数字电路7大基础实验剖析
数字电路实验讲义(2015_8实验 2选做实验)汇总
《数字电子技术基础》实验指导手册首都师范大学信息工程学院2015年8月目录第一章数字电路实验基本知识第二章基本实验实验一基本逻辑门特性实验二逻辑门电路的功能实验三基本触发器实验四译码器和多路数据选择器实验五全加器设计与实现实验六简单时序电路实验七减法计数器的设计与实现实验八集成计数器第三章选作实验选做实验一组合逻辑中的竞争冒险选做实验二秒计时显示器的制作第一章 数字电路实验基本知识一、数字集成电路芯片:中,小规模数字IC 中最常用的是TTL (晶体三极管逻辑)电路和CMOS (互补场效应管逻辑)电路,TTL 器件型号以74(或54)作为前缀,称为74/54系列,如74LS10,74F181,54S86等。
中,小规模CMOS 数字集成电路主要是4XXX/45XX (X 代表0—9的数字)系列;高速CMOS 电路为74HC/HCT 系列。
TTL 电路与CMOS 电路各有优缺点,一般来说TTL 电路速度快,驱动能力强;CMOS 电路功耗小,电源范围大,输入阻抗高。
由于TTL 在世界范围内应用极广,在数字电路教学实验中主要使用TTL 电路的74系列作为实验用器件,采用单一的+5V 作为供电电源。
1. 字表示引脚号。
双列直插封装的IC 引脚有8、14、16、20、24、28等若干种。
2. 双列直插封装器件有两种引脚。
引脚之间的间距是2.54毫米。
两列引脚之间的距离有宽(15.24毫米)有窄(7.62毫米)两种。
将器件插入实验台相应的插座中去或从插座中拔出时要小心,不要将器件的引脚搞弯或折断。
通常要借助小起子进行操作。
特别注意:不要带电插拔器件!插拔器件只能在关断+5V 电源的情况下进行。
二、数字电路测试及故障查找、排除:1. 数字电路测试数字电路测试大体分为静态测试和动态测试两部分。
静态测试指的是:给定数字电路若干组静态输入值,测试其输出值是否正确。
在静态测试的基础上按设计要求在输入端加动态脉冲信号,观察输出端波形是否符合设计要求,这是动态测试。
数字电路实验报告
数字电路实验报告姓名:张珂班级:10级8班学号:2010302540224实验一:组合逻辑电路分析一.实验用集成电路引脚图1.74LS00集成电路2.74LS20集成电路二、实验内容1、组合逻辑电路分析逻辑原理图如下:U1A 74LS00NU2B74LS00NU3C74LS00N X12.5 VJ1Key = Space J2Key = Space J3Key = Space J4Key = SpaceVCC5VGND图1.1组合逻辑电路分析电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。
真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1表1.1 组合逻辑电路分析真值表实验分析:由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。
2、密码锁问题:密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。
试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下:U1A74LS00NU2B74LS00NU3C 74LS00NU4D 74LS00NU5D 74LS00NU6A74LS00N U7A74LS00NU8A74LS20D GNDVCC5VJ1Key = SpaceJ2Key = SpaceJ3Key = SpaceJ4Key = SpaceVCC5VX12.5 VX22.5 V图 2 密码锁电路分析实验真值表记录如下:实验真值表 A B CD X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 11 10 1表1.2 密码锁电路分析真值表实验分析:由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。
数字电路实验实验总结归纳
数字电路实验实验总结1.【数电实验报告】交通信号灯故障检测系统一、实验目的1、熟悉各种逻辑门的使用;2、锻炼学生应用各种逻辑门设计组合逻辑电路的能力•二、实验原理组合逻辑电路的设计方法,三、实验内容及要求交通信号灯的正常工作情况为:红灯(A)亮表示停车、黄灯(B)亮表示注意、绿灯(C)亮表示通行,任何时刻只有一盏灯亮;交通信号灯的故障情况为:任意两盏灯同时亮,三盏灯都亮或三盏灯都不亮,请将故障状态以指示灯亮显示出来,要求如下:1,列出逻辑状态表;2,写出逻辑表达式;3,对表达式化简或变换;4.画出实验电路图;5.在数字实验仪上实现.四、预习要求设计电路;列出所用元件清单;制定实验方案;记录实验结果,五、报告要求有详细设计步骤、逻辑图、实验结果分析2.数字电路实验心得体会原发布者:tqgqiaoe7342数字电子技术实验总结心得数字电子技术是一门理论与实践密切相关的学科,如果光靠理论,我们就会学的头疼,如果借助实验,效果就不一样了,特别是数字电子技术实验,能让我们自己去验证一下书上的理论,自己去设计,这有利于培养我们的实际设计能力和动手能力。
通过数字电子技术实验,我们不仅仅是做了几个实验,不仅要学会实验技术,更应当掌握实验方法,即用实验检验理论的方法,寻求物理量之间相互关系的方法,寻求最佳方案的方法等等,掌握这些方法比做了几个实验更为重要。
在数字电子技术实验中,我们可以根据所给的实验仪器、实验原理和一些条件要求,设计实验方案、实验步骤,画出实验电路图,然后进行测量,得出结果。
在数字电子技术实验的过程中,我们也遇到了各种各样的问题,针对出现的问题我们会采取相应的措施去解决,比如:1、线路不通一一运用逻辑笔去检查导线是否可用;2、芯片损坏一一运用芯片检测仪器检测芯片是否正常可用以及它的类型;3.数电实验总结最低0∙27元开通文库会员,查看完整内容›原发布者:zxyl21380数字电子技术实验总结本学期一共进行了六次实验:L常用集成门电路逻辑测试。
