惯性矩的计算方法
惯性矩的计算方法
惯性矩、惯性积和惯性半径设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.数学表达式为极惯性矩 (4-6)对 y 轴惯性矩 (4 -7a )同理,对 z 轴惯性矩 (4-7b)由图 4-3 看到所以有即 (4-8) 式 (4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。
在任一截面图形中 ( 图 4 —3) ,取微面积 dA 与它的坐标 z 、 y 值的乘积,沿整个截面积分,定义此积分为截面图形对 y 、z 轴的惯性积,简称惯积.表达式为(4-9)惯性矩、极惯性矩与惯性积的量纲均为长度的四次方. I,I,I恒为正值.而惯性积 I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零.当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴 ( 或称主形心惯轴 ) .截面对形心主惯性轴的惯性矩称为形心主惯性矩 ( 或称主形心惯矩 ) .例如,图 4-4 中若这对 yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.工程应用中 ( 如压杆稳定中 ) ,有时将惯性矩表示成截面面积与某一长度平方的乘积,即,或写成, ( 4-10 )式中 i分别称为截面图形对 y 轴、 z 轴的惯性半径.其量纲为长度的一次方.例 4-2 已知矩形截面的尺寸 b,h( 图 4-5) ,试求它的形心主惯性矩.解:取形心主惯性轴 ( 即对称轴 )y,z ,及 dA=dy,代入公式 (I— 7a ,) 得同理:例 4-3 设圆的直径为 D( 图 4-6) ,试求图形对其形心轴的惯性矩及惯性半径值.解: (1) 求惯性矩因为图形对称, y,z 为对称轴,所以 I= I这是较简单的解法.本例也可取出图 4-6 上的微面积 dA ,按积分法来求得。
惯性矩的计算方法
第1节静矩和形心4.1静矩和形心任何受力构件的承载能力不仅与材料性能和加载方式有关.而口与构件截面的几何形状和尺寸有关.如:计算杆的拉伸与压缩变形时用到截面而积A ,计算圆轴扭转变形时用到横截面的极惯性矩I?等.A、1?等是从不同角度反映了截而的几何特性,因此称它们为截而图形的几何性质.4.1静矩和形心设有一任意截而图形如图4 一1所示,其面积为A .选収直角坐标系yoz ,在坐标为(y,z)处取一微小而积dA ,定义微而积dA乘以到y轴的距离z ,沿整个截面的积分,为图形对y轴的静矩S?,其数学表达式(4 -la )同理,图形对z轴的静矩为□4-1图41截面静矩与坐标轴的选取有关•它随坐标轴y、z的不同而不同.所以静矩的数值可能足正,也可能足负或定零.静矩的虽纲为长度的三次方.确定截面图形的形心位置(图4-1中C点):A (4-2b)第1页共30页式中T、"为截而图形形心的坐标值.若把式(4-2)改写成心"•儿,為"•乙(4 3)性质:・若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.・若坐标轴通过截而形心,则截而对此轴的静矩必为零.・山于截而图形的对称轴必定通过截而形心,故图形对其对称轴的静矩恒为零。
4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是山若干简单图形(如矩形、圆形等)组合g而成的.对于这样的组合截而图形,计算静矩(S»‘ r)与形心坐标(y*、z ')时,可用以下公式1-1 2-1式中A— y i , z i分别表示第,个简单图形的面积及其形心坐标值,n为组成组合图形的简单图形个数.即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是山一种简单图形减去另一种简单图形所组成的.例4J己知T形截面尺寸如图4-2所示,试确定此截面的形心坐标值.i-1 i-1 (4-5)图4-2解:(1)选参考轴为y 轴,z 轴为对称轴,(2)将图形分成I 、口两个矩形,则= 20 x 100加朋 S 右=(10 + 140)^^34 = 2Q X 14%/,22 二注型(3)代入公式(4・5)20x100x150+20x140x70 20x100 + 20x140此=°4.2惯性矩、惯性积和惯性半径设任一截面图形(图4-3),其而积为A ・选取直角坐标系yoz ,在坐标为(y 、z)处取一微小面积dA ,定义此微2面积dA 乘以到坐标原点o 的距离的平方Q ,沿整个截面积分,为截而图形的极惯性矩I?.做而积dA 乘以到坐标轴y 的2距离的平方2 ,沿整个截而积分为截面图形对y 轴的惯性矩I 》•极惯性矩、惯性矩常简称极惯矩、惯矩.j.l ~2Z4数学表达式为打=f p^dA极惯性矩“俎(4-6)对y轴惯性矩图4-3山图4-3看到“ =y +Z 9所以有打=\A^dA= £cy2 +/)曲二必+加必即;? (4-8)式(4-8)说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。
