2018年浙江温州中考数学试卷及答案(word解析版)

合集下载

浙江省温州市2018年中考数学试题(含答案)-精品

浙江省温州市2018年中考数学试题(含答案)-精品

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是()A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A. B. C.D.A. B. C. D.104937466x y x y +=⎧⎨+=⎩ 103749466x y x y +=⎧⎨+=⎩ 466493710x y x y +=⎧⎨+=⎩ 466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S Km =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

(真题)2018年浙江省温州市中考数学卷有答案

(真题)2018年浙江省温州市中考数学卷有答案

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.52,0,1-,其中负数是() A.5 B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62aa 的结果是()A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.33C.(13D.(1-38.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为()A. 4B. 3C. 2D.32A.B. C.D.10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a=,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为. 14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线34y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15 乙x x(2(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

2018年浙江省温州市中考数学卷含答案卷I

2018年浙江省温州市中考数学卷含答案卷I

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数5,2,0,1-,其中负数是( ) A.5 B. 2 C. 0 D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62aa g 的结果是( ) A. 3a B. 4a C. 8a D. 12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A.12 B. 13C. 310D. 15 6.若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-(1-,0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为3).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( ) A.(1,0) B.(3,3) C.(1,3) D.(1-,3)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩ A. B. C. D.9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x =>和为32,则k 的的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之值为( ) A. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D. 532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 . 15.如图,直线34y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)--+-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元) 甲15 乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

【精编】浙江温州市2018年中考数学试题(含解析)

【精编】浙江温州市2018年中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C 是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

【推荐】浙江省温州市2018年中考数学试题(含解析)

【推荐】浙江省温州市2018年中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分 ) 计算的结果是()A. B.C.D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分 D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B.C.D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

【精编】浙江省温州市2018年中考数学试题(含解析)

【精编】浙江省温州市2018年中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

浙江省温州市2018年中考数学试题(含答案)-精选

浙江省温州市2018年中考数学试题(含答案)-精选

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()A. B. 2 C. 0 D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3a B.4a C.8a D.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B的对应点B ’的坐标是()A.(1,0)B.(3,3) C.(1D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩ 9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994 D.532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

2018浙江温州中考数学试卷(含解析)

2018浙江温州中考数学试卷(含解析)

2018年浙江省温州市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江温州,1,4分)2,0,1-,其中负数是()A. B.2 C.0 D.1-【答案】D【解析】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数。

因为在四个数中,只有-1有负号。

故选D【知识点】实数的分类,负数2.(2018浙江温州,,4)移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【解析】根据从正面看得到的图形是主视图,注意看到的线是实线看不到的线画虚线。

可得答案选B.【知识点】三视图,简单组合体的三视图3.(2018浙江温州,3,4)计算a6·a2的结果是()A. a3B. a4C. a8D. a12【答案】C【解析】利用同底数幂相乘底数不变指数相加, 得a6a2=a6+2=a8答案选C【知识点】同底数幂乘法法则4.(2018浙江温州,4,4)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【解析】利用中位数的定义,中位数是一组数据从小到大或从大到小排列后中间位置的数(当数的个数为偶数个时为中间两个数的平均数)。

这道题的数据从小到大排列后得6,7,7,7,8,9,9所以中间位置的数就是7故选C【知识点】中位数5.(2018浙江温州,5,4)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.15【答案】D【解析】利用概率的求法公式,事件发生的概率P(A)=事件发生的结果数所以可能出现的结果数A 所以从袋中任意摸出一个球,是白球的概率为21=105,故选D 【知识点】随机事件概率的公式求法6.(2018浙江温州,6,4)若分式25x x -+的值为0,则的值是() A. 2 B. 0 C. -2 D. -5【答案】A【解析】本题考查了分式值为零的条件分式值为零必须满足两个条件分母为0和分子不为0,所以由x-2=0得x=2 显然当x=2时分母为7不为0,所以选A【知识点】分式值为零的条件7.(2018浙江温州,7,4)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B 的对应点B’的坐标是()A.(1,0)B.) C.(1) D.(-1)【答案】C【解析】本题考查了平移的性质和在平面直角坐标系的点的坐标的表示法。

浙江省温州市2018年中考数学试题(含答案)【推荐】.docx

浙江省温州市2018年中考数学试题(含答案)【推荐】.docx

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62aa 的结果是() A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.(3,3)C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的A.B. C.D.面积之和为32,则k 的值为() A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,c m 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.11。

【数学】2018年浙江省温州市中考真题(解析版)

【数学】2018年浙江省温州市中考真题(解析版)