《数字电路》实验报告
《数字电路》实验报告项目一逻辑状态测试笔的制作一、项目描述本项目制作的逻辑状态测试笔,由集成门电路芯片74HC00、发光二极管、电阻等元器件组成,项目相关知识点有:基本逻辑运算、基本门电路、集成逻辑门电路等;技能训练有:集成逻辑二、项目要求用集成门电路74HC00制作简易逻辑状态测试笔。
要求测试逻辑高电平时,红色发光二极管亮,测试逻辑低电平时绿色发光二极管亮。
三、原理框图四、主要部分的实现方案当测试探针A测得高电平时,VD1导通,三级管V发射级输出高电平,经G1反相后,输出低电平,发光二级管LED1导通发红光。
又因VD2截止,相当于G1输入端开路,呈高电平,输出低电平,G3输出高电平,绿色发光二级管LED2截止而不发光。
五、实验过程中遇到的问题及解决方法(1)LED灯不能亮:检查硬件电路有无接错;LED有无接反;LED有无烧坏。
(2)不能产生中断或中断效果:检查硬件电路有无接错;程序中有无中断入口或中断子程序。
(3)输入电压没有反应:数据原理图有没有连接正确,检查显示部分电路有无接错;4011逻辑门的输入端有无浮空。
六、心得体会第一次做的数字逻辑试验是逻辑状态测试笔,那时什么都还不太了解,听老师讲解完了之后也还不知道从何下手,看到前面的人都起先着手做了,心里很焦急可就是毫无头绪。
老师说要复制一些文件协助我们做试验(例如:试验报告模板、试验操作步骤、引脚等与试验有关的文件),还让我们先画原理图。
这时,关于试验要做什么心里才有了一个模糊的框架。
看到别人在拷贝文件自己又没有U盘只好等着借别人的用,当然在等的时候我也画完了逻辑测试笔的实操图。
后面几次都没有过,但最后真的发觉试验的次数多了,娴熟了,知道自己要做的是什么,明确了目标,了解了方向,其实也没有想象中那么困难。
七、元器件一逻辑状态测试笔电路八、附实物图项目二多数表决器电路设计与制作一、项目描述本项目是以组合逻辑电路的设计方法,用基本门电路的组合来完成具有多数表决功能的电路。
数电实验报告答案
实验名称:数字电路基础实验实验目的:1. 熟悉数字电路的基本原理和基本分析方法。
2. 掌握数字电路实验设备的使用方法。
3. 培养动手实践能力和分析问题、解决问题的能力。
实验时间:2023年X月X日实验地点:实验室XX室实验仪器:1. 数字电路实验箱2. 万用表3. 双踪示波器4. 数字信号发生器5. 短路线实验内容:一、实验一:基本逻辑门电路实验1. 实验目的- 熟悉与门、或门、非门的基本原理和特性。
- 学习逻辑门电路的测试方法。
2. 实验步骤- 连接实验箱,设置输入端。
- 使用万用表测量输出端电压。
- 记录不同输入组合下的输出结果。
- 分析实验结果,验证逻辑门电路的特性。
3. 实验结果与分析- 实验结果与理论预期一致,验证了与门、或门、非门的基本原理。
- 通过实验,加深了对逻辑门电路特性的理解。
二、实验二:组合逻辑电路实验1. 实验目的- 理解组合逻辑电路的设计方法。
- 学习使用逻辑门电路实现组合逻辑电路。
2. 实验步骤- 根据设计要求,绘制组合逻辑电路图。
- 连接实验箱,设置输入端。
- 测量输出端电压。
- 记录不同输入组合下的输出结果。
- 分析实验结果,验证组合逻辑电路的功能。
3. 实验结果与分析- 实验结果符合设计要求,验证了组合逻辑电路的功能。
- 通过实验,掌握了组合逻辑电路的设计方法。
三、实验三:时序逻辑电路实验1. 实验目的- 理解时序逻辑电路的基本原理和特性。
- 学习使用触发器实现时序逻辑电路。
2. 实验步骤- 根据设计要求,绘制时序逻辑电路图。
- 连接实验箱,设置输入端和时钟信号。
- 使用示波器观察输出波形。
- 记录不同输入组合和时钟信号下的输出结果。
- 分析实验结果,验证时序逻辑电路的功能。
3. 实验结果与分析- 实验结果符合设计要求,验证了时序逻辑电路的功能。
- 通过实验,加深了对时序逻辑电路特性的理解。
四、实验四:数字电路仿真实验1. 实验目的- 学习使用数字电路仿真软件进行电路设计。
数字电路实验报告-实验一[总结]
实验一数字电路实验基础一、实验目的⑴掌握实验设备的使用和操作⑵掌握数字电路实验的一般程序⑶了解数字集成电路的基本知识二、预习要求复习数字集成电路相关知识及与非门、或非门相关知识三、实验器材⑴直流稳压电源、数字逻辑电路实验箱、万用表⑵74LS00、74LS02、74LS48四、实验内容和步骤1、实验数字集成电路的分类及特点目前,常用的中、小规模数字集成电路主要有两类。
一类是双极型的,另一类是单极型的。
各类当中又有许多不同的产品系列。
⑴双极型双极型数字集成电路以TTL电路为主,品种丰富,一般以74(民用)和54(军用)为前缀,是数字集成电路的参考标准。
其中包含的系列主要有:▪标准系列——主要产品,速度和功耗处于中等水平▪LS系列——主要产品,功耗比标准系列低▪S系列——高速型TTL、功耗大、品种少▪ALS系列——快速、低功耗、品种少▪AS系列——S系列的改进型⑵单极型单极型数字集成电路以CMOS电路为主,主要有4000/4500系列、40H系列、HC系列和HCT系列。
其显著的特点之一是静态功耗非常低,其它方面的表现也相当突出,但速度不如TTL集成电路快。
TTL产品和CMOS产品的应用都很广泛,具体产品的性能指标可以查阅TTL、CMOS集成电路各自的产品数据手册。
在本实验课程中,我们主要选用TTL数字集成电路来进行实验。
2、TTL集成电路使用注意事项⑴外形及引脚TTL集成电路的外形封装与引脚分配多种多样,如附录中所示的芯片封装形式为双列直插式(DIP)。
芯片外形封装上有一处豁口标志,在辨认引脚分配时,芯片正面(有芯片型号的一面)面对自己,将此豁口标志朝向左手侧,则芯片下方左起的第一个引脚为芯片的1号引脚,其余引脚按序号沿芯片逆时针分布。
⑵电源每片集成电路芯片均需要供电方能正常使用其逻辑功能,供电电源为+5V单电源。
