ≤时, ()f x 的单调递减区间是()0,∞+,无单调递增区间; 当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭(2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+x b x x-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x x x =+-, 则()22211ln ln 2x x g x x x x -='---=, 易得()g x 在(20,e ⎤⎦上单调递减,在)2,e ⎡+∞⎣上单调递增, 所以()()22min 11g x g e e ==-,即211b e -≤. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >。
新高考数学第一次模拟试卷及答案
新高考数学第一次模拟试卷及答案一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .233.若43i z =+,则zz=( )A .1B .1-C .4355i + D .4355i - 4.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .166.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( )A .B .C .D .7.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .08.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .329.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C .-3D .310.在△ABC 中,AB=2,AC=3,1AB BC ⋅=则BC=______ A 3B 7C 2D 2311.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对12.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________.15.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 16.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 17.计算:1726cos()sin 43ππ-+=_____. 18.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 19.若45100a b ==,则122()a b+=_____________. 20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.三、解答题21.已知函数2()(1)1xxf x a ax-=+>+.(1)证明:函数()f x在(1,)-+∞上为增函数;(2)用反证法证明:()0f x=没有负数根.22.已知数列{}n a与{}n b满足:*1232()n na a a ab n N++++=∈,且{}na为正项等比数列,12a=,324b b=+.(1)求数列{}n a与{}n b的通项公式;(2)若数列{}n c满足*2211()log lognn nc n Na a+=∈,nT为数列{}n c的前n项和,证明:1nT<.23.已知2256x≤且21log2x≥,求函数22()log log22x xf x=⋅的最大值和最小值.24.如图,已知四棱锥P ABCD-的底面为等腰梯形,//AB CD,AC BD⊥,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB6=,APB ADB∠=∠=60°,求四棱锥P ABCD-的体积.25.如图,四边形ABCD为矩形,平面ABEF⊥平面ABCD,//EF AB,90BAF∠=︒,2AD=,1AB AF==,点P在线段DF上.(1)求证:AF⊥平面ABCD;(2)若二面角D AP C--的余弦值为63,求PF的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.3.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.4.A解析:A【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A5.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.6.D解析:D 【解析】 【分析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合. 故选:D. 【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.7.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA == 可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-, 由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.8.B解析:B 【解析】 【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
新数学高考第一次模拟试卷(含答案)
新数学高考第一次模拟试卷(含答案)一、选择题1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .353.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1004.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④5.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30C .45︒D .15︒6.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}7.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,8.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.9.若双曲线22221 x ya b-=的离心率为3,则其渐近线方程为()A.y=±2x B.y=2x±C.12y x=±D.22y x=±10.设三棱锥V ABC-的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P AC B--的平面角为γ,则()A.,βγαγ<<B.,βαβγ<<C.,βαγα<<D.,αβγβ<<11.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为()A.32 B.0.2 C.40 D.0.2512.已知,a b是非零向量且满足(2)a b a-⊥,(2)b a b-⊥,则a与b的夹角是()A.6πB.3πC.23πD.56π二、填空题13.已知曲线lny x x=+在点()1,1处的切线与曲线()221y ax a x=+++相切,则a= .14.函数()22,026,0x xf xx lnx x⎧-≤=⎨-+>⎩的零点个数是________.15.已知实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩,则32z x y=-的最小值是__________.16.已知函数()(ln)f x x x ax=-有两个极值点,则实数a的取值范围是__________.17.计算:1726cos()sin43ππ-+=_____.18.记n S为数列{}n a的前n项和,若21n nS a=+,则6S=_____________.19.如图,圆C(圆心为C)的一条弦AB的长为2,则AB AC⋅=______.20.设函数21()ln2f x x ax bx=--,若1x=是()f x的极大值点,则a取值范围为_______________.三、解答题21.已知直线352 :{132x t lyt=+=+(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cosρθ=.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为(5,3),直线l与曲线C 的交点为A,B,求MA MB⋅的值.22.已知数列{}n a满足1112,22nn na a a++==+.(1)设2nn nab=,求数列{}n b的通项公式;(2)求数列{}n a的前n项和n S;(3)记()()211422n nnn nn nca a+-++=,求数列{}n c的前n项和n T.23.设函数22()ln(0)f x a x x ax a=-+>(Ⅰ)求()f x单调区间(Ⅱ)求所有实数a,使21()e f x e-≤≤对[1,e]x∈恒成立注:e为自然对数的底数24.如图,在三棱柱111ABC A B C-中,H是正方形11AA B B的中心,122AA=,1C H⊥平面11AA B B,且15.C H=(Ⅰ)求异面直线AC与11A B所成角的余弦值;(Ⅱ)求二面角111A AC B--的正弦值;(Ⅲ)设N为棱11B C的中点,点M在平面11AA B B内,且MN⊥平面111A B C,求线段BM的长.25.已知(3cos,cos)a x x=,(sin,cos)b x x=,函数()f x a b=⋅.(1)求()f x的最小正周期及对称轴方程;(2)当(,]xππ∈-时,求()f x单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C 【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.3.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.4.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.5.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.6.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.7.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意;当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩, 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C . 8.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
新高考数学第一次模拟试题(含答案)
新高考数学第一次模拟试题(含答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .33.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A .12B .13C .23D .344.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形5.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种 B .10种C .18种D .20种7.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}8.函数2||()x x f x e -=的图象是( )A .B .C .D .9.当1a >时, 在同一坐标系中,函数xy a-=与log a y x =-的图像是( )A .B .C .D .10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N*,不等式均成立.则上述证法()A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的证明过程不正确11.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为A.1220B.2755C.2125D.2722012.已知,a b∈R,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b=--恰有三个零点,则()A.1,0a b<-<B.1,0a b<->C.1,0a b>-<D.1,0a b>->二、填空题13.设函数()212log,0log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.14.若三点1(2,3),(3,2),(,)2A B C m--共线,则m的值为.15.已知(13)nx+的展开式中含有2x项的系数是54,则n=_____________.16.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.17.在极坐标系中,直线cos sin(0)a aρθρθ+=>与圆2cosρθ=相切,则a=__________.18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.19.在ABC∆中,若13AB=3BC=,120C∠=︒,则AC=_____.20.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.三、解答题21.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.22.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .23.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
新高考数学第一次模拟试卷附答案