2018年浙江省温州市中考数学真题一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-12. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.3. ( 2分) 计算的结果是()A. B. C. D.4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.6. ( 2分) 若分式的值为0,则的值是()A. 2B. 0C. -2D. -57. ( 2分) 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A. (1,0)B. (,)C. (1,)D. (-1,)8. ( 2分) 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B.C. D.9. ( 2分) 如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD// 轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD 的面积之和为,则的值为()A. 4B. 3C. 2D.10. ( 2分) 我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若,,则该矩形的面积为()A. 20B. 24C.D.二、填空题11. ( 1分) 分解因式:________.12. ( 1分) 已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.13. ( 1分) 一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为________.14. ( 1分) 不等式组的解是________.15. ( 1分) 如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.16. ( 1分) 小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.三、解答题17. ( 10分)(1)计算:(2)化简:18. ( 10分) 如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19. ( 10分) 现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20. ( 10分) 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21. ( 10分) 如图,抛物线交轴正半轴于点A,直线经过抛物线的顶点M.已知该抛物线的对称轴为直线,交轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为,△OBP的面积为S,记.求K关于的函数表达式及K的范围.22. ( 10分) 如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB= ,BE=2,求BC的长.23. ( 15分) 温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的值.24. ( 15分) 如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC//BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.【参考答案】一、选择题1. 【答案】D【解析】根据题意:负数是-1,故答案为:D.2. 【答案】B【解析】A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意.故答案为:B.3. 【答案】C【解析】a6 ·a2=a8故答案为:C.4. 【答案】C【解析】将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.5.【答案】D【解析】根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D.6.【答案】A【解析】根据题意得:x-2=0,且x+5≠0,解得x=2.故答案为:A.7.【答案】C【解析】∵A(-1,0),∴OA=1, ∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.8. 【答案】A【解析】设49座客车x辆,37座客车y辆,根据题意得:故答案为:A.9.【答案】B【解析】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3; 故答案为B.10. 【答案】B【解析】;设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵a = 3 ,b = 4 ,∴x2+7x=12;∴该矩形的面积为=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案为:B.二、填空题11.【答案】a(a-5)【解析】原式=a(a-5)故答案为:a(a-5).12.【答案】6【解析】设扇形的半径为r,根据题意得:,解得:r=6故答案为:6.13.【答案】3【解析】1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为:3.14.【答案】x>4【解析】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为:x>4.15. 【答案】【解析】把x=0代入y = −x + 4 得出y=4,∴B(0,4);∴OB=4; ∵C是OB的中点,∴OC=2,∵四边形OEDC是菱形,∴DE=OC=2;DE∥OC,把y=0代入y = −x + 4 得出x=,∴A(,0);∴OA=,设D(x,) ,∴E(x,-x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2.故答案为:2.16. 【答案】8【解析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG= PM=∴OG=,在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm.故答案为:8.三、解答题17.解:(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+1218. (1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=319. 解:(1)150×=600(家)600×=100(家)答:甲蛋糕店数量为100家,该市蛋糕店总数为600家.(2)设甲公司增设x家蛋糕店,由题意得20%(600+x)=100+x 解得x=25(家)答:甲公司需要增设25家蛋糕店.20. 解:(1)(2)21. 解:(1)将x=2代入y=2x得y=4∴M(2,4)由题意得,∴(2)解:如图,过点P作PH⊥x轴于点H∵点P的横坐标为m,抛物线的函数表达式为y=-x2+4x ∴PH=-m2+4m∵B(2,0),∴OB=2∴S= OB·PH= ×2×(-m2+4m)=-m2+4m∴K= =-m+4由题意得A(4,0)∵M(2,4)∴2<m<4∵K随着m的增大而减小,∴0<K<222. (1)证明:由题意得△ADE≌△ADC,∴∠AED=∠ACD,AE=AC∵∠ABD=∠AED,∴∠ABD=∠ACD∴AB=AC∴AE=AB(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴A C=AB=3∵∠BAC=90°,AC=AB∴BC=23. 解:(1)(2)由题意得15×2(65-x)=x(130-2x)+550 ∴x2-80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130-2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130-2x)+15×2m+30(65-x-m)=-2x2+100x+1950=-2(x-25)2+3200 ∵2m=65-x-m∴m=∵x,m都是非负整数∴取x=26时,此时m=13,65-x-m=26,即当x=26时,W最大值=3198(元)答:安排26人生产乙产品时,可获得的最大总利润为3198元.24. (1)证明:∵PB⊥AM,PC⊥AN∴∠ABP=∠ACP=90°,∴∠BAC+∠BPC=180°∵∠BPD+∠BPC=180°∴∠BPD=∠BAC(2)解:①如图1,∵∠APB=∠BDE=45°,∠ABP=90°,∴BP=AB=∵∠BPD=∠BAC∴tan∠BPD=tan∠BAC∴=2∴BP= PD∴PD=2∴∠BPD=∠BPE=∠BAC∴tan∠BPE=2∵AB=∴BP=∴BD=2②如图2,当BE=DE时,∠EBD=∠EDB∵∠APB=∠BDE,∠DBE=∠APC∴∠APB=∠APC∴AC=AB=过点B作BG⊥AC于点G,得四边形BGCD是矩形∵AB= ,tan∠BAC=2∴AG=2∴BD=CG=③如图4,当BD=DE时,∠DEB=∠DBE=∠APC∵∠DEB=∠DPB=∠BAC∴∠APC=∠BAC设PD=x,则BD=2x∴=2∴=2∴x=∴BD=2x=3综上所述,当BD为2,3或时,△BDE为等腰三角形(3)=如图5,过点O作OH⊥DC于点H∵tan∠BPD=tan∠MAN=1∴BD=DP令BD=DP=2a,PC=2b得OH=a,CH=a+2b,AC=4a+2b由OC∥BE得∠OCH=∠PAC∴=∴OH·AC=CH·PC∴a(4a+2b)=2b(a+2b)∴a=b∴CF= ,OF=∴=。