惯性矩地计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y xdAdSx ydA整个图形对y、z轴的静矩分别为S y xdAyASx 人 ydA2.形心与静矩关系(1-1 )设平面图形形心C的坐标为y c,z c-S x 一S y /、y , x (I-2 )A A推论1如果y轴通过形心(即x0),则静矩S y 0 ;同理,如果X轴通过形心(即y o),则静矩sx o;反之也成立。
推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为 A,A2,A3 A n的简单图形组成,且一直各族图形的形心坐标分别为丘,只;乂2*2;x3,y3 ,贝U图形对y轴和x轴的静矩分别为截面图形的形心坐标为nA i Xi 1 nA ii 14•静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为m 3。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2 )求图形的形心坐标。
组 合图形的形心位置,通常是先由式(I-3 )求出图形对某一坐标系的静 矩,然后由式(1-4 )求出其形心坐标。
(二)•惯性矩 惯性积 惯性半径1.惯性矩定义 设任意形状的截面图形的面积为 A (图I-3 ),则图形对0点的极 惯性矩定义为 I p2dA (1-5)KAn nS yS yiARi 1 i 1nnS xSxiA i Vi 1 i 1(1-3 )A i y i(1-4 )图形对y轴和x轴的光性矩分别定义为I y A x2dA , I x A y2dA (1-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。
惯性矩的计算方法
I等. I等是从不同角度反映了截S,其数学表达式(4 -1a )(4-1b)(4 -2a )(4-2b)式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成(4-3)性质:•若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.•若坐标轴通过截面形心,则截面对此轴的静矩必为零.•由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。
4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式(4-4)(4-5)式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数.即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的.例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.、两个矩形,则设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.数学表达式为极惯性矩 (4-6)对 y 轴惯性矩 (4 -7a )同理,对 z 轴惯性矩 (4-7b)由图 4-3 看到所以有即(4-8) 式 (4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。
在任一截面图形中 ( 图 4 —3) ,取微面积 dA 与它的坐标 z 、 y 值的乘积,沿整个截面积分,定义此积分为截面图形对 y 、z 轴的惯性积,简称惯积.表达式为(4-9)惯性矩、极惯性矩与惯性积的量纲均为长度的四次方. I,I,I恒为正值.而惯性积 I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零.当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴 ( 或称主形心惯轴 ) .截面对形心主惯性轴的惯性矩称为形心主惯性矩 ( 或称主形心惯矩 ) .例如,图 4-4 中若这对 yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.工程应用中 ( 如压杆稳定中 ) ,有时将惯性矩表示成截面面积与某一长度平方的乘积,即,或写成, ( 4-10 )式中 i分别称为截面图形对 y 轴、 z 轴的惯性半径.其量纲为长度的一次方.例 4-2 已知矩形截面的尺寸 b,h( 图 4-5) ,试求它的形心主惯性矩.解:取形心主惯性轴 ( 即对称轴 )y,z ,及 dA=dy,代入公式 (I— 7a ,) 得同理:例 4-3 设圆的直径为 D( 图 4-6) ,试求图形对其形心轴的惯性矩及惯性半径值.解: (1) 求惯性矩因为图形对称, y,z 为对称轴,所以 I= I这是较简单的解法.本例也可取出图 4-6 上的微面积 dA ,按积分法来求得。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩计算方法及常用截面惯性矩计算公式惯性矩是描述物体抵抗转动的性质之一,也称为转动惯量或转动惯性。