新高考数学第一次模拟试卷附答案一、选择题1.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈2.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ1 2P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小3.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .424.函数y =2x sin2x 的图象可能是A .B .C .D .5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .806.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>7.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .328.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .3189.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1210.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A 3B .2C 6D .511.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B 12± C 110± D 322± 12.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C________.16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲17.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.18.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.19.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 20.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考:P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.24.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.25.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.2.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑3.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
备战2024年高考数学模拟卷(新高考Ⅰ卷专用)含解析
【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用)黄金卷(答案在最后)(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要A.51 62 a b+C.51 63 a b+【答案】CA .242B .24【答案】B【详解】如图所示,在正四棱锥P ABCD -连接OP ,则底面边长32AB =,对角线又5BP =,故高224OP BP BO =-=故该正四棱锥体积为()21323V =⨯⨯故选:B5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果可以表示为两个素数的和身外没有其他因数的自然数)中,随机选取两个不同的数,其和等于将APQ △翻折后,PQ A Q '⊥,PQ BQ ⊥,又平面平面A PQ ' 平面BCPQ PQ =,A Q '⊂平面A PQ ',BQ ⊂平面BCPQ ,于是A Q '⊥平面显然A P ',BP 的中点D ,E 分别为A PQ ' ,四边形BCPQ 则DO ⊥平面A PQ ',EO ⊥平面BCPQ ,因此//DO BQ 取PQ 的中点F ,连接,DF FE 则有////EF BQ DO ,DF 四边形EFDO 为矩形,设A Q x '=且023x <<,DO 设球O 的半径R ,有22223324A P R DO x x '⎛⎫=+=-+⎪⎝⎭当23x =时,()22R =,所以球O 表面积的最小值为故选:A .二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
A .正方体11ABCD A B C -B .两条异面直线1D C 和C .直线BC 与平面ABC D .点D 到面1ACD 的距离为【答案】BC【分析】根据正方体和内切球的几何结构特征,可判定的角的大小即为直线1D C 和进而求得直线BC 与平面ABC 判定D 错误.【详解】对于A 中,正方体所以内切球的半径12R =,所以对于B 中,如图所示,连接因为11//AB C D 且11AB C D =所以异面直线1D C 和1BC 所成的角的大小即为直线又因为112AC AD D C ===对于C 中,如图所示,连接B 因为AB ⊥平面11BB C C ,1B C 又因为1AB BC B =I ,AB ⊂所以1B C ⊥平面11ABC D ,所以直线所以C 正确;对于D 中,如图所示,设点D 所以111πsin 23ACD S AC AD =⨯⨯V 又因为12ACD S AD CD =⨯⨯=V 即111133ACD ACD S h S DD ⨯⨯=⨯⨯ 故选:BC.10.已知函数321()3f x x x =-A .()f x 为奇函数C .()f x 在[1,)-+∞上单调递增【答案】BC【分析】根据奇函数的定义判断12.已知函数()f x 及其导函数f 则()A .(1)(4)f f -=B .g ⎛- ⎝【答案】ABD【分析】由题意分析得到()f x 关于直线【详解】因为3(2)2f x -为偶函数,所以所以()f x 关于直线32x =对称,令因为33()()22f x f x -=+,所以f '所以()()21g x g x +=--,因为所以()()21g x g x -=--,即(g 则()g x 的一个周期为2.因为(f x 所以33022g f ⎛⎫⎛⎫== ⎪ '⎪⎝⎭⎝⎭,所以g 因为()()1g x g x +=-,所以(2g 设()()h x f x c =+(c 为常数),定义域为3322h x f x c ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,又f ⎛ ⎝显然()()h x f x c =+也满足题设,即()f x 上下平移均满足题设,显然()0f 的值不确定,故C 错误.故选:ABD第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分。
新高考数学第一次模拟试题含答案
新高考数学第一次模拟试题含答案一、选择题1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0 B .1C .2D .34.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<< 5.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i6.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组7.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 8.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 49.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .110.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .8011.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 312.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.15二、填空题13.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.14.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.15.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 17.若45100a b ==,则122()a b+=_____________. 18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =1cos 3A =,则ABC △的面积为______. 19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=︒,G 为BE 的中点.(Ⅰ)求证:AG ⊥平面ADF ;(Ⅱ) 求AB 3=,BC 1=,求二面角D CA G --的余弦值.24.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .25.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at =+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.A解析:A 【解析】【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的. 【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.4.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.6.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.7.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.8.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.9.B解析:B 【解析】1333,sin sin sin 22sin cos A B A A A ===3cos 2A =, 所以()22231323c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想. 当求出3cos A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.10.C解析:C 【解析】分析:写出103152rrr r T C x -+=,然后可得结果详解:由题可得()5210315522rrrr r rr T C x C xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2= 所以22552240rr C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。
2024年高考第一次模拟考试——数学(新高考Ⅰ卷01)(全解全析)
2024年高考数学第一次模拟考试数学(新高考I卷)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是,再根据共轭复数定义即可得结果....【答案】C【分析】根据奇偶性和赋值即可判断选项【详解】由2()sin ln f x x x f -=-⋅=-()x 是奇函数,且定义域为{BD ;π时,()2πsinπln π0f =⋅=,排除C.已知n S 是公差为d (0d ≠)的无穷等差数列}n a 的前n 项和,设甲:数列*N n ∈,均有0n S >,则(.甲是乙的充分条件但不是必要条件.甲是乙的必要条件但不是充分条件.甲是乙的充要条件.甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】利用定义法直接判断符合数列7.已知tan(+)αβ,tan(α-A .2-B .-【答案】D【分析】由题意可求出tan(α()()2ααβαβ=++-,2β式求值即可.【详解】因为tan(+)αβ,tan(所以tan(+)+tan()=a b a b --因为()()sin sin 2cos 2cos αβαβαβ++⎡⎣=+-⎡⎣()()()()tan tan 1tan tan αβαβαβαβ++-=++⋅-故选:D8.已知91ln ,,e 89a b c -===A .a b c>>二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
2024年东北三省高考模拟数学试题(一)(含答案)
2024年东北三省高考模拟数学试题(一)(含答案)一、选择题(每题5分,共40分)1. 已知函数f(x) = x^3 - 3x,则f(x)的单调递增区间是()A. (-∞, -1) 和(1, +∞)B. (-∞, 1) 和(1, +∞)C. (-∞, -1) 和 (-1, 1)D. (-∞, 1) 和(1, +∞)2. 已知函数y = f(x)的图像上有点A(2, 3),B(4, 7),则直线AB的斜率是()A. 2B. 1C. 3/2D. 1/23. 若a、b是方程x^2 - 3x + 2 = 0的两个根,则a + b的值为()A. 3B. 2C. 1D. 04. 已知等差数列{an}的前n项和为Sn,若S5 = 35,S10 = 110,则该数列的首项a1等于()A. 3B. 5C. 7D. 95. 若函数y = f(x)在x = 1处的导数f'(1) = 2,则曲线y = f(x)在点(1, f(1))处的切线斜率是()A. 1B. 2C. -1D. -26. 已知函数f(x) = x^2 + 2x + 1,求不等式f(x) > 0的解集是()A. (-∞, -1) ∪ (1, +∞)B. (-∞, -1) ∪ (-1, 1) ∪ (1, +∞)C. (-∞, -1) ∪ (1, +∞)D. (-∞, -1) ∪ (-1, 1)7. 已知函数y = f(x)满足f(x + 1) = f(x),则f(x)是()A. 奇函数B. 偶函数C. 周期函数D. 非周期函数8. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),则矩阵A的行列式值是()A. 1B. 2C. 3D. 4二、填空题(每题5分,共40分)9. 若函数f(x) = 2x + 3在x = 2处的导数f'(2) = 2,则f(x)在x = 2处的切线方程是______。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)(含答案解析)