【精选】浙江温州市2018年中考数学试题(含解析)

【精选】浙江温州市2018年中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

浙江省温州市中考数学试题(含解析)

浙江省温州市中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

浙江省温州市2018年中考数学试题(含答案)【精品】.docx

浙江省温州市2018年中考数学试题(含答案)【精品】.docx

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.(3,3)C.(1D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数A.B. C.D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-+(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SKm=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.11。

2018年浙江省温州市中考数学试卷含答案解析(Word版)

2018年浙江省温州市中考数学试卷含答案解析(Word版)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

2018年浙江省温州市中考数学试卷(Word版)

2018年浙江省温州市中考数学试卷(Word版)

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.给出四个实数5,2,0,1-,其中负数是( )A.5B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a g 的结果是( )A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A. 12B. 13C.310D.156.若分式25x x -+的值为0,则x 的值是( )A.2B.C.2-D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0,3).现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B的对应点B’的坐标是( ) A.(1,0)B.(3,3) C.(1,3) D.(1-,3)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A. B. C. D.A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A. 4B. 3C. 2D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 . 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为493cm 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:20(2)27(21)--+-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC. (2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形. (1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15 乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润. (3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

2018年浙江省温州市中考数学卷含答案

2018年浙江省温州市中考数学卷含答案

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.52,0,1-,其中负数是( ) A.5 B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是( ) A.2 B.C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.33C.(13D.(1-38.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a=,4b =,则该矩形的面积为( )A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 . 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线34y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 . 16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:20(2)27(21)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

2018年浙江温州中考数学试卷及答案解析版

2018年浙江温州中考数学试卷及答案解析版

2018温州市中考数学解析版数学(满分:150分考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分)(2018浙江温州市,1,4分)计算:(-2)×3的结果是()A .-6 B.-1 C.1 D.6【答案】A(2018浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图.由图可知,该班同学最喜欢的球类项目是()A .羽毛球B.乒乓球C .排球 D.篮球【答案】D (2018浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是()【答案】A(2018浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是()A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【答案】C (2018浙江温州市,5,4分)若分式3+-x 的值为0,则x 的值是()A .x =3B.x =0C.x =-3D.x =-4【答案】A (2018浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k k y 的图象上,则k 的值是()A.3B.-3C.31D.31-【答案】B(2018浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是()A.3 B.5 C.15 D.17【答案】B(2018浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是()A .43B.34C.53D.54【答案】C(2018浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是()A.4.5B.8C.10.5D.14【答案】B (2018浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧 BAC,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是()A.429πB.423πC.411πD.45π【答案】D。