电源正端(+5V)接芯片的VCC引脚,电源负端(0V)接芯片的GND引脚,两者不允许接反,否则会损坏集成电路芯片。
数字电路实验报告实验
数字电路实验报告实验一、引言数字电路是计算机科学与工程学科的基础,它涵盖了数字信号的产生、传输、处理和存储等方面。
通过数字电路实验,我们可以深入了解数字电路的原理和设计,掌握数字电路的基本知识和实验技巧。
本报告旨在总结和分析我所进行的数字电路实验。
二、实验目的本次实验的目的是通过搭建和测试电路,验证数字电路的基本原理,掌握数字电路实验中常用的实验仪器和操作方法。
具体实验目的如下:1. 组装和测试基础门电路,包括与门、或门、非门等。
2. 理解和实践加法器电路,掌握准确的运算方法和设计技巧。
3. 探究时序电路的工作原理,深入了解时钟信号和触发器的应用。
三、实验装置和材料1. 模块化数字实验仪器套装2. 实验台3. 数字电路芯片(例如与门、或门、非门、加法器、触发器等)4. 连接线、电源、示波器等。
四、实验步骤及结果1. 实验一:组装和测试基础门电路在实验台上搭建与门、或门、非门电路,并连接电源。
通过连接线输入不同的信号,测试输出的结果是否与预期一致。
记录实验步骤和观察结果。
2. 实验二:实践加法器电路将加法器电路搭建在实验台上,并输入两个二进制数字,通过加法器电路计算它们的和。
验证求和结果是否正确。
记录实验步骤和观察结果。
3. 实验三:探究时序电路的工作原理将时序电路搭建在实验台上,并连接时钟信号和触发器。
观察触发器的状态变化,并记录不同时钟信号下的观察结果。
分析观察结果,总结时序电路的工作原理。
五、实验结果与分析1. 实验一的结果与分析:通过测试与门、或门、非门电路的输入和输出,我们可以观察到输出是否与预期一致。
若输出与预期一致,则说明基础门电路连接正确,电路工作正常;若输出与预期不一致,则需要检查电路连接是否错误,或者芯片损坏。
通过实验一,我们可以掌握基础门电路的搭建和测试方法。
2. 实验二的结果与分析:通过实践加法器电路,我们可以输入两个二进制数字,并观察加法器电路的运算结果。
如果加法器电路能正确计算出输入数字的和,则说明加法器电路工作正常。
数字电路逻辑设计实验讲义剖析
数字电路逻辑设计实验讲义喻嵘王艳庆丁杰张莉叶小丽陈燕彬编内容提要本实验讲义根据最新制定的实验教学大纲,由南昌大学信息工程学院电子信息工程系几位多年从事数字电路逻辑设计课程教学的老师合编而成。
可用于电子信息工程专业、通信工程专业《数字电路逻辑设计》实验课程的实验指导教材。
实验教学内容包括三大部分:基础性实验、比较复杂并要求学生独立思考的设计性实验、自选设计课题的综合设计性实验。
内容涵盖了数字电路的大部分基础知识,包括常用的组合逻辑电路、时序逻辑电路和脉冲电路的验证和设计,以及这些基础数字电路的在实际系统中的综合应用。
目录实验一用SSI设计组合电路和冒险现象观察 (1)实验二 MSI组合功能件的应用 (4)实验三集成触发器的应用—第一信号鉴别电路的设计. 9实验四用集成移位寄存器实现序列检测器 (11)实验五 MSI 时序功能件的应用 (13)实验六序列信号发生器 (18)实验七 555定时器及分频电路 (22)实验八 D/A转换器 (25)附录:实验芯片引脚排列图 (30)实验一 用SSI 设计组合电路和冒险现象观察一、实验目的1.掌握用SSI 设计组合电路及其检测方法; 2.观察组合电路的冒险现象。
二、实验原理使用小规模集成电路 (SSI)进行组合电路设计的一般过程: 1.根据任务要求列出真值表;2.通过化简得出最简逻辑函数表达式; 3.选择标准器件实现此逻辑函数。
逻辑化简是为了使电路结构简单和使用器件较少,要求逻辑表达式尽可能简化。
但由于实际使用时要考虑电路的工作速度和稳定可靠等因素,在较复杂的电路中,还要求逻辑清晰易懂,所以是在保证速度、稳定可靠与逻辑清楚的前提下,尽量使用最少的器件,以降低成本。
组合逻辑设计过程通常是在理想情况下进行的,即假定一切器件均没有延迟效应。
但是实际上并非如此,信号通过任何导线或器件都需要一个响应时间。
例如,一般中速TTL 与非门的延迟时间为10一20ns 。
而且由于制造工艺上的原因,各器件的延迟时间离散性很大,往往按照理想情况设计的逻辑电路,在实际工作中有可能产生错误输出。
数字电路与逻辑设计实验报告
数字电路与逻辑设计实验报告实验目的:本实验旨在通过实际操作,加深对数字电路与逻辑设计原理的理解,掌握数字电路的基本原理和设计方法,提高学生的动手能力和实际应用能力。
实验一,二极管的正向导通特性实验。
实验原理:二极管是一种半导体器件,具有单向导电特性。
当二极管的正向电压大于其开启电压时,二极管将处于导通状态;反之,当反向电压作用于二极管时,二极管将处于截止状态。
实验步骤:1. 将二极管连接到直流电源电路中;2. 通过改变电源电压,观察二极管的正向导通特性;3. 记录不同电压下二极管的导通情况。
实验结果与分析:通过实验,我们发现二极管在正向电压大于其开启电压时会导通,而在反向电压作用下会截止。
这验证了二极管的正向导通特性。
实验二,基本逻辑门的实验。
实验原理:基本逻辑门包括与门、或门、非门等,它们是数字电路的基本组成单元,通过不同的输入信号产生不同的输出信号。
实验步骤:1. 搭建与门、或门、非门的实验电路;2. 分别输入不同的逻辑信号,观察输出信号的变化;3. 记录实验结果。
实验结果与分析:通过实验,我们发现与门、或门、非门在不同的输入信号下产生了不同的输出信号,验证了基本逻辑门的工作原理。
实验三,触发器的实验。
实验原理:触发器是一种存储器件,具有记忆功能,可以存储一个比特的信息。
常见的触发器包括RS触发器、D触发器、JK触发器等。
实验步骤:1. 搭建RS触发器、D触发器、JK触发器的实验电路;2. 分别输入触发信号,观察触发器的输出变化;3. 记录实验结果。
实验结果与分析:通过实验,我们发现不同类型的触发器在接收不同触发信号时,产生了不同的输出变化,验证了触发器的存储功能。