2023年普通高等学校招生全国统一考试�新高考仿真模拟卷数学(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B = ()A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为()A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-()A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)()A .312750cmB .312800cmC .312850cm D .312900cm 6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =()A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为()A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为()A B .4C .4D .2二、多选题9.已知函数()()1cos 02f x x x ωωω=+>的图像关于直线6x π=对称,则ω的取值可以为()A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠= ,点E 为线段CD 的中点,AC 和BD 交于点O ,则()A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是()A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是()A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______.14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x>的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-.(1)判断ABC 的形状;(2)若a =,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C -中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1ACD ;(2)若1BC =,求四棱锥1C A DBE -的体积;(3)求直线1BC 与平面1A CE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x y a b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=.(1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围.【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤∴{}12A B x x ⋂=≤<故选:B.2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数.【详解】()523x + 展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅;当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C.4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---,故选:A.5.C【分析】根据圆柱和圆台的体积公式计算可得结果.【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm ,所以该何尊的体积估计为61076752+=128593cm .因为12850最接近12859,所以估计该何尊可以装酒128503cm .故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-,所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=,即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =,因为()()2f x f x =-,所以(2)(0)0f f ==,又因为202245052=⨯+,所以(2022)(2)0f f ==,故选:D .7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可.【详解】由题意将该四棱锥放在一个长方体的中,如图①所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD ==,则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD ,则PH ⊥平面ABCD ,又112AH AD ==,所以在Rt PAH △中,3PH =,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O ,连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心,且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD ,所以1OO ∥PH ,所以四边形12OO HO 为矩形.如图②连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==,在图①中连接OB ,由112O B BD ==,所以在1Rt OO B中,OB ====即四棱锥P ABCD-外接球的半径为3R OB ==,所以四棱锥P ABCD-外接球的表面积为:221364πR 4ππ9S ==⨯=⎝⎭,故选:C.8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =,∴12121612k k y y ==-∴1232y y =-,∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,M y --,同理:24(1,N y --∴12121212||44||||4||8y y y y MN y y y y --=-+==,设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩20m t ∆=+>,124y y m +=,124y y t =-,又∵1232y y =-,∴432t -=-,解得:8t =,∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P ,∴点P 到准线=1x -的距离为8+1=9.方法1:1211||1321||||2888y y MN y y -==+≥⨯,当且仅当1||y =.∴19||9||222PMN S MN MN =⨯=≥△,∴△PMN的面积的最小值为2.方法2:12||||8y y MN -====∵20m ≥∴||MN ≥=m =0时取得最小值.∴19||9||222PMN S MN MN =⨯=≥△,∴△PMN的面积的最小值为2.故选:D.9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=.故选:AD.10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】 四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD正方向为,x y轴,可建立如图所示平面直角坐标系,2AB AD == ,60DAB ∠= ,2BD ∴=,OA OC ==()0,0O ∴,()A ,()0,1B -,()0,1D,12E ⎫⎪⎪⎝⎭,对于A ,AC BD ^ ,0AC BD ∴⋅=,A 正确;对于B,)1AB =-,)AD =,312AB AD ∴⋅=-=,B 正确;对于C,12OE ⎫=⎪⎪⎝⎭,()BA = ,31122OE BA ∴⋅=-+=- ,C 错误;对于D,12OE ⎫=⎪⎪⎝⎭,12AE ⎫=⎪⎪⎝⎭ ,915442OE AE ∴⋅=+= ,D 正确.故选:ABD.11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误,这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误,这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误,因为1()()35P AB P A ==,所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===,故D 正确,故选:ABC.12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-,所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩.所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781c c c x x x xx x c +=+-=--=-+对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x +=-+>⨯-⨯+=.即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩',消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得:123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值,()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确.故选:BCD.13.710##0.7【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦.所以21475410s t ==.故答案为:710.14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可.【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切,圆C 与圆O :221x y +=相切,可得0112x ⎧--==,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩,且已知半径为1,所以圆的方程可以为:()2221x y +-=或()2221x y ++=或()2221x y ++=故答案为:()2221x y +-=(答案不唯一)15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a =±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+,解得:12e =.故答案为:12.16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x =++,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x =++,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =++-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数,得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >;当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞17.(1)1n a n =+(2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ;(2)利用裂项相消法可求得n S ,整理即可证得结论.【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a + 成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩,当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去;12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++,1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++,()221n n S n n ∴+=<+.18.(1)直角三角形(2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得,2sin cos sin cos sin C B B C A+=即()2sin sin B C A+=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c ,又因为2BD CD =,所以23BD BC ==且cos cB a ==在ABD △中,由余弦定理可得,222222423cos 23b b AD AB BD AD B AB BD +-+-∠==⋅解得AD =,在ABD △中由余弦定理可得,22222224233cos 0233b b b AD BD AB ADB AD BD +-+-∠=⋅19.(1)证明见解析(2)235【分析】(1)连接1AC 交1AC 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积;(3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值.【详解】(1)证明:连接1AC 交1AC 于点F ,连接EF ,则F 为1AC 的中点,因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ,1//BC ∴平面1ACD .(2)解:因为1BC =,则122AA AC CB ===,AB ==222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得5AC BC CM AB ⋅==,因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--=+=⎪⎪⎝⎭△△矩形四边形111123353C A DBE A DBE V S CM -∴=⋅=⨯=四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E ,设平面1A CE 的法向量为(),,n x y z = ,()12,0,2CA = ,()0,1,1CE = ,则12200n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取1x =,可得()1,1,1n =- ,因为()10,1,2BC =-,则111cos ,BC nBC n BC n⋅<>==--⋅,因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望.