(完整word版)2018年浙江省温州市中考数学试卷含答案,推荐文档

(完整word版)2018年浙江省温州市中考数学试卷含答案,推荐文档

浙江省温州市2018年中考数学试卷一、选择题<本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选,多选,错选,均不给分)1. <4分)<2018?温州)计算:<-2)x 3的结果是<)A - 6B - 1C 1D 6• • • ・考有理数的乘法.点:八、、・分根据有理数的乘法运算法则进行计算即可得解.析:解解: <- 2)X3 = - 2X3 = - 6.答:故选A.点本题考查了有理数的乘法,是基础题,计算时要注意符号的处评:理.2. <4分)<2018?温州)小明对九<1)班全班同学“你最喜欢的球类工程是什么?<只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类工程是<)b5E2RGbCAP九仃漑同学最書欧的球类项目読计图A羽毛球B乒乓球C排球D篮球•• • ・考扇形统计图.点:八、、・分禾U用扇形图可得喜欢各类比赛的人数的百分比,选择同学们最析:喜欢的工程,即对应的扇形的圆心角最大的,由此即可求出答案.解 解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢 答:的球类工程是篮球.故选D.点 本题考查的是扇形图的定义.在扇形统计图中,各部分占总体 评:的百分比之和为1,每部分占总体的百分比等于该部分所对应 的扇形圆心角的度数与360°的比.3. <4分)<2018?温州)下列各图中,经过折叠能围成一个立方体由平面图形的折叠及正方体的展开图解题.解:A 、可以折叠成一个正方体; :B 、是“凹”字格,故不能折叠成一个正方体;C 、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一 个正方体;D 是“田”字格,故不能折叠成一个正方体. 故选A .点 本题考查了展开图折叠成几何体.注意只要有“田”、“凹” 评:字格的展开图都不是正方体的表面展开图.4. <4分)<2018?温州)下列各组数可能是一个三角形的边长的是 < )A 1, 2, 4B 4, 5, 9C 4, 6, 8D 5, 5, 11考三角形三边关系占:八、、・展开图折叠成几何体.考点分析解咎 的是< ) C分看哪个选项中两条较小的边的和不大于最大的边即可.析:解解:A、因为1+2V4,所以本组数不能构成三角形.故本选项答:错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C 、因为 项正确;D 因为 误; 故选C. 点本题主要考查了三角形的三边关系定理:任意两边之和大于第 评:三边,形. 5. <4分)9-4v 5V 8+4,所以本组数可以构成三角形.故本选5+5V 11,所以本组数不能构成三角形.故本选项错只要满足两短边的和大于最长的边,就可以构成三角<2018?温州)若分式 的值为0,则x 的值是<)A x=3B x=0C x=- 3D x= - 4考 点:八、、・分 析: 解 答: 分式的值为零的条件.根据分式值为零的条件可得 x - 3=0,且x+4工0,再解即可.解:由题意得:x - 3=0,且x+4工0,解得:x=3,故选:A .此题主要考查了分式值为零的条件,关键是掌握分式值为零的占八、、 评:条件是分子等于零且分母不等于零. 注意:“分母不为零”这个条件不能少.6. <4分)<2018?温州)已知点P<1, - 3)在反比例函数y 二丄vk M 0)的图象上,贝y k 的值是< A 3 B - 3 C 丄 D —二3 3)p1EanqFDPw反比例函数图象上点的坐标特征.考 点:八、、・分析:解答: 把点P<1,- 3)代入反比例函数y 丄,求出k 的值即可.X占八、、 评:解:T 点P<1,- 3)在反比例函数y 仝<心0)的图象上, •••- 3=r ,解得 k=- 3. 故选B.本题考查的是反比例函数图象上点的坐标特点,即反比例函数 图象上各点的坐标一定适合此函数的解读式.7. <4分)<2018?温州)如图,在O O 中,0C !弦AB 于点C,考垂径定理;勾股定理点:八、、・分 根据垂径定理可得 AC=BC=AB 在Rt △ OBC 中可求出OB 析:: 解解:T OCL 弦AB 于点C,答:二 AC=BC=AB, 在 Rt △ OBC 中, OB= ‘「•「「•'= n . 故选B.点本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟 评:练掌握垂径定理的内容. 8. <4分)<2018?温州)如图,在△ ABC 中,/ C=90 , AB=5 A 上 B 二 —D 上 a 3考锐角三角函数的定义占:八、、・分利用正弦函数的定义即可直接求解.析:解解:si nA 二丄—.答. '11' AB=4 OC=1贝卩OB 的长是< )DXDiTa9E3dBC=3贝卩si nA 的值是<)RTCrpUDGiT A答: 故选C.点本题考查锐角三角函数的定义及运用:在直角三角形中,锐角评:的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻 边.9. <4分)<2018?温州)如图,在△ ABC 中,点D, E 分别在边ABAC 上,DE// BC 已知 AE=6, ,贝卩 EC 的长是 < )5PCzVD7HxABL 4考平行线分线段成比例.点:八、、・分根据平行线分线段成比例定理列式进行计算即可得解. 析:故选B.点本题考查了平行线分线段成比例定理,找准对应关系是解题的 评:关键.10. <4分)<2018?温州)在厶ABC 中, Z C 为锐角,分别以 AB, AC C 10.5 D 14解 答: 解:T DE// BC A DB D 6 EC AE T , 即 解得EC=8B 8 4'为直径作半圆,过点B, A , C 作I <',如图所示.