结论:通过本次实验,我们深入理解了数字电路与逻辑设计的基本原理,掌握了数字电路的实际应用技能。
数字电路与逻辑设计是现代电子技术的基础,通过实验的学习,我们将能更好地理解和应用数字电路与逻辑设计的知识,为今后的学习和工作打下坚实的基础。
数电实验报告东大
一、实验目的1. 理解数字电路的基本组成和基本原理。
2. 掌握常用数字电路的分析和设计方法。
3. 提高动手实践能力,加深对数字电路理论知识的理解。
二、实验内容本次实验主要包含以下内容:1. 数字电路基础实验2. 组合逻辑电路实验3. 时序逻辑电路实验三、实验仪器与设备1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 计算器5. 实验指导书四、实验原理1. 数字电路基础实验:通过实验了解数字电路的基本组成和基本原理,包括逻辑门、编码器、译码器等。
2. 组合逻辑电路实验:通过实验掌握组合逻辑电路的分析和设计方法,包括加法器、编码器、译码器、数据选择器等。
3. 时序逻辑电路实验:通过实验掌握时序逻辑电路的分析和设计方法,包括触发器、计数器、寄存器等。
五、实验步骤1. 数字电路基础实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行逻辑门、编码器、译码器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
2. 组合逻辑电路实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行加法器、编码器、译码器、数据选择器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
3. 时序逻辑电路实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行触发器、计数器、寄存器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
六、实验结果与分析1. 数字电路基础实验- 通过实验,验证了逻辑门、编码器、译码器等电路的基本原理和功能。
- 实验结果符合理论预期,验证了数字电路的基本组成和基本原理。
2. 组合逻辑电路实验- 通过实验,掌握了组合逻辑电路的分析和设计方法。
- 实验结果符合理论预期,验证了组合逻辑电路的基本原理。
3. 时序逻辑电路实验- 通过实验,掌握了时序逻辑电路的分析和设计方法。
- 实验结果符合理论预期,验证了时序逻辑电路的基本原理。
数字电路实验报告
数字电路实验报告本次实验是数字电路的实验,在本次实验中,我和我的同学们成功地完成了数字电路的实验,并且成功将LED灯显示。
1. 实验目的本次实验的目的是:通过实践操作,掌握数字电路的基础知识,能够有效地使用布尔代数和卡诺图方法进行电路设计和分析。
2. 实验基础数字电路是由数字电子元器件组成的电路。
数字电路能够处理数字信号,是所有数字计算机的基础核心部件。
数字电路的基础是数字集成电路的设计和应用。
数字电路的核心是门电路,门电路有多个种类,包括与门、或门、非门、异或门等。
门电路能够接受输入信号并输出信号,能够实现与、或、非、异或等逻辑运算。
在数字电路的实验中,我们需要掌握基本逻辑门的真值表和逻辑图,以及逻辑门的电路实现方法。
此外,我们还需要掌握一些进制转换的方法和数字电路的布线和测试方法。
3. 实验步骤本次实验中,我们的主要任务是设计和实现一个数字电路,该电路能够将数字输入转化成二进制显示输出,并且使用LED灯进行显示。
以下是我们的实验步骤。
步骤一:设计真值表首先,我们需要使用布尔代数和卡诺图方法,设计出一个真值表,该真值表能够将数字输入转换成二进制数输出。
步骤二:设计逻辑电路图在真值表的基础上,我们设计了一个逻辑电路图,该电路图包括与门、或门、非门、异或门等逻辑门电路,以及输入输出接口电路。
步骤三:建立硬件电路接下来,我们开始搭建硬件电路,将逻辑电路图中的元件进行布线连接。
步骤四:测试电路在布线完毕后,我们进行了电路的测试,确认电路能够工作,并且LED灯能够正常显示。
4. 实验结论通过本次实验,我学习到了数字电路的基础知识,能够使用布尔代数和卡诺图方法进行电路设计和分析。
我还学会了逻辑门的真值表和逻辑图的设计方法,以及数字电路的布线和测试方法。
最终,我和我的同学们成功地完成了数字电路的实验,将数字转换为二进制数并成功显示。
这次实验对我的学习和科研工作具有重要的启示和帮助。
武大数字实验报告
实验名称:数字电路基础实验实验日期:2023年10月25日实验目的:1. 理解数字电路的基本组成和工作原理。
2. 掌握组合逻辑电路和时序逻辑电路的设计方法。
3. 培养实际操作能力和分析问题的能力。
实验原理:数字电路是利用二进制数字信号进行逻辑运算、存储和控制等功能的一种电子电路。
它由逻辑门、触发器、计数器等基本元件组成。
本实验主要涉及组合逻辑电路和时序逻辑电路。
实验仪器与材料:1. 74LS系列集成电路2. 数字逻辑实验箱3. 示波器4. 逻辑分析仪5. 电源6. 导线实验内容:一、组合逻辑电路实验1. 实验一:逻辑门电路(1)使用与非门、或非门、异或门等基本逻辑门,设计并实现以下逻辑函数:- F(A, B) = A + B- G(A, B, C) = AB + C- H(A, B, C) = A'B'C + ABC(2)使用示波器观察输入输出波形,验证逻辑函数的正确性。
2. 实验二:编码器(1)设计并实现一个4-2线优先编码器。
(2)使用示波器观察输入输出波形,验证编码器的正确性。
3. 实验三:译码器(1)设计并实现一个2-4线译码器。
(2)使用示波器观察输入输出波形,验证译码器的正确性。
二、时序逻辑电路实验1. 实验一:触发器(1)设计并实现一个D触发器。
(2)使用示波器观察输入输出波形,验证D触发器的正确性。