【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:X123P72421407401120∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=.21.(1)22145x y-=(2)2y x =2y x =-【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =,与双曲线方程联立可得韦达定理的结论,利用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程.【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =-- ,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =,∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =,()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--,11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k k x x x x k k+=++++=-++=--,解得:2k =±,满足252k <且254k ≠,∴直线AB方程为:2y x =+2y x =.【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1).(2)证明过程见详解【分析】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增;当01x <<时,()0f x '<,此时函数()f x 单调递减;综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增;当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =;当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
新高考数学第一次模拟试卷带答案
新高考数学第一次模拟试卷带答案一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 3.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<04.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .110B .310C .35D .255.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的6.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1)C .(-1,0)D .(1,2)7.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组8.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁11.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定12.已知,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥,则a 与b 的夹角是( ) A .6π B .3π C .23π D .56π 二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 15.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm . 17.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.18.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .25.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.3.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .4.C解析:C 【解析】 【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故本题选C .【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.5.D解析:D 【解析】 【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =(1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.8.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).9.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.12.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅,代入夹角公式即可.【详解】设,a b 的夹角为θ;因为(2)a b a -⊥,(2)b a b -⊥,所以222a ba b ==⋅,则22|2,|2a a b b a b =⋅⋅=,则2212cos ,.23aa b a b aπθθ⋅===∴=故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】因为3sin sin αα=()2sin sin ααα+=22sin cos cos sin sin ααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.15.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.16.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为:23. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.17.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.18.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr ∵含有x2的系数是54∴r =2∴54可得6∴6n ∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1r n=(3x )r =3rr nx r .∵含有x 2的系数是54,∴r =2. ∴223n=54,可得2n=6,∴()12n n -=6,n ∈N *.解得n =4. 故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.19.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定解析:16【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解.【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 484816A B C B C B C ∴=+=+=⨯+⨯=,11sin 2322S bc A ∴==⨯⨯=.. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:4【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABCh S ⨯⨯代入数据得到1313313332⨯⨯⨯=或者1319333 3.324⨯⨯⨯= 3393【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(26525【解析】 【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()231116555d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为6525d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .B =由正弦定理,得42sin sin c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+.又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,22122sin 1cos 1().33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=172242233927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换. 23.(I )丙级;(Ⅱ)①;②.【解析】 【分析】(I )以频率值作为概率计算出相应概率,再利用判定规则的三个式子得出判断设备的性能等级。
新高考数学第一次模拟试卷含答案
新高考数学第一次模拟试卷含答案一、选择题1.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10 B .11 C .12D .15 2.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( )A .6B .8C .26D .423.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .22B .23C .28D .244.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角5.函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A .3-B .3 C .12D .12-6.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B .2 C .3D .27.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .272208.若实数满足约束条件,则的最大值是( )A .B .1C .10D .129.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .10.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .322± 12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.复数()1i i +的实部为 .15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)18.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.19.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.23.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.24.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.25.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是6,求直线PA 与平面EAC 所成角的正弦值.26.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】【详解】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类: 第一类:与信息0110有两个对应位置上的数字相同有246C =个;第二类:与信息0110有一个对应位置上的数字相同有14C 4=个;第三类:与信息0110没有位置上的数字相同有04C 1=个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有64111++=个, 故选B .2.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
新数学高考第一次模拟试卷(带答案)