若AB=4 AC=2 S1 点:八、、・分 首先根据AB AC 的长求得S1+S3和S2+S4的值,然后两值相减 析:即可求得结论.解解:T AB=4 AC=2答:二 S1+S3二n, S2+S4J , 2S1-S2」,•••VS1+S3 - VS2+S4 =<S1-S2) +<S3- S4)密 nS3— S4= n, 4故选D.点 本题考查了圆的认识,解题的关键是正确的表示出S1+S3和评:S2+S4的值.二、填空题 <本题有6小题,每小题5分,共30分) 11.<5 分)<2018?温州)因式分解:m2- 5m= m<- 5).考因式分解-提公因式法.点:八、、・分先确定公因式m 然后提取分解.析:解 解: m2- 5m=m<m5).答:故答案为:m<n - 5). )jLBHrnAlLg考圆的认识点 此题考查了提公因式法分解因式,关键是确定公因式m评: 12. <5分)<2018?温州)在演唱比赛中,5位评委给一位歌手的打 分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的 平均得分是 8 分.XHAQX74J0X 算术平均数. 根据算术平均数的计算公式,先求出这 5个数的和,再除以5 :即可.解:根据题意得::<8.2+8.3+7.8+7.7+8.0 ) - 5=8<分 );故答案为:8.点此题考查了算术平均数,用到的知识点是算术平均数的计算公评:式,熟记公式是解决本题的关键.考点分析解咎13. <5分)<2018?温州)如图,直线a , b 被直线c 所截,若a /b ,Z 1=40°,/ 2=70°,则/ 3= 110 度.LDAYtRyKfE根据两直线平行,内错角相等求出/ 答. 解:T a // b ,Z 1=40° .•./ 4=Z 1=40°• / 3二/ 2+Z 4=70° +40° =110°.故答案为:110. b/ a A / b 点 本题考查了平行线的性质,对顶角相等的性质,是基础题,熟 评:记性质是解题的关键.14. <5分)<2018?温州)方程 x2 - 2x - 1=0 的解是 x1 = 1+ ::, x2=1 - . ■:.解一元二次方程-配方法. 首先把常数项2移项后,然后在左右两边同时加上一次项系数 -2的一半的平方,然后开方即可求得答案. 解:T x2 - 2x - 1=0, 二x2 - 2x=1,二x2 - 2x+1=2,••• vx - 1) 2=2,二 x=1 ± ,二原方程的解为:x1=1+ ' X2=1-考点分析解岔平行线的性质;三角形内角和疋理. 4,再根据对顶角相等解考点分析解岔故答案为:x1=1也,x2=1-近.点 此题考查了配方法解一元二次方程.解题时注意配方法的一般评:步骤:<1)把常数项移到等号的右边;<2)把二次项的系数化为1; <3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.15. <5分)<2018?温州)如图,在平面直角坐标系中,△ ABC 的两 个顶点A, B 的坐标分别为<-2, 0),<-1,0),BCLx 轴,将△ ABC 以 y 轴为对称轴作轴对称变换,得到△ A B‘ C <A 和A ', B 和B‘,C 和C 分别是对应顶点),直线y=x+b 经过点A, C ,则点C 的坐标是 <1, 3) . Zzz6ZB2Ltk一次函数图象上点的坐标特征;坐标与图形变化 -对称. 根据轴对称的性质可得 OB=OB ,然后求出AB ,再根据直线 y=x+b 可得AB' =B ' C ,然后写出点 C 的坐标即可. 解:T A <- 2, 0), B <— 1, 0), ••• AO=2 OB=1 •••△ A B' ^和厶ABC 关于y 轴对称, • OB=OB =1, • AB' =AO+OB =2+仁3, T 直线y=x+b 经过点A, C , • AB' =B ' C =3, •••点C 的坐标为<1, 3). 故答案为:<1, 3). 点 本题考查了一次函数图象上点的坐标特征,坐标与图形变化- 评:对称,根据直线解读式的k 值等于1得到AB' =B ' C 是解本 题的关键. 考点分析解空16. <5分)<2018?温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B 的距离及相关数据<单位:cm,从点N沿折线NF- FMvNF BC FM/ AB切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图<不重叠,无缝隙,不记损耗),则CN AM的长分别是18cm31cm . dvzfvkwMI1考圆的综合题占:八、、・分如图,延长0K交线段AB于点M,延长PQ交BC于点G,交析:FN于点N',设圆孔半径为r .在Rt△ KBG中,根据勾股定理,得r=16<cm).根据题意知,圆心0在矩形EFGH勺对角线上,贝卩KN二AB=42cm OM =KM +r~CB=65cm则根据图中相关线段间的和差关系求得CN=QGQN =44- 26=18<cn),AM=BC PD- KM =130- 50 - 49=31<cn).解解:如图,延长OK交线段AB于点M,延长PQ交BC于点答:G,交FN 于点N .设圆孔半径为r.在Rt△ KBG中,根据勾股定理,得BG2+KG2二BK2即卩<130- 50)2+<44+r)2=1002,解得,r=16<cm).根据题意知,圆心O在矩形EFGH勺对角线上,则KN =^AB=42cm OM =KM +r二—CB=65cm••• QN =KN - KQ=42- 16=26<cn),KM =49<cn),••• CN 二QGQN =44- 26=18<cn ),••• AM=BC PD - KM =130-50 - 49=31<cn ), 综上所述,CN AM 的长分别是18cm 31cm 故填:18cm 31cm本题以改造矩形桌面为载体,让学生在问题解决过程中,考查 了矩形、直角三角形及圆等相关知识,积累了将实际问题转化 为数学问题经验,渗透了图形变换思想,体现了数学思想方法 在现实问题中的应用价值.