2. 实验二:计数器(1)设计并实现一个4位同步计数器。
(2)使用示波器观察输入输出波形,验证计数器的正确性。
3. 实验三:寄存器(1)设计并实现一个8位双向移位寄存器。
(2)使用示波器观察输入输出波形,验证寄存器的正确性。
实验结果与分析:1. 组合逻辑电路实验通过实验,我们掌握了逻辑门电路的基本原理和操作方法,能够根据逻辑函数设计电路,并使用示波器验证电路的正确性。
2. 时序逻辑电路实验通过实验,我们了解了触发器、计数器和寄存器等时序逻辑电路的工作原理,掌握了时序逻辑电路的设计方法,并能够使用示波器观察电路的波形。
数字电路实验基础
数字电路实验基础数字电路是现代电子技术的重要组成部分,通过运用一系列逻辑门和触发器等基本数字元件,能够完成数字信号的处理和控制。
数字电路实验是培养学生的实际动手能力和对数字电路原理的理解的重要环节。
本文将介绍数字电路实验的基础知识和实验过程。
一、实验目的数字电路实验的目的是通过实际动手操作,让学生掌握数字电路的基本理论知识,培养学生的实际应用能力和创新思维,提高学生解决问题的能力。
二、实验原理1. 二进制系统数字电路采用二进制系统进行计算和控制。
二进制系统使用两个数码0和1表示数值,是一种离散的数学方法。
在实验中,学生需掌握二进制数的加减乘除运算,以及二进制数与十进制数之间的相互转换。
2. 逻辑门逻辑门是数字电路的基本组成元件,根据输入信号的不同,会产生特定的输出信号。
常见的逻辑门有与门、或门、非门、与非门等。
实验中,学生需要熟悉各种逻辑门的真值表和逻辑关系,能够正确地连接逻辑门,并观察输出信号的变化。
3. 组合逻辑电路组合逻辑电路是由逻辑门组合而成的电路,其输出信号仅取决于当前输入信号的组合。
在实验中,学生需要根据给定的逻辑表达式或真值表,搭建相应的组合逻辑电路,并验证电路的正确性。
4. 时序逻辑电路时序逻辑电路是由触发器和组合逻辑电路组成的,其输出信号不仅取决于当前输入信号的组合,还受到前一时刻的状态影响。
在实验中,学生需要学习各种类型的触发器的工作原理,能够正确地使用触发器搭建时序逻辑电路。
三、实验步骤1. 硬件准备在进行数字电路实验前,需要准备实验箱、电源、逻辑门和触发器等实验器材。
确保实验器材的正常工作状态和连接正确。
2. 实验设计根据实验要求,设计数字电路的逻辑表达式或真值表。
绘制电路原理图,确定所需逻辑门和触发器的种类和数量。
3. 搭建电路根据电路原理图,依次连接逻辑门和触发器。
注意连接电路时的引脚和极性,确保电路的正确连接。
4. 电路验证给定输入信号,观察输出信号的变化。
与预期的输出进行对比,验证电路的正确性。
数字电路实验报告_北邮
一、实验目的本次实验旨在通过实践操作,加深对数字电路基本原理和设计方法的理解,掌握数字电路实验的基本步骤和实验方法。
通过本次实验,培养学生的动手能力、实验技能和团队合作精神。
二、实验内容1. 实验一:TTL输入与非门74LS00逻辑功能分析(1)实验原理TTL输入与非门74LS00是一种常用的数字逻辑门,具有高抗干扰性和低功耗的特点。
本实验通过对74LS00的逻辑功能进行分析,了解其工作原理和性能指标。
(2)实验步骤① 使用实验箱和实验器材搭建74LS00与非门的实验电路。
② 通过实验箱提供的逻辑开关和指示灯,验证74LS00与非门的逻辑功能。
③ 分析实验结果,总结74LS00与非门的工作原理。
2. 实验二:数字钟设计(1)实验原理数字钟是一种典型的数字电路应用,由组合逻辑电路和时序电路组成。
本实验通过设计一个24小时数字钟,使学生掌握数字电路的基本设计方法。
(2)实验步骤① 分析数字钟的构成,包括分频器电路、时间计数器电路、振荡器电路和数字时钟的计数显示电路。
② 设计分频器电路,实现1Hz的输出信号。
③ 设计时间计数器电路,实现时、分、秒的计数。
④ 设计振荡器电路,产生稳定的时钟信号。
⑤ 设计数字时钟的计数显示电路,实现时、分、秒的显示。
⑥ 组装实验电路,测试数字钟的功能。
3. 实验三:全加器设计(1)实验原理全加器是一种数字电路,用于实现二进制数的加法运算。
本实验通过设计全加器,使学生掌握全加器的工作原理和设计方法。
(2)实验步骤① 分析全加器的逻辑功能,确定输入和输出关系。
② 使用实验箱和实验器材搭建全加器的实验电路。
③ 通过实验箱提供的逻辑开关和指示灯,验证全加器的逻辑功能。
④ 分析实验结果,总结全加器的工作原理。
三、实验结果与分析1. 实验一:TTL输入与非门74LS00逻辑功能分析实验结果表明,74LS00与非门的逻辑功能符合预期,具有良好的抗干扰性和低功耗特点。
2. 实验二:数字钟设计实验结果表明,设计的数字钟能够实现24小时计时,时、分、秒的显示准确,满足实验要求。
数字电路实验报告
数字电路实验报告摘要:本实验旨在通过设计和实现数字电路,加深对数字电路原理的理解,并掌握电路设计和实验的基本方法。
本实验主要包括逻辑门电路、计数器电路和状态机电路的设计与实现。
通过实验,我们成功验证了数字电路的基本原理和功能。
引言:数字电路是现代电子技术的基础,广泛应用于计算机、通信、嵌入式系统等领域。
数字电路实验是电子工程专业的重要实践环节,通过实验可以加深对数字电路原理的理解,培养学生的动手实践能力和问题解决能力。
一、逻辑门电路设计与实现逻辑门电路是数字电路的基本组成部分,本实验通过设计和实现与、或、非、异或等逻辑门电路,加深对逻辑门的理解。
1.1 与门电路设计与实现与门是将两个输入信号进行逻辑与运算的电路,输出信号为两个输入信号的逻辑与。
根据与门的真值表,我们设计了与门电路,并使用逻辑门集成电路进行实现。
1.2 或门电路设计与实现或门是将两个输入信号进行逻辑或运算的电路,输出信号为两个输入信号的逻辑或。
根据或门的真值表,我们设计了或门电路,并使用逻辑门集成电路进行实现。
1.3 非门电路设计与实现非门是将输入信号进行逻辑非运算的电路,输出信号为输入信号的逻辑非。
根据非门的真值表,我们设计了非门电路,并使用逻辑门集成电路进行实现。