新数学高考第一次模拟试卷(带答案)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .3 3.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -4.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .135.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( ) A .7B .10C .13D .46.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A .2B .3C .22D .327.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π8.对于不等式2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 310.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .1011.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C 2D .212.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =,b=1,则c =_____________15.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.16.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.17.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c . 23.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 25.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.A解析:A 【解析】 【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的.【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.3.B解析:B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩1b ⇒=- ,故选B. 4.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.5.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .6.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.7.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.8.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 时有21k k k +<+ 成立,即2(1)(1)(1)1k k k +++<++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.10.D解析:D 【解析】试题分析:因为210:270:3007:9:10,=所以从高二年级应抽取9人,从高三年级应抽取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.11.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c 2a = 则该双曲线的离心率为 e 2ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.12.C解析:C 【解析】 【分析】根据正弦函数的图象和性质,即可得到结论. 【详解】解:在[0,2π]内,若sin x 32-<,则43π<x 53π<, 即不等式的解集为(43π,53π), 故选:C . 【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =,因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭, 故答案为:42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.14.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.16.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可. 详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=,故答案为10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++17.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动,结合2z 的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.18.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.19.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画 解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A 在跳舞,B 在打篮球,∵③“C 在散步”是“A 在跳舞”的充分条件,∴C 在散步,则D 在画画,故答案为画画20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1); (2)36000;(3). 【解析】【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000.(Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.22.(1)3A π=(2)b c ==2【解析】【分析】【详解】(Ⅰ)由3sin cos c a C c A =-及正弦定理得 3sin sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A 故bc =4, 而2222cos a b c bc A =+-故22c b +=8,解得b c ==223.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.24.(1)1;(2)见解析【解析】【分析】 (1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】(1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c ++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭23321112233b c a c a b a a b b c c=++++++++ 233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233b c a c a b a a b b c c======时,等号成立. 所以239a b c ++≥. 【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 25.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.26.(I )(4,),(2)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C交点的极坐标为(4,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+= 由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得。
河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)
河北省衡水市第二中学2024届高三高考模拟一数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2120,{23},P xx x Q x m x m P Q =--≤=≤≤-=∅ ∣∣,则实数m 的取值范围是().A .{0m m <∣或4}m >B .{04}m m <<∣C .{3mm <∣或4}m >D .{34}mm <<∣2.某同学统计最近5次考试成绩,发现分数恰好组成一个公差不为0的等差数列,设5次成绩的平均分数为x ,第60百分位数为m ,当去掉某一次的成绩后,4次成绩的平均分数为y ,第60百分位数为n .若y x =,则()A .m n >B .m n=C .m n<D .m 与n 大小无法判断3.吹气球时,气球的体积V (单位:L )与半径r (单位:dm )之间的关系是343V r π=.当4L 3V π=时,气球的瞬时膨胀率为()A .1dm /L 4πB .1dm /L3C .3L /dmD .4L /dmπ4.设实数x ,y 满足22154x y +=)A .B .2-C .D .前三个答案都不对5.记数列{}n a 的前n 项和为n S ,设甲:{}n a 是公比不为1的等比数列;乙:存在一个非零常数t ,使1n S t ⎧⎫+⎨⎬⎩⎭是等比数列,则()A .甲是乙的充要条件B .甲是乙的充分不必要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件6.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ABCD F --的棱长为a ,下列说法中正确的个数有()①此八面体的表面积为2;②异面直线AE 与BF 所成的角为45 ;③此八面体的外接球与内切球的体积之比为④若点P 为棱EB 上的动点,则AP CP +的最小值为.A .1个B .2个C .3个D .4个7.在ABC V 中,2AB AC =,AD 是A ∠的平分线,交BC 于点D ,且AC tAD =,则t 的取值范围是A .3,4⎛⎫+∞ ⎪⎝⎭B .3,14⎛⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭8.已知,,(1,)a b c ∈+∞,且e 9ln11,e 10ln10,e 11ln 9a b c a b c ===,则,,a b c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .c b a>>二、多选题9.下列四个命题正确的是()A .若1i 1z +-=,则1i z --的最大值为3B .若复数12,z z满足12122,2,1z z z z ==+=,则12z z -=C .若()sin sin C A AB A AB B AC C P λλ⎛⎫ ⎪=+∈ ⎪⎝⎭R,则点P 的轨迹经过ABC V 的重心D .在ABC V 中,D 为ABC V 所在平面内一点,且1132+= AD AB AC ,则16BCD ABDS S =△△10.由倍角公式2cos 22cos 1x x =-可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n ∈N 次多项式()110n n n n n P t a t a t a --=+++ (0a ,1a ,…,n a ∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得()A .()3343P t t t=-+B .()424881P t t t =-+C.1sin 544+︒=D.1cos546︒=11.已知n S 是数列{}n a 的前n 项和,且21n n S S n +=-+,则下列选项中正确的是().A .121n n a a n ++=-(2n ≥)B .22n n a a +-=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫- ⎪⎝⎭三、填空题12.已知:平面l αβ= ,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥,3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为.13.数列{}满足()2*114,13n n n a a a a n N +==-+∈,则122017111a a a +++ 的整数部分是.14.极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b +=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.四、解答题15.在数列{}n a 中,已知321212222n n a a a a n -++++= .(1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a + 成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).16.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,左顶点为A ,短轴长为点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.17.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,E 是BC 的中点,点F 在棱AD 上,且PA AD ⊥,2cos5PAE ∠=-,PA =(1)若平面PAB ⋂平面PCD l =,证明://l 平面ABCD ;(2)求平面PEF 与平面PCD 的夹角的余弦值的最大值.18.近年来,购买盲盒成为当下年轻人的潮流之一,为了引导青少年正确消费,国家市场监管总局提出,盲盒经营行为应规范指引,经营者不能变相诱导消费.盲盒最吸引人的地方,是因为盒子上没有标注,只有打开才会知道自己买到了什么,这种不确定性的背后就是概率.几何分布是概率论中非常重要的一个概率模型,可描述如下:在独立的伯努利(Bernoulli )试验中,若所考虑事件首次出现,则试验停止,此时所进行的试验次数X 服从几何分布,事件发生的概率p 即为几何分布的参数,记作()~X G p .几何分布有如下性质:分布列为()()11k P X k p p -==-,1,2,,,k n =⋅⋅⋅⋅⋅⋅,期望()()1111k k E X k p p p+∞-==-⋅=∑.现有甲文具店推出四种款式不同、单价相同的文具盲盒,数量足够多,购买规则及概率规定如下:每次购买一个,且买到任意一种款式的文具盲盒是等可能的.(1)现小嘉欲到甲文具店购买文具盲盒.①求他第二次购买的文具盲盒的款式与第一次购买的不同的概率;②设他首次买到两种不同款式的文具盲盒时所需要的购买次数为Y ,求Y 的期望;(2)若甲文具店的文具盲盒的单价为12元,乙文具店出售与甲文具店款式相同的非盲盒文具且单价为18元.小兴为了买齐这四种款式的文具,他应选择去哪家文具店购买更省钱,并说明理由.19.牛顿在《流数法》一书中,给出了代数方程的一种数值解法——牛顿法.具体做法如下:如图,设r 是()0f x =的根,首先选取0x 作为r 的初始近似值,若()f x 在点00(,())x f x 处的切线与x 轴相交于点1(,0)x ,称1x 是r 的一次近似值;用1x 替代0x 重复上面的过程,得到2x ,称2x 是r 的二次近似值;一直重复,可得到一列数:012,,,,,n x x x x .在一定精确度下,用四舍五入法取值,当()*1,N n n x x n -∈近似值相等时,该值即作为函数()f x 的一个零点r .(1)若32()33f x x x x =++-,当00x =时,求方程()0f x =的二次近似值(保留到小数点后两位);(2)牛顿法中蕴含了“以直代曲”的数学思想,直线常常取为曲线的切线或割线,求函数()e 3x g x =-在点(2,(2))g 处的切线,并证明:23ln31e <+;(3)若()(1ln )h x x x =-,若关于x 的方程()h x a =的两个根分别为1212,()x x x x <,证明:21e e x x a ->-.