三、解答题 <本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17. <10分)<2018?温州)<1)计算::「:+<」亠)+—) 0<2)化简:<1+a ) <1 - a ) +a <a- 3)考 整式的混合运算;实数的运算;零指数幕.点:八、、・专计算题.题:分<1 )原式第一项化为最简二次根式,第二项去括号,最后一项 析:利用零指数幕法则计算,合并即可得到结果;<2)原式第一项利用平方差公式化简,第二项利用单项式乘多 项式法则计算,去括号合并即可得到结果.解 解:<1)原式=2用」+二—1 +1= 3 :■:;答:<2)原式=1 - a2+a2- 3a=1 - 3a .点 此题考查了整式的混合运算,以及实数的运算,涉及的知识评:有:完全平方公式,平方差公式,去括号法则,以及合并同类 项法则,熟练掌握公式及法则是解本题的关键.18. <8分)<2018?温州)如图,在△ ABC 中,/ C=90,AD 平分 / CAB 交 CB 于点 D,过点 D 作 DEL AB 于点 E . rqyn 14ZNXI点 八、、V1)求证:△ ACD^A AED<2)若/ B=30°, CD=1 求BD的长.考全等三角形的判定与性质;角平分线的性质;含30度角的直角点:三角形. 分<1 )根据角平分线性质求出CD=DE根据HL定理求出另三角形析:全等即可;<2)求出/ DEB=90 , DE=1根据含30度角的直角三角形性质求出即可.解<1)证明:T AD 平分/ CAB DEL AB,/ C=90°, 答:二CD=ED / DEA/ C=90°,•••在Rt△ ACD和Rt△ AED中(CD 二DE••• Rt△ ACD^ Rt△ AED<HL ;<2)解:T DC=DE=,1 DEI AB,•/ DEB=90 ,B=30°,•BD=2DE=2点本题考查了全等三角形的判定,角平分线性质,含30度角的直评:角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19. <8分)<2018?温州)如图,在方格纸中,△ ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.EmxvxOtOco<1)将厶ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;<2)以点C为旋转中心,将△ ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.占:八、、・考作图-旋转变换;作图-平移变换.点本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握专图表型.题:分析: <1)根据网格结构,把△ ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;<2)把厶ABC绕点C顺时针旋转90°即可使点P在三角形内部.评:网格结构是解题的关键.20. <10分)<2018?温州)如图,抛物线y二a<x- 1)2+4与x轴交于点A, B,与y轴交于点C,过点C作CD// x轴交抛物线的对称轴于点D,连接BD已知点A的坐标为<-1, 0)SixE2yXPq5<1)求该抛物线的解读式;考待定系数法求二次函数解读式;二次函数的性质;抛物线与x 点:轴的交点.专计算题.题:分<1 )将A坐标代入抛物线解读式,求出a的值,即可确定出解析:读式;<2)抛物线解读式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COB啲面积.解解:<1)将A<- 1, 0)代入y=a<x- 1)2+4 中,得:0=4a+4, 答:解得:a= - 1,则抛物线解读式为y= - <x- 1)2+4;<2)对于抛物线解读式,令x=0,得到y=3,即OC=3 T抛物线解读式为y=- <x- 1)2+4的对称轴为直线x=1,••• CD=1v A<- 1, 0),• B<3, 0), 即卩OB=3贝卩S梯形OCDA= :=6.点此题考查了利用待定系数法求二次函数解读式,二次函数的性评:质,以及二次函数与x轴的交点,熟练掌握待定系数法是解本题的关键.21. <10分)<2018?温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.6ewMyirQFL<1)求从袋中摸出一个球是黄球的概率;<2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于丄,问至少取出了多少个黑球?考kavU42VRUs概率公式;一兀一次不等式的应用.点:分析:<1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;<2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.解答:解:<1)丁一个不透明的袋中装有5个黄球,13个黑球和22 个红球,•••摸出一个球摸到黄球的概率为:门”三;5+1a <2)设取走x个黑球,则放入x个黄球,由题意,得毙:22寻,解得:x峙答:至少取走了9个黑球.占八、、评此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P<A』.n22.<10分)<2018?温州)如图,AB为O O的直径,点C在O 0上,延长BC至点D,使DC=CB延长DA与O O的另一个交点为E,连接AG CE y6v3ALoS89<1)求证:/ B=Z D<2)若AB=4 BC- AC=2 求CE的长.考圆周角定理;等腰三角形的判定与性质;勾股定理.点:八、、・分V1)由AB为。