1.4 异或门电路设计与实现异或门是将两个输入信号进行异或运算的电路,输出信号为两个输入信号的异或。
根据异或门的真值表,我们设计了异或门电路,并使用逻辑门集成电路进行实现。
二、计数器电路设计与实现计数器电路是数字电路中常用的电路,本实验通过设计和实现二进制计数器和BCD计数器,加深对计数器电路的理解。
2.1 二进制计数器电路设计与实现二进制计数器是一种能够进行二进制计数的电路,根据计数器的位数,可以实现不同范围的计数。
我们设计了4位二进制计数器电路,并使用触发器和逻辑门集成电路进行实现。
2.2 BCD计数器电路设计与实现BCD计数器是一种能够进行BCD码计数的电路,BCD码是二进制编码的十进制表示形式。
数字电路实验的实验报告(3篇)
第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。
2. 熟悉数字电路实验设备和仪器的基本操作。
3. 培养实际动手能力和解决问题的能力。
4. 提高对数字电路设计和调试的实践能力。
二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。
(2)设计简单的组合逻辑电路,如全加器、译码器等。
2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。
(2)设计简单的时序逻辑电路,如计数器、分频器等。
3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。
(2)分析电路的输入输出关系,验证电路的正确性。
4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。
(2)分析电路的输入输出关系,验证电路的正确性。
5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。
(2)对比实际实验结果和仿真结果,分析误差原因。
四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。
(2)了解实验器材的性能和操作方法。
(3)准备好实验报告所需的表格和图纸。
2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。
(2)使用万用表测试电路的输入输出关系,验证电路的功能。
(3)记录实验数据,分析实验结果。
3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。
(2)使用示波器观察触发器的输出波形,验证电路的功能。
(3)记录实验数据,分析实验结果。
4. 组合逻辑电路实验(1)设计4位二进制加法器电路。
(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。
(3)记录实验数据,分析实验结果。
数字电路全部实验
数字电子技术实验报告实验一门电路逻辑功能及测试 (1)实验二数据选择器与应用 (4)实验三触发器及其应用 (8)实验四计数器及其应用 (11)实验五数码管显示控制电路设计 (17)实验六交通信号控制电路 (19)实验七汽车尾灯电路设计 (25)创建时间:2010-12-6 19:04:00班级:12电实验一门电路逻辑功能及测试一、实验目的:1.加深了解TTL逻辑门电路的参数意义。
2.掌握各种TTL门电路的逻辑功能。
3.掌握验证逻辑门电路功能的方法。
4.掌握空闲输入端的处理方法。
二、实验设备:THD—4数字电路实验箱,数字双踪示波器,函数信号发射器,74LS00二输入端四与非门,导线若干。
三、实验步骤及内容:1.测试门电路逻辑功能。
选用双四输入与非门74LS00一只,按图接线,将输入电平按表置位,测输出电平用与非门实现与逻辑、或逻辑和异或逻辑。
用74LS00实现与逻辑。
用74LS00实现或逻辑。
用74LS00实现异或逻辑。
2.按实验要求画出逻辑图,记录实验结果。
3.实验数据与结果将74LS00二输入端输入信号分别设为信号A 、B用74LS00实现与逻辑 1A B A B =∙ 逻辑电路如下:12374LS00AN45674LS00ANA BA 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:创建时间:2010-12-6 19:04:001、 用74LS00实现或逻辑11A B A B A B +=∙=∙∙∙逻辑电路如下12374LS00AN45674LS00AN 910874LS00ANcU1A BA 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:2、 用74LS00实现异或逻辑 A B AB BA AB BA ABB ABA ⊕=+=∙=∙ 逻辑电路如下:A 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:创建时间:2010-12-6 19:04:00实验二数据选择器及其应用一、实验目的1.通过实验的方法学习数据选择器的电路结构和特点。
数字电路实验报告 2023年数字电路实训报告(精彩7篇)
数字电路实验报告2023年数字电路实训报告(精彩7篇)用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
下面是作者给大家整理的7篇2023年数字电路实训报告,希望可以启发您对于数字电路实验报告的写作思路。
数字电路实训报告篇一一、实训时间__二、实训地点__电工电子实习基地三、指导老师__四、实训目的1、熟悉电工工具的使用方法。
2、了解安全用电的有关知识及触电的急救方法。
3、掌握电工基本操作技能。
4、熟悉电动机控制电路的调试及故障排除方法。
5、熟悉电动机板前配线的工艺流程及安装方法。
6、了解电动机正转反转电路设计的一般步骤,并掌握电路图的绘制方法。