参考答案:题号12345678910答案C CACBBADABCBC题号11答案AC1.C【分析】化简集合A 后,根据P Q =∅ 分类讨论即可.【详解】由{}2120[3,4]P xx x =--≤=-∣,P Q =∅ ,当Q =∅时,需满足23m m >-,解得3m <;当Q ≠∅时,需满足34m m ≥⎧⎨>⎩,解得4m >,综上3m <或4m >.故选:C 2.C【分析】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,即可求出x 、m ,要使去掉一个数据之后平均数不变,则去掉的一定是2a d +,从而求出n ,即可判断.【详解】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,所以()123425x a a d a d a d a d a d =++++++++=+,又560%3⨯=,所以第60百分位数为23522a d a d m a d +++==+,要使4次成绩的平均分数为y 且y x =,则去掉的数据一定是2a d +,即还剩下a 、a d +、3a d +、4a d +()0,0a d >>,又460% 2.4⨯=,所以第60百分位数为3n a d =+,因为0d >,所以n m >.故选:C 3.A【分析】气球膨胀率指的是气球体积变化的值与半径变化值之间的比值,即rV∆∆,但此题所求的时瞬时变化率,故需要利用导数求解.【详解】因为343V r π=,所以r =,所以12333143r π-⎛⎫'=⨯ ⎪⎝⎭,所以,当43V π=时,12123333314313131433434344r ππππππ-⎛⎫⎛⎫⎛⎫⎛⎫'=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭dm /L .故选:A 4.C【分析】转化为动点到两定点之间距离和,再利用焦点三角形的性质可求最小值.,点(,)P x y 是椭圆22:154x y C +=上的点,设(1,0),(1,0),(0,1)E F A -,如图.记题中代数式为M ,则||||||||||M PA PF PA PE AE =+=+≥=等号当点E ,A ,P 依次共线时取得.因此所求最小值为故选:C.5.B【分析】利用等比数列前n 项和公式,结合充分条件、必要条件的定义判断即得.【详解】设数列{}n a 的首项和公比分别为1a ,(1)≠q q ,则111n n q S a q -=⋅-,取11a t q =-,得1n n S q t +=,显然数列{1}n S t +是等比数列;反之,取1t =,0n a =,此时11n S +=,数列{1}nS t+为等比数列,而{}n a 不是等比数列,所以甲是乙的充分不必要条件.故选:B 6.B【分析】对①:计算出一个三角形面积后乘8即可得;对②:借助等角定理,找到与AE 平行,与BF 相交的线段,计算即可得;对③:借助外接球与内切球的性质计算即可得;对④:空间中的距离和的最值问题可将其转化到同意平面中进行计算.【详解】对①:由题意可得2284S =⨯=表,故①正确;对②:连接AC ,取AC 中点O ,连接OE 、OF ,由题意可得OE 、OF 为同一直线,A 、E 、C 、F 四点共面,又AE EC CF FA ===,故四边形AECF 为菱形,故//AE CF ,故异面直线AE 与BF 所成的角等于直线CF 与BF 所成的角,即异面直线AE 与BF 所成的角等于60CFB ∠=,故②错误;对③:由四边形ABCD 为正方形,有2222222AC BC AB EC AE a =+=+=,故四边形AECF 亦为正方形,即点O 到各顶点距离相等,即此八面体的外接球球心为O,半径为2aR =,设此八面体的内切球半径为r ,则有2112233E ABCD F E ABCD V S r V a ---=⨯==⨯⨯⨯表r =,则此八面体的外接球与内切球的体积之比为33R r ⎛⎫⎪⎛⎫== ⎪⎝⎭对④:将AEB 延EB 折叠至平面EBC中,如图所示:则在新的平面中,A 、P 、C 三点共线时,AP CP +有最小值,则()min 22AP CP a +=⨯=,故④错误.故选:B.【点睛】关键点点睛:本题④中,关键点在于将不共面的问题转化为同一平面的问题.7.A【解析】在ABC V 中,2AB AC =,AD 是A ∠的平分线,由角平分线性质可得2BD ABCD AC==,利用cos cos BAD CAD ∠=∠结合余弦定理化简可得22212CD AC AD =-,再代入cos CAD ∠的式子中消去CD ,通过AC tAD =,化简整理得出3cos 4CAD t∠=,即可得到t 的取值范围.【详解】在ABC V 中,2AB AC =,AD 是A ∠的平分线,∴由角平分线的性质可得2BD ABCD AC==,BAD CAD ∠=∠,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,在ACD 中,由余弦定理得222cos 2AC AD CD CAD AC AD +-∠=⋅,∴22222222AB AD BD AC AD CD AB AD AC AD+-+-=⋅⋅,化简得22222AD AC CD =-,即22212CD AC AD =-,∴22223332cos 2244AD AC AD CD AD CAD AC AD AC AD AC t+-∠===⋅⋅而0,2CAD π⎛⎫∠∈ ⎪⎝⎭,故()3cos 0,14CAD t ∠=∈,∴3,4t ⎛⎫∈+∞ ⎪⎝⎭.故选:A.【点睛】本题考查了三角形内角平分线的性质以及余弦定理在解三角形中的应用,考查了转化能力与计算能力,属于中档题.8.D【分析】构造函数()()e ,1,xf x x x∞=∈+,利用导数讨论其单调性,将问题转化为比较,,,再转化为比较9ln11,10ln10,11ln 9,构造函数()()20ln g x x x =-,利用导数讨论其单调性,利用单调性即可得答案.【详解】由题知,e e e 9ln11,10ln10,11ln 9a b ca b c ===,记()()e ,1,x f x x x ∞=∈+,则()()21e x x f x x-'=,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,故比较,,a b c 的大小关系,只需比较,,的大小关系,即比较9ln11,10ln10,11ln 9的大小关系,记()()20ln ,1g x x x x =->,则()20ln 1g x x x=-+-',记()20ln 1h x x x =-+-,则()21200h x x x=--<',所以()h x 在()1,+∞上单调递减,又()220338ln 81ln 8ln e 0822h =-+-=-<-<,所以,当()8,x ∈+∞时,()0h x <,()g x 单调递减,所以()()()11109g g g <<,即9ln1110ln1011ln 9<<,所以()()()f a f b f c <<,所以a b c <<.故选:D【点睛】本题难点在于构造函数()()e ,1,xf x x x∞=∈+,将问题转化成比较,,的大小关系后,需要再次构造函数()()20ln ,1g x x x x =->,对学生观察问题和分析问题的能力有很高的要求,属于难题.9.ABC【分析】A 根据复数模的几何意义及圆的性质判断;B 利用复数的运算和模的运算求解即可;C 结合重心的性质进行判断;D 利用平面向量基本定理,判断出D 点位置,进而可求.【详解】对A ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1,即动点Z 的轨迹以(1,1)-为圆心,1为半径的圆,1i z --表示动点点Z 的轨迹以(1,1)的距离,由圆的性质知:max |i |z --==113,A 正确;对B ,设i,i,(,,,R)z m n z c d m n c d =+=+∈12,因为12122,2,1z z z z ==+=,所以,m n c d +=+=222244,,m c n d +=+=1,所以mc nd +=-2,所以12()()i z z m c n d -=-+-====,B 正确;对C ,由正弦定理的sin sin AC C AB B ⋅=⋅,即||sin ||sin AC C AB B =,()sin sin sin AB AC AP AB AC AB B AC C AB B λλ⎛⎫ ⎪∴==+ ⎪⎝⎭,设BC 中点为E ,如图:则AB +AC =2AE,则||sin AP AE AB Bλ=2 ,由平面向量的共线定理得,,A P E 三点共线,即点P 在边BC 的中线上,故点P 的轨迹经过ABC V 的重心,C 正确;对D ,如图由已知点D 在ABC V 中与AB 平行的中位线上,且靠近BC 的三等分点处,故有,,ABD ABC ACD ABC BCD S S S S S ===1123 1111236ABC ABC S S ⎛⎫--= ⎪⎝⎭ ,所以13BCD ABDS S =△△,D 错误.故选:ABC 10.BC【分析】根据两角和的余弦公式,以及二倍角的正余弦公式化简可得3cos34cos 3cos x x x =-,根据定义即可判断A 项;根据二倍角公式可推得()424cos 8cos 8cos 1P x x x =-+,即可得出B 项;根据诱导公式以及A 的结论可知,3cos544cos 183cos18︒=︒-︒,2sin 54cos 362cos 181︒=︒=︒-.平方相加,即可得出25cos 188︒+=,进而求出C 项;假设D 项成立,结合C 项,检验即可判断.【详解】对于A 项,()cos3cos 2cos 2cos sin 2sin =+=-x x x x x x x ()222cos 1cos 2cos sin x x x x=--()()222cos 1cos 2cos 1cos x x x x =---34cos 3cos x x =-.由切比雪夫多项式可知,()3cos3cos x P x =,即()33cos 4cos 3cos P x x x =-.令cos t x =,可知()3343P t t t =-,故A 项错误;对于B 项,()cos 4cos 22x x =⨯()2222cos 2122cos 11x x =-=⨯--428cos 8cos 1x x =-+.由切比雪夫多项式可知,()4cos 4cos x P x =,即()424cos 8cos 8cos 1P x x x =-+.令cos t x =,可知()424881P t t t =-+,故B 项正确;对于C 项,因为36218︒=⨯︒,54318︒=⨯︒,根据A 项3cos34cos 3cos x x x =-,可得3cos 544cos 183cos18︒=︒-︒,2cos 362cos 181︒=︒-.又cos 36sin 54︒=︒,所以2222cos 36cos 54sin 54cos 541︒+︒=︒+︒=,所以,()()22324cos 183cos182cos 1811︒-︒+︒-=.令cos180t =︒>,可知()()223243211t tt -+-=,展开即可得出642162050t t t -+=,所以42162050t t -+=,解方程可得258t ±=.因为cos18cos320t =︒>︒,所以258t =,所以,2cos 362cos 181︒=︒-512184=⨯=,所以,sin 54cos36︒=︒=C 项正确;对于D 项,假设1cos546︒=,因为1sin 544︒=,则22221si c s n o 5445⎫︒=+≠⎪⎪⎝⎭⎝⎭︒+,显然不正确,故假设不正确,故D 项错误.故选:BC.【点睛】方法点睛:根据题意多项式的定义,结合两角和以及二倍角的余弦公式,化简可求出()()34cos ,cos P x P x ,换元即可得出()()34,P t P t .11.AC【分析】对于A ,由21n n S S n +=-+,多写一项,两式相减即可得出答案.对于B ,由121n n a a n ++=-(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥.对于C ,由分析知22n n a a +-=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案.对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<< ,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=-+,当()2121n n n S S n -≥=-+-,,两式相减得:121n n a a n ++=-(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=-(2n ≥),所以()+122+11=21n n a a n n ++=-+,两式相减得:22n n a a +-=(2n ≥),所以B 不正确.对于C ,21n n S S n +=-+ ,令1n =,则211S S =-+,1211a a a +=-+,因为10a =,所以21a =.令2n =,则324S S =-+,112324a a a a a ++=--+,所以32a =.因为22n n a a +-=(2n ≥),而312a a -=,所以22n n a a +-=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列.偶数项是以21a =为首项,2为公差的等差数列.则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++ 5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=-+,令1n =,则211S S =-+,1211a a a +=-+,则2121a a =-+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a -=--+=+,同理:()4311=552223a a a a -=-+=-+,()5411=772324a a a a -=--+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<< ,解12a a <得:113a <,解23a a <得:114a >-,解34a a <得:114a <,解45a a <得:114a >-,解56a a <得:114a <,所以1a 的取值范围是11,44⎛⎫- ⎪⎝⎭,所以D 不正确.故选:AC.