2018年浙江省温州市中考数学试卷(带解析)

2018年浙江省温州市中考数学试卷(带解析)

ͻ 形的面积为
cm2,则该圆的半径为
8
cm.
【解答】解:设两个正六边形的中心为 O,连接 OP,OB,过 O 作 OG⊥PM,OH
⊥AB,
由题意得:∠MNP=∠NMP=∠MPN=60°,
ͻ ∵小正六边形的面积为
cm2,
൅ ∴∴小正六边形的边长为 cm,即 PM=7 cm,

∴S△MPN=
cm2,
∵OG⊥PM,且 O 为正六边形的中心,
【解答】解: 萰 > , 萰 ͹>
解①得 x>2, 解②得 x>4. 故不等式组的解集是 x>4. 故答案为:x>4.
15.(5 分)如图,直线 y=﹣ x+4 与 x 轴、y 轴分别交于 A,B 两点,C 是 OB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则△OAE 的面积为 2 .
三、解答题(本题有 8 小题,共 80 分.解答需写出必要的文字说明、演算步骤或 证明过程) 17.(10 分)(1)计算:(﹣2)2﹣ ൅+( ﹣1)0. (2)化简:(m+2)2+4(2﹣m). 【解答】解:(1)(﹣2)2﹣ ൅+( ﹣1)0 =4﹣3 +1 =5﹣3 ; (2)(m+2)2+4(2﹣m) =m2+4m+4+8﹣4m =m2+12.
A.(1,0) B.( , ) C.(1, ) D.(﹣1, ) 【解答】解:因为点 A 与点 O 对应,点 A(﹣1,0),点 O(0,0), 所以图形向右平移 1 个单位长度,
第 2页(共 18页)
所以点 B 的对应点 B'的坐标为(0+1, ),即(1, ), 故选:C.
8.(4 分)学校八年级师生共 466 人准备参加社会实践活动.现已预备了 49 座
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018温州市中考数学解析版数学(满分:150分 考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分) (2018浙江温州市,1,4分)计算:(-2)×3的结果是( )A .-6 B.-1 C.1 D.6 【答案】A(2018浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图. 由图可知,该班同学最喜欢的球类项目是( )A .羽毛球 B.乒乓球 C .排球 D.篮球 【答案】D(2018浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是( )【答案】A(2018浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是( )A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11 【答案】C(2018浙江温州市,5,4分)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B.x =0 C.x =-3 D.x =-4 【答案】A(2018浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k的值是( )A.3B.-3C.31 D.31- 【答案】B(2018浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是( )A.3B.5C.15D.17【答案】B(2018浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是( )A .43 B.34 C.53 D.54【答案】C(2018浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是( )A.4.5B.8C.10.5D.14 【答案】B(2018浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π【答案】D二、填空题(本题有6小题,每小题5分,共30分)(2018浙江温州市,11,5分)因式分解:m 2-5m = . 【答案】m (m-5)(2018浙江温州市,12,5分)在演唱比赛中,5位评委给一位歌手打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均分是 分. 【答案】8.0(2018浙江温州市,13,5分)如图,直线a ,b 被直线c 所截. 若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.【答案】110(2018浙江温州市,14,5分)方程x 2-2x -1=0的解是 . 【答案】21,2121-=+=x x(2018浙江温州市,15,5分)如图,在平面直角坐标系中△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴. 将△ABC 以y 轴为对称轴对称变换,得到△A′B′C′(A 和A ′,B 和B′,C 和C ′分别是对应顶点).直线y =x +b 经过点A ,C ′,则点C ′的坐标是 .【答案】(1,3)(2018浙江温州市,16,5分)一块矩形木板,它的右上角有一个圆洞. 现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关的数据(单位:cm )后,从点N 沿折线NF —FM (NF ∥BC ,FM ∥AB )切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN ,AM 的长分别是 .【答案】18cm ,31cm三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)(2018浙江温州市,17(1),5分)计算:0211-28)()(++解:0211-28)()(++-1)(2018浙江温州市,17(2),5分)化简:(1+a )(1-a )+a (a -3) 解:(1+a )(1-a )+a (a -3)=1-a 2+a 2-3a =1-3a .(2018浙江温州市,18,8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)求证:△ACD ≌△AED ; (2)若∠B =30°,CD =1,求BD 的长. (1)证明1:∵AD 平分∠CAB .∴∠CAD =∠EAD . ∵DE ⊥AB , ∠C =90°, ∴∠ACD =∠AED =90°. 又∵AD =AD ,∴△ACD ≌△AED (AAS). 证明2:∵∠C =90°,∴AC ⊥CD , ∵DE ⊥AB , ∴CD =DE ,∵AD =AD ,∴△ACD ≌△AED (HL). (2)解:∵△ACD ≌△AED ∴DE =CD =1. ∵∠B =30°, ∠DEB =90°, ∴BD =2DE =2.(2018浙江温州市,19,9分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.解:(1)答案如图示:(2)答案如图示:(2018浙江温州市,20,10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C. 过点C作CD∥x轴交抛物线的对称轴于点D,连结BD. 已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.解:(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x =1, ∴CD =1. ∵A (-1,0) ∴B (3,0), ∴OB =3. ∴.623)31(=⨯+=COBD S 梯形(2018浙江温州市,21,10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31。