7、熟悉常用电器元件的性能、结构、型号、规格及使用范围。
五、实训资料(一)常用低压电器介绍1、螺旋式熔断器螺旋式熔断器电路中较简单的短路保护装置,使用中,由于电流超过容许值产生的热量使串联于主电路中的熔体熔化而切断电路,防止电器设备短路或严重过载。
它由熔体、熔管、盖板、指示灯和触刀组成。
选取熔断器时不仅仅要满足熔断器的形式贴合线路和安装要求,且务必满足熔断器额定电压小于线路工作电压,熔断器额定电流小于线路工作电流。
2、热继电器热继电器是用来保护电动机使之免受长期过载的危害。
但是由于热继电器的热惯性,它只能做过载保护。
它由热元件、触头系统、动作机构、复位按钮、整定电流装置、升温补偿元件组成。
其工作原理为:热元件串接在电动机定子绕组仲,电动机绕组电流即为流动热元件的电流。
电动机正常运行时热元件产生热量虽能使双金属片弯曲还不足以使继电器动作。
电动机过载时,经过热元件电流增大,热元件热量增加,使双金属片弯曲增大,经过一段时光后,双金属片推动导板使继电器出头动作,从而切断电动机控制电路。
3、按钮开关按钮开关是用来接通或断开控制电路的,电流比较小。
按钮由动触点和静触点组成。
其工作原理为:按下按钮时,动触点就把下边的静触点接通而断开上边的静触点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一门电路逻辑功能及测试一、实验目的1.了解实验箱各部分的功能,并熟悉其使用方法。
2.熟悉门电路的外形和引脚以及逻辑功能。
3.学习集成电路的测试方法及示波器使用方法。
二、实验仪器及材料1.双踪示波器2.器件74LS00 二输入端四与非门2片74LS20 四输人端双与非门1片74LS86 二输入端四异或门1片74LS04 六反相器1片三、预习要求1.复习门电路工作原理及相应逻辑表达式.2.熟悉所用集成电路的引线位置及各引线用途.3.了解双踪示波器使用方法.四、实验箱介绍实验箱由电源、电平显示、信号源、芯片插座、逻辑开关等部分组成。
1、电源部分输出DC、+5V、+1.25V~+15V直流稳压电源各一路。
两路均设有短路报警功能,电源在短路时自动将电源与已经短路的电路断开,当短路故障排除后,按下报警复位开关即可恢复供电。
2、显示部分电平指示由10组发光二极管组成,用+5V接电平输入时灯亮为正常。
用GND(地)接电平无输出显示为正常。
数字显示由2位7段LED数码管及二-十进制译码器驱动器组成。
分译码输入端和段位显示输入端(高电平有效)。
3、信号源部分分单脉冲和连续脉冲2部分,单脉冲开关为消抖动脉冲;连续脉冲分为2组,一组为4路固定频率脉冲,分别为200kHZ、100kHZ、50kHZ、25kHZ;另一组为:1Hz~5kHz连续可调方波。
4、逻辑电平开关由10组逻辑电平开关组成(S0-S9),逻辑开关用于输出逻辑电平“1”和“0”。
接电平指示,并左右拨动开关(H为高电平+5V,L为低电平0V),则红绿灯相应亮灯。
用一组(4位)逻辑开关分别接数码显示的译码输入ABCD(8421BCD),拨动开关组合,输入0000~1001,则数码显示为0~9。
5、集成块插座插座为双列直插或多列直插,集成块引脚数和引脚号须与插座相符,上左下右对角一般为正、负电源(特殊除外),电源负端接GND即可(10个14脚、3个16脚、1个20脚)。
四、实验内容实验前按学习机使用说明先检查学习机电源是否正常。
然后选择实验用的集成电路,按自己设计的实验接线图接好 连线,特别注意 VCC 及地线不能接错。
线接好后经实验指导 教师检查无误方可通电实验。
实验中改动接线须先断开电 源,接好线后再通电实验。
1.测试门电路逻辑功能(1)。
选用双四输入与非门 74LS20一只,插入插座 按图1.1接线、输入端接S1~S4(电平开关输出插口)。
输出 端接电平显示发光二级管(D1~D8任意一个)(2)。
将电平开关按表1.1置位,分别测输出电压及逻辑状态. 2.逻辑电路的逻辑关系(1).用74LS00按图1。
3接线,将输人输出逻辑关系分别填人表1.3中, 表1.3(2).写出上面电路逻辑表达式. 3.利用与非控制输出。
用一片74LS00 如图1.4接线, S 接任一电平开关.用示波器观察 S 对输出脉冲的控制作用.4、选作参照内容1,自制表格,完成对74ls86,74ls04的测试.五、实验报告1.按各步聚要求填表并画逻辑图。
2.回答问题:(1)怎样判断门电路逻辑功能是否正常?(2)与非门一个输人接连续脉冲.其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过?实验二组合逻辑电路的分析和设计一、实验目的1.熟识常用逻辑门的使用方法。
2。
掌握组合逻辑电路的分析与测试和设计。
二、实验仪器及材料74LS00(与非门)2片 74LS86(异或门)1片 74LS54(与或非门)1片74LS04(六反相器)1片 74LS20(四输入端双与非门)1片三、预习要求1.预习组合逻辑电路的分析方法.2.预习用与非门和异或门构成的半加器、全加器的工作原理。
3.预习二进制数的运算。
四、实验内容1、分析、测试全加器的逻辑功能电路采用一片74LS00和一片74LS86连接。
输入信号A、B、Ci-1用逻辑电平开关(实验箱右下方)输出信号X1、X2、S、Si、Ci连接LED显示(实验箱右上方,“红”为1,“绿”为0)将测试结果填入真值表和卡诺图中,求出逻辑表达式。
2、组合逻辑电路设计(1)设计一个三人无弃权表决逻辑电路。
(2)设计一个四位奇偶校验电路。
要求当四位数码有奇数个1时,输出为1,否则输出为0。
(3)设计一个1位二进制数值比较器逻辑电路。
(4)设计一个将十进制数0~9的8421码转换为格雷码的逻辑电路。
(5)设计一个信号优先顺序逻辑电路。
要求信号A、B、C在同一时间内,只允许一个信号通过,若有两个或以上信号出现,则按A、B、C顺序通过。
任选2题设计。
按给定逻辑门任选。