【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=-,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.12.5【分析】作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,证明DE EC ⊥,先求出EC ,再得CD .【详解】如图,作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,因为//AE BD 且AE BD =,所以ABDE 是平行四边形,所以//DE AB ,4DE AB ==,因为,AB AC AB BD ⊥⊥,所以,ED AC ED AE ⊥⊥,AC AE A ⋂=,所以BD ⊥平面AEC ,CE ⊂平面AEC ,所以ED CE ⊥,3AC AE ==,若60CAE ∠=︒,则3CE =,5CD ==,若120CAE ∠=︒,则23sin 60CE =⨯︒=,CD =故答案为:5【点睛】本题考查异面直线所成角的应用,都可空间两点间的距离.解题关键是作出异面直线所成的角.构造三角形,在三角形中求线段长.13.2【详解】因为()2*114,13n n n a a a a n N +==-+∈,所以211(1)0n n n n n a a a a a ++-=->⇒>,数列{}单调递增,所以1(11)0n n n a a a +-=->,所以111(1)1111n n n n na a a a a +--=--=,所以121122111111111111()()()11111n n n n n S a a a a a a a a a a a =+++=-+-++-=------ ,所以20172017131m S a ==--,因为143a =,所以22223444131313133133133()1,()1,()12,33999818181a a a =-+==-+==-+> ,所以20172016201542a a a a >>>>> ,所以201711a ->,所以20171011a <<-,所以201512331a <-<-,因此m 的整数部分是2.点睛:本题考查了数列的综合应用问题,其中解答中涉及到数列的通项公式,数列的裂项求和,数列的单调性的应用等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,本题的借助数列递推关系,化简数列为111111n n na a a +=---,再借助数列的单调性是解答的关键.14.103tyx -+-=(或330x ty -+=);【分析】(1)根据已知直接写出直线AB 的方程;(2)求出cos ,OP n →→〈〉=sin PMB ∠利用基本不等式求解.【详解】解:(1)由题得AB :4143x ty-+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t→=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉==sin PMB ∠==,即()min sin PMB ∠=.故答案为:103tyx -+-=.15.(1)2n n a =(2)14337【分析】(1)根据数列的前n 项和求数列的通项公式,一定要分1n =和2n ≥讨论.(2)首先弄清楚新数列前55项的构成,再转化为错位相减法求和.【详解】(1)当1n =时,12a =;当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a ----⎛⎫⎛⎫=++++-++++ ⎪ ⎪⎝⎭⎝⎭()2212n n =--=,所以122nn a -=⇒2n n a =,2n ≥.当1n =时,上式亦成立,所以:2n n a =.(2)由()123155n n ⎡⎤+++++-=⎣⎦ ⇒10n =.所以新数列前55项中包含数列的前10项,还包含,11x ,21x ,22x ,31x ,32x ,L ,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=,()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+ .设123935719T a a a a =++++ 1239325272192=⨯+⨯+⨯++⨯ 则234102325272192T =⨯+⨯+⨯++⨯ ,所以()1239102322222192T T T -=-=⨯+⨯+++-⨯ 101722=-⨯-.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【点睛】关键点点睛:本题的关键是要弄清楚新数列前55项的构成.可先通过列举数列的前几项进行观察得到规律.16.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,2y M x +,同理226(4,)2y N x +,由斜率公式计算即可.【详解】(1)因为2b =b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;(2)由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为−2,0,所以直线PA 的方程为=+2,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.(1)证明见解析(2)14【分析】(1)证明出//CD 平面PAB ,利用线面平行的性质可得出//CD l ,再利用线面平行的判定定理可证得结论成立;(2)计算出cos PAB ∠的值,以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立空间直角坐标系,设()0,,0F a ()02a ≤≤,利用空间向量法结合二次函数的基本性质可求得平面PEF 与平面PCD 的夹角的余弦值的最大值.【详解】(1)证明:因为四边形ABCD 正方形,所以//AB CD .因为CD ⊂/平面PAB ,AB ⊂平面PAB ,所以//CD 平面PAB .又因为CD ⊂平面PCD ,平面PAB ⋂平面PCD l =,所以//CD l .因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:由题意可得AE ==,PE =因为四边形ABCD 是正方形,所以AB AD ⊥.又因为PA AD ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以AD ⊥平面PAB .因为//AD BC ,所以⊥BC 平面PAB ,因为PB ⊂平面PAB ,所以,BC PB⊥.则PB ===.所以,222cos 2PA AB PB PAB PA AB +-∠==⋅以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的空间直角坐标系.点P 到平面yAz的距离为()cos π1AP PAB -∠=,点P 到平面xAy2==.则()1,0,2P -,()2,2,0C ,()0,2,0D ,()2,1,0E ,设()0,,0F a ()02a ≤≤,则()3,2,2PC =-,()2,0,0CD =- ,设平面PCD 的法向量为()111,,x n y z = ,则1111322020PC n x y z CD n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,取11y =,可得()0,1,1n = .设平面PEF 的法向量为()222,,m x y z = ,()3,1,2PE =-,()1,,2PF a =- ,则22222232020PE m x y z PF m x ay z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩,取24y =,可得()22,4,31m a a =-- .设平面PEF 与平面PCD 的夹角为α,则cos m n m nα⋅==⋅ 令[]11,3a t +=∈,则cosα==.当1512t =时,211484013t t ⎛⎫-⨯+⎪⎝⎭取得最小值,最小值为143,所以cos α75a =.故平面PEF 与平面PCD 的夹角的余弦值的最大值为14.18.(1)①34;②73(2)应该去乙店购买非盲盒文具,理由见解析【分析】(1)①明确第二次只需买到其余的三种文具盲盒的任意一款即可求解;②结合已知由几何分布的性质即可求解.(2)由随机变量以及相应的均值结合几何分布的性质即可求解.【详解】(1)①由题意可知,当第一次购买的文具盲盒已经确定时,第二次只需买到其余的三种文具盲盒的任意一款即可,所以34p =;②设从第一次购买文具后直到购买到两种不同款式的文具盲盒所需要的购买次数为X ,则由题意可知3~4X G ⎛⎫ ⎪⎝⎭,又1Y X =+,所以()()()4711133E Y E X E X =+=+=+=.(2)由题意,在乙店买齐全部文具盲盒所花费的费用为18472⨯=元,设从甲店买齐四种文具盲盒所需要的购买次数为Z ,从第一次购买到1i -种不同款式的文具开始,到第一次购买到i 种不同款式的文具盲盒所需要的购买次数为随机变量i Z ,则5~4i i Z G -⎛⎫ ⎪⎝⎭,其中1,2,3,4i =,而1234Z Z Z Z Z =+++,所以()()()441234114425124533i i i E Z E Z Z Z Z E Z i===+++===+++=-∑∑,所以在甲店买齐全部文具盲盒所需费用的期望为()1210072E Z =>,所以应该去乙店购买非盲盒文具.19.(1)1.83(2)22e e 30x y ---=,证明见解析(3)证明见解析【分析】(1)根据题意分别计算出12,x x ,取2x 得近似值即为方程()0f x =的二次近似值;(2)分别求出(2)g ,(2)g ',即可写出函数()g x 在点(2,(2))g 处的切线方程;设2()ln 1,1ex m x x x =-->,证明出2()(e )m x m ≤,得出2(3)(e )m m <,即可证明;(3)先判断出1201e x x <<<<,然后辅助证明两个不等式()()()1e 1e 1e h x x x ≥-≤≤-和()(01)h x x x ≥<≤即可.【详解】(1)2()361f x x x '=++,当00x =时,(0)1f '=,()f x 在点(0,3)-处的切线方程为3y x +=,与x 轴的交点横坐标为(3,0),所以13x =,(3)46f '=,()f x 在点(3,54)处的切线方程为5446(3)y x -=-,与x 轴的交点为42(,0)23,所以方程()0f x =的二次近似值为1.83.(2)由题可知,2(2)e 3g =-,()e x g x '=,2(2)e g '=,所以()g x 在(2,(2))g 处的切线为22(e 3)e (2)y x --=-,即22e e 30x y ---=;设2()ln 1,1e x m x x x =-->,则211()em x x '=-,显然()m x '单调递减,令()0m x '=,解得2e x =,所以当2(1,e )x ∈时,()0m x '>,则()m x 在2(1,e )单调递增,当2(e ,)x ∈+∞时,()0m x '<,则()m x 在2(e ,)+∞单调递减,所以2222e ()(e )ln e 10em x m ≤=--=,所以2(3)(e )m m <,即2233ln 310ln 31e e --<⇔<+.(3)由()ln h x x x x =-,得()ln h x x '=-,当01x <<时,ℎ′>0;当1x >时,ℎ′<0,所以ℎ在0,1上单调递增,在1,+∞上单调递减,所以1x =是ℎ的极大值点,也是ℎ的最大值点,即()max ()11h x h ==,又0e x <<时,()0h x >,e x >时,()0h x <,所以当方程()h x a =有两个根时,必满足1201e x x <<<<;曲线()y h x =过点()1,1和点()e,0的割线方程为1(e)1e y x =--,下面证明()()()1:e 1e 1e h x x x ≥-≤≤-,设()()()()1e 1e 1eu x h x x x =--≤≤-,则()1e 11ln ln lne e 1u x x x -⎛⎫=-+=-'- ⎪-⎝⎭,所以当1e 11e x -<<时,()0u x '>;当1e 1e e x -<<时,()0u x '<,所以()u x 在1e 11,e -⎛⎫ ⎪⎝⎭上单调递增,()()10u x u ≥=;在1e 1e ,e -⎛⎫ ⎪⎝⎭上()u x 单调递减,()()e 0u x u ≥=,所以当1e x ≤≤时,()0u x ≥,即()1()e (1e)1ef x x x ≥-≤≤-(当且仅当1x =或e x =时取等号),由于21e x <<,所以()()221e 1e a f x x =>--,解得2e e x a a >-+;①下面证明当01x <≤时,()h x x ≥,设()()ln ,01n x h x x x x x =--<≤=,因为ln 0x ≤,所以当01x <≤时,()f x x ≥(当且仅当1x =时取等号),由于101x <<所以()11a h x x =>,解得1x a ->-,②①+②,得21e e x x a ->-.【点睛】关键点睛:第三问的难点在于辅助构造出两个函数不等式,这样再利用函数单调性,得到相关不等式,然后进行估计21x x -的范围.。
新高考数学第一次模拟试卷(带答案)
【点睛】
求异面直线所成角主要有以下两种方法:
(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或
构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;
(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,
A. 3 2
二、填空题
B. 3
C. 2 3
D. 4 3
13.若过点 M 2,0 且斜率为 3 的直线与抛物线 C : y2 axa 0 的准线 l 相交于点
B ,与 C 的一个交点为 A ,若 BM MA ,则 a ____.
14.已知圆锥的侧面展开图是一个半径为 2cm ,圆心角为 2 的扇形,则此圆锥的高为 3
A. 1 3
B. 1 2
C. 2 3
D. 5 6
3.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第 1 次到第 14 次的考试成
绩依次记为 A1, A2 , A14 ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流
程图,那么算法流程图输出的结果是( )
A.7
B.8
C.9
D.10
4.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于 A、B)且 PA=
和计算求解能力.
11.B
解析:B 【解析】 【分析】
利用向量垂直求得 a 2 b 2 2a b ,代入夹角公式即可.