问至少取出了多少黑球? 解:(1)摸出一个球是黄球的概率81221355=++=P . (2)设取出x 个黑球. 由题意,得31405≥+x . 解得325≥x .∴x 的最小正整数解是x =9. 答:至少取出9个黑球.(2018浙江温州市,22,10分)如图,AB 为⊙O 的直径,点C 在⊙O 上,延长BC 至点D ,使DC =CB .延长DA 与⊙O 的另一个交点为E ,连结AC ,CE . (1)求证:∠B =∠D ;(2)若AB =4,BC -AC =2,求CE 的长.解:(1)证明:∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴AC ⊥BC , ∵DC =CB ∴AD =AB , ∴∠B =∠D .(2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2, ∴(x-2)2+x 2=4,解得71,7121-=+=x x (舍去),∵∠B =∠E ,∠B =∠D , ∴∠D =∠E , ∴CD =CE , ∵CD =CB ∴CE =CB =1+7.(2018浙江温州市,23,10分)某校举办八年级学生数学素养大赛。

比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记(1) 比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10﹪,40﹪,20﹪,30﹪折算记入总分.根据猜测,求出甲的总分;(2) 本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖. 现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分. 问甲能否获得这次比赛一等奖?解:(1)甲的总分:66×10﹪+89×40﹪+86×20﹪+68×30﹪=79.8(分).(2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y . 由题意,得⎩⎨⎧=++=++.80908020,70806020y x y x解得⎩⎨⎧==.4.0,3.0y x∴甲的总分:20+89×0.3+86×0.4=81.1>80.∴甲能获一等奖.(2018浙江温州市,24,14分)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0,8).点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E . 点D 为x 轴上一动点,连结CD ,DE ,以CD ,DE 为边作□CDEF . (1)当0<m <8时,求CE 的长(用含m 的代数式表示);(2)当m =3时,是否存在点D ,使□CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D 在整个运动过程中,若存在唯一的位置,使得□CDEF 为矩形,请求出所有满足条件的m 的值.解:(1)如图1,∵A (6,0),B (0,8), ∴OA =6,OB =8. ∴AB =10.∵∠CEB =∠AOB =90°, 又∵∠OBA =∠EBC , ∴△BCE ∽△BAO . ∴8-610CE BC CE mOA AB ==即, ∴m CE 53524-=. (2) ∵m =3,∴BC =8-m =5, 353524=-=m CE , ∴BE =4,∴AE =AB -BE =6.∵点F 落在y 轴上(如图2),∴DE ∥BO ,∴△EDA ∽△BOA .∴10666=-=OD AB AE OA AD 即, ∴512=OD .∴点D 的坐标为(512,0).(3)取CE 的中点P ,过点P 作P G ⊥y 轴于点G ,则11232510CP CE m ==-. (Ⅰ)当m >0时.(ⅰ)当0<m <8时(如图3).易证∠GCP =∠BAO , ∴cos ∠GCP =cos ∠BAO =53. ∴3123cos ()5510CG CP GCP m =∠=- m 5092536-=, ∴.253650415092536+=-+=+=m m m CG OC OG 由题意,得OG =CP ,∴m m 10351225365041-=+, 解得76=m .(ⅱ)当m ≥8时,OG >CP ,显然不存在满足条件的m 的值. (Ⅱ)当m =0时,即点C 与原点O 重合(如图4),满足题意.(Ⅲ)当m <0时,(ⅰ)当点E 与点A 重合时(如图5). 易证△COA ∽△AOB ,∴6,68CO AO m AO OB -==即. 解得29-=m . (ⅱ)当点E 与点A 不重合时(如图6). )5092536(m m CG OC OG ---=-= 25365041--=m . 由题意,得OG =CP , ∴m m 10351225365041-=--,解得1396-=m . 综上所述,m 的值为76或0或29-或1396-.。

相关文档
最新文档