写出电路设计过程,绘出设计线路图五、实验报告1.整理实验数据、图表,分析真值表,转化为卡诺图,化简最简逻辑表达式并对实验结果进行分析讨论。
2、写出设计过程(功能真值表、卡诺图分析、逻辑表达式化简),画出设计的电路图,记录结果。
实验三译码器和数据选择器的应用一、实验目的1、掌握译码器的逻辑功能及其使用方法。
2、了解译码器的一些应用电路。
3、熟悉选择器的使用方法。
二、实验仪器及元器件1、数电实验箱2、数字万用表3、元器件:74LS138(译码器) 74LS20(四输入端双与非门)74LS153(双4选1数据选择器)三、实验内容1、简介74LS138为双列直插16脚3-8线译码器,引脚及功能表见右。
使能端:S1=1,使能;S1=0, 禁止。
S2=S3=0,使能;S2、S3任一端为1,禁止。
输出Y0~Y7为低电平有效。
图 3.12、功能测试将地址和使能端与逻辑开关连接,输出端与电平指示连接。
按上表逐项测试74LS138的逻辑功能。
3、应用电路产生逻辑函数用1片74LS138和基本逻辑门产生函数(电路自拟):AL1+=+CCABABCA=L2+BCBA4、数据选择器的测试及应用(1)将双4选1数据选择器7LS153参照图4.2接线.测试其功能并填写功能表(2)将学习机脉冲信号源中固定连续脉冲4个不同频率的信号接到数据选择器4个输入端,将选择端置位,使输出端可分别观察到4种不同频率脉冲信号.(3).分析上述实验结果并总结数据选择器作用。
图 3.2表3.1四、实验报告1.写出电路设计过程,画出实验内容3、4的接线图。
2.设计出对应电路,对实验结果进行分析、讨论3.总结译码器和数据选择的使用体会。
实验四 触发器一、实验目的1.熟悉并掌握R —S 、D 、J —K 触发器的构成,工作原理和功能测试方法. 2.学会正确使用触发器集成芯片. 3.了解不同逻辑功能FF 相互转换的方法. 二、实验仪器及材料1.双法示波器 2、数字万用表3.器件 74LS00 二输人端四与非门 1片 74LS74 双D 触发器 1片 74LS73 J —K 触发器 1片 三、实验内容1.基本R —S 触发器功能测试:两个TTL 与非门首尾相接构成的基本R —SFF 的电路如图4.1所示.(1)试按下面的顺序在d S ,d R 端加信号: d S =0 d R =1 d S =1 d R =1d S =1 d R =0 图 4.1 基本 R —S FF 电路 d S =1 d R =1观来并记录FF 的Q 、Q 端的状态,将结果填入下表4.1中.(2)d S 端接低电平.d R 端加脉冲。
(3)d S 端接高电子.d R 端加脉冲。
(4)连接Rd 、Sd ,并加脉冲。
记录并观察(2)、(3)、(4)三种情况下,Q ,Q 端的状态.从中你能否总结出基本R 一SFF 的Q 或Q 端的状态改变和输人端d S ,d R 的关系。
(5)当d S 、d R 都接低电平时,观察Q 、Q 端的状态。
当d S 、d R 同时由低电平跳为高电平时,注意观察Q 、Q 端的状态,重复 3~5次看 Q 、Q 端的状态是否相同,以正确理解“不定”状态的含义。
2.维持一阻塞型D 触发器功能测试双 D 型正边沿维持一阻塞型触发器 74LS74的逻辑符号如图3.2所示。
图中d S 、d R 端为异步置1端,置0端(或称异步置位,复位; 端).CP 为时钟脉冲端。
试按下面步骤做实验:(1)分别在d S 、d R 端加低电平,观察并记录 Q 、Q 端的状态。
(2)令d S 、d R 端为高电平,D 端分别接高,低电平,用点动脉冲作为 CP ,观察并记录当 CP 为 O 、↑、1、↓时 Q 端状态的 变化。
(3)当d S =d R =1、CP =0(或CP=1).改变D 端信号,观察Q 图 4.2 DFF 逻辑符号 端的状态是否变化?整理上述实验数据,将结果填入下表4.2中.(4)令d S =d R =1,将 D 和Q 端相连,CP 加连续脉冲,用双踪示波器观察并记录Q 相对于CP的波形.3.负边沿J —K 触发器功能测试双J —K 负边沿触发器 74LS73芯片的逻辑符号如图 4.2所示。
自拟实验步骤,测试其功能,并将结果填入表4.3中. (1).在74LS73中任取一JK 触发器按右图连接。
(2).输入端 J 、K 、CLR 接逻辑开关, CLK 端接单脉冲。
输出端 Q 、Q 接电平指示。
(3).将测试结果填入表5.3中。
(Qn=0,Qn=1,分别表示触发器的初始状态, Qn+1表示次态,即表中要填的数据) (4).J 、K 输入“1”,CP 分 别1Hz 和图4.21kHz脉冲,用电平指示或示波器观察CP、Q的波形并记录。
表4.33.应用电路,用74LS73组成单脉冲发生器(电路自拟)。
要求:用1Hz脉冲和手控触发脉冲分别作两个JK触发器的CP输入。
手控送出一个脉冲,则发生器输出一个与手控脉冲长短无关的单脉冲。
四、实验报告1、列表整理实验所用触发器的逻辑功能。
2、总结实验波形,说明触发器的触发方式。
3、设计应用电路及其实验结果。
实验五计数器的设计一、实验目的1.学习用触发器构成计数器的方法2.掌握中规模集成计数器的使用方法及功能测试方法3.运用集成计数器构成1/N分频器二、实验设备与备件1、数电实验箱2、双踪示波器3、数字万用表4、电子器件74LS74 74LS192×2 74LS00三、实验内容1.用74LS74触发器构成2位二进制异步加法计数器。
图5.1(1) 按图5.1连接,RD接至逻辑开关输出插口,将低位CPO端接单次脉冲源,输出端Q0、Q1接逻辑电平显示输入插口,各Rd、Sd接高电平+5V。
(2) 清零后,逐个送入单次脉冲,观察并列表记录Q0—Q1状态。
(3) 将单次脉冲改为1Hz的连续脉冲,观察Q0—Q1的状态。
(4) 将1Hz的连续脉冲改为1KHz,用双踪示波器观察CP、Q1、Q0端波形。
(5) 将图5-1电路中的低位触发器的Q端与高一位的CP端相连接,构成减法计数器,按实验内容2),3),4)进行实验,观察并列表记录Q0-Q1的状态。