【详解】
设 a, b 的夹角为 ;
因为 (a 2b ) a , (b 2a) b , 所以 a 2 b 2 2a b ,
则 a |2 2a b, b |2 2a b ,
新高考数学第一次模拟试题(附答案)
新高考数学第一次模拟试题(附答案)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825 C .1 D .16252.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<0 3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( )A .12B .13C .23D .344.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种B .30种C .40种D .60种 5.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .6.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为A .π6B .π3C .2π3D .5π6 7.函数32()31f x x x =-+的单调减区间为A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2) 8.函数2||()x x f x e -=的图象是( )A .B .C .D .9.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( )A .7,5,8B .9,5,6C .7,5,9D .8,5,710.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元11.设0<a <1,则随机变量X 的分布列是 X0 a 1 P 13 1313 则当a 在(0,1)内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大12.sin 47sin17cos30cos17-A .3B .12-C .12D 3二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________14.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________.15.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________. 16.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________. 18.计算:1726cos()sin 43ππ-+=_____. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.()sin 5013tan10+=________________.三、解答题21.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.22.设函数()15,f x x x x R =++-∈.(1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围. 23.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +). (1)求数列{n a }的通项公式;(2)求数列{12n n a +}的前n 项和Tn . 24.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.25.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =,11A C EF Q =.求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】 试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.D解析:D【解析】因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.3.B解析:B【解析】试题分析:由题意知本题是一个古典概型概率的计算问题.从这4张卡片中随机抽取2张,总的方法数是246C种,数学之和为偶数的有13,24++两种,所以所求概率为13,选B.考点:古典概型.4.A解析:A【解析】【分析】【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.5.A解析:A【解析】【分析】确定函数在定义域内的单调性,计算1x=时的函数值可排除三个选项.0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.6.B解析:B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.7.D解析:D【解析】【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<,所以函数的单调减区间为(0,2),故本题选D.【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.8.A解析:A【解析】【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A .2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B ,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目. 9.B解析:B【解析】【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数.【详解】 由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B 【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.10.D解析:D【解析】【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D .【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.11.D解析:D【解析】【分析】利用方差公式结合二次函数的单调性可得结论;【详解】 解:1111()013333a E X a +=⨯+⨯+⨯=, 222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<,()D X ∴先减小后增大故选:D .【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.12.C解析:C【解析】【分析】由()sin 473017sin θ=+,利用两角和的正弦公式以及特殊角的三角函数,化简即可.【详解】 0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒ sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C . 【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.二、填空题13.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2【解析】【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c.【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.14.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1. 15.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间 解析:6π-. 【解析】 分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=±⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.16.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1. 【详解】由条件,得M12,33⎛⎫⎪⎝⎭,N21,33⎛⎫⎪⎝⎭,可得1221,3333αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,即α=lo231 3g,β=lo132 3g.所以αβ=lo231 3g·lo1312 233·21 333lg lgglg lg==1.【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.17.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l的解析:4【解析】试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.18.【解析】【分析】利用诱导公式化简题目所给表达式根据特殊角的三角函数值求得运算的结果【详解】依题意原式【点睛】本小题主要考查利用诱导公式化简求值考查特殊角的三角函数值考查化归与转化的数学思想方法属于基32+【解析】【分析】利用诱导公式化简题目所给表达式,根据特殊角的三角函数值求得运算的结果.【详解】依题意,原式17π26ππ2πcossin cos 4πsin 8π4343⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭π2πcos sin 432=+=. 【点睛】 本小题主要考查利用诱导公式化简求值,考查特殊角的三角函数值,考查化归与转化的数学思想方法,属于基础题.利用诱导公式化简,首先将题目所给的角,利用诱导公式变为正角,然后转化为较小的角的形式,再利用诱导公式进行化简,化简过程中一定要注意角的三角函数值的符号.19.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.20.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】【分析】 利用弦化切的运算技巧得出()cos103sin10sin 50cos 0sin 5013t 1an10++=⋅,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果.【详解】原式()2sin 1030sin50cos103sin102sin 40cos 40sin50cos10cos10cos10++=⋅==()sin 9010sin80cos101cos10cos10cos10-====. 故答案为:1.【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.三、解答题21.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+,∴240d d -=,解得4d =或0d =.∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ;当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),∴最小正整数41n =.22.(1){}|37x x -≤≤;(2)(],9-∞.【解析】【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果.【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤-当15x -<<时,()15610f x x x =++-=≤,恒成立当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤(2)由()()27f x a x ≥--得:()()27a f x x ≤+-由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-=当15x -<<时,()()510g x g >=当5x ≥时,()()min 69g x g ==综上所述,当x ∈R 时,()min 9g x =()a g x ≤恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值.23.(1)26()n a n n N +=-∈;(2)112n nn T -=--【解析】【分析】 (1)运用数列的递推式:11,1,1n n n S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n n a n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12n n a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈ 所以114a S ==-, 1n >时,()()22515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n n a n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n n n T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.24.(1) 当0a ≤时,()f x 的单调递减区间是(0,)+∞,无单调递增区间;当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭ (2) 211b e -≤ 【解析】【分析】【详解】分析:(1)求导()f x ',解不等式()0f x '>,得到增区间,解不等式()0f x '<,得到减区间;(2)函数f (x )在x=1处取得极值,可求得a=1,于是有f (x )≥bx ﹣2⇔1+1x ﹣lnx x ≥b ,构造函数g (x )=1+1x ﹣lnx x ,g (x )min 即为所求的b 的值 详解:(1)在区间()0,∞+上, ()11ax f x a x x-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()0,∞+上单调递减;当0a >时,令()0f x '=得1x a =, 在区间10,a ⎛⎫ ⎪⎝⎭上,()0f x '<,函数()f x 单调递减, 在区间1,a ⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增. 综上所述:当0a ≤时, ()f x 的单调递减区间是()0,∞+,无单调递增区间;当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭(2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+x b x x-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x x x =+-, 则()22211ln ln 2x x g x x x x -='---=, 易得()g x 在(20,e ⎤⎦上单调递减,在)2,e ⎡+∞⎣上单调递增, 所以()()22min 11g x g e e ==-,即211b e -≤. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由中位线定理可知//EF BD ,故四点共面(2)PQ 是平面11AAC C 与平面DBFE 的交线,可证R 是两平面公共点,故PQ 过R ,得证.【详解】证明:(1)EF 是111D B C ∆的中位线,11//EF B D ∴.在正方体1AC 中,11//B D BD ,//EF BD ∴.,EF BD ∴确定一个平面,即D B F E ,,,四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β.11,Q AC Q α∈∴∈.又Q EF ∈,Q β∴∈,则Q 是α与β的公共点,a PQ β∴⋂=.又11,AC R R AC β⋂=∴∈.R a ∴∈,且R β∈,则R PQ ∈,故P Q R ,,三点共线.【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题.26.(1)证明见解析;(2)35. 【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =,由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫=⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()13333,,,,33022223333,,022m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,333,344EF ⎛⎫= ⎪⎝⎭此时4cos ,53552EF mEF m EF m ⋅===⨯⨯, 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===. 【点睛】 本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高考数学第一次模拟试题(及答案)一、选择题1.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12x f x =⊕的图象是( ). A . B .C .D .2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃A .(-1,2)B .(0,1)C .(-1,0)D .(1,2) 4.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 5.设是虚数单位,则复数(1)(12)i i -+=( ) A .3+3i B .-1+3i C .3+iD .-1+i 6.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈7.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组8.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ).ABC D .69.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 10.在二项式n 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .1311.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b =( )A .122⎛⎫ ⎪ ⎪⎝⎭B.1,22⎛⎫ ⎪ ⎪⎝⎭ C.1,44⎛⎫ ⎪ ⎪⎝⎭ D .()1,0 12.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20 C .40 D .80二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________. 14.若过点()2,0M 3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =,则a =____.15.函数()23s 4f x in x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.若9()ax x-的展开式中3x 的系数是84-,则a = .18.已知样本数据,,,的均值,则样本数据,,,的均值为 .19.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 20.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.三、解答题21.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.22.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.23.已知函数2()sin()sin 32f x x x x π=-.(1)求()f x 的最小正周期和最大值;(2)求()f x 在2[,]63ππ上的单调区间 24.设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,e]x ∈恒成立注:e 为自然对数的底数25.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ;(2)平面BDE ⊥平面ABC .26.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=.(1)求角C 的大小;(2)求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xx x f x x >⎧=⊕=⎨≤⎩,只有选项A 中的图象符合要求,故选A.2.A解析:A【解析】【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.A解析:A【解析】利用数轴,取,P Q 所有元素,得PQ =(1,2)-. 【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 4.A解析:A【解析】 分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果. 详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.C解析:C【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C.考点:本题主要考查复数的乘法运算公式. 6.D解析:D 【解析】【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+ (0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.7.B解析:B【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.8.B解析:B【解析】【分析】 本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可.【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245FNF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得c e a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.9.B解析:B【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a ,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 10.C解析:C【解析】【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果【详解】因为n 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82r rr r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.11.B解析:B【解析】【分析】设()(),0b x y y =≠,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b 的坐标.【详解】设(),b x y =,其中0y ≠,则3a x y b ⋅=+=由题意得2210x y y y ⎧+=+=≠⎪⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩13,22b ⎛= ⎝⎭. 故选:B.【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.12.C解析:C【解析】分析:写出103152r r r r T C x -+=,然后可得结果 详解:由题可得()5210315522r r rr r r r T Cx C x x --+⎛⎫== ⎪⎝⎭ 令103r 4-=,则r 2=所以22552240r r C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。