惯性矩计算方法及其常用公式对于工程设计和物体力学研究非常重要。
本文将介绍惯性矩的计算方法以及常用截面的惯性矩计算公式。
一、惯性矩的计算方法惯性矩的计算方法有两种常见的方法:几何法和积分法。
1.几何法几何法是一种简单的惯性矩计算方法,适用于对称的二维和三维截面。
该方法基于图形的几何形状和特征参数,通过对称性和平移不变性等原理来计算物体的惯性矩。
对于二维截面,常用的几何法计算公式包括:(1)矩形截面的惯性矩计算公式:I=(1/12)*b*h^3其中,I为矩形截面的惯性矩,b为矩形的宽度,h为矩形的高度。
(2)圆形截面的惯性矩计算公式:I=(π/4)*r^4其中,I为圆形截面的惯性矩,r为圆形的半径。
对于三维截面,几何法的计算步骤类似,但计算公式更加复杂。
常用的几何法计算公式可参考相关的工程手册和物体力学教材。
2.积分法积分法是一种更加精确的惯性矩计算方法,适用于不规则形状的截面。
该方法基于直角坐标系下的积分原理,将截面划分成无限小的面元,并对每个面元的贡献进行积分求和,从而得到截面的惯性矩。
积分法的计算步骤如下:(1)将截面划分成无数个小区域,计算每个小区域的面积和距离轴线的距离。
(2)根据小区域的面积和距离,计算每个小区域的质量和质心的位置。
(3)根据每个小区域的质量、质心位置和距离轴线的距离,计算每个小区域对于轴线的贡献。
(4)对每个小区域的贡献进行积分求和,得到整个截面的惯性矩。
积分法的计算可以通过数值积分或解析积分进行。
对于复杂的截面形状,数值积分是一种较为方便和实用的计算方法。
1.矩形截面的惯性矩计算公式:I=(1/12)*b*h^3其中,I为矩形截面的惯性矩,b为矩形的宽度,h为矩形的高度。
2.圆形截面的惯性矩计算公式:I=(π/4)*r^4其中,I为圆形截面的惯性矩,r为圆形的半径。
3.环形截面的惯性矩计算公式:I=(π/4)*(r2^4-r1^4)其中,I为环形截面的惯性矩,r1为内径半径,r2为外径半径。
惯性矩的定义和计算公式
惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。
●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。
惯性矩计算公式
惯性矩计算公式(总1页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
惯性矩计算公式:
矩形:b*h^3/12
三角形:b*h^3/36
圆形:π*d^4/64
环形:π*D^4*(1-α^4)/64;α=d/D
^3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值1)找出达到极限弯矩时截面的中和轴。
它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。
在双轴对称截面中,这条轴是主轴。
2)分别求两侧面积对中和轴的面积矩,面积矩之和即为塑性截面模量。
矩形截面抵抗矩W=bh^2/6 圆形截面的抵抗矩W=^3/32 圆环截面抵抗矩:W=π(R4-
r4)/(32R)
2。
常用截面惯性矩与截面系数的计算
常用截面惯性矩与截面系数的计算截面的惯性矩是描述截面抗弯刚度大小的一个物理量,常用于结构力学和工程设计中。
截面系数是截面抗弯性能的一个重要参数,它表示截面抵抗外力作用下的变形能力。
下面将介绍一些常用的截面惯性矩和截面系数的计算方法。
1.矩形截面:矩形截面的惯性矩可以通过以下公式计算:I=(b*h^3)/12其中,I表示矩形截面的惯性矩,b表示矩形截面的宽度,h表示矩形截面的高度。
矩形截面的截面系数可以通过以下公式计算:W=(b*h^2)/6其中,W表示矩形截面的截面系数。
2.圆形截面:圆形截面的惯性矩可以通过以下公式计算:I=π*r^4/4其中,I表示圆形截面的惯性矩,r表示圆形截面的半径。
圆形截面的截面系数可以通过以下公式计算:W=π*r^3/3其中,W表示圆形截面的截面系数。
3.正三角形截面:正三角形截面的惯性矩可以通过以下公式计算:I=b*h^3/36其中,I表示正三角形截面的惯性矩,b表示正三角形截面的底边长度,h表示正三角形截面的高度。
正三角形截面的截面系数可以通过以下公式计算:W=b*h^2/24其中,W表示正三角形截面的截面系数。
4.T形截面:T形截面的惯性矩可以通过以下公式计算:I=(b1*h1^3+b2*h2^3)/12其中,I表示T形截面的惯性矩,b1和b2分别表示T形截面的上下翼缘的宽度,h1和h2分别表示T形截面的上下翼缘的高度。
T形截面的截面系数可以通过以下公式计算:W=(b1*h1^2+b2*h2^2)/6其中,W表示T形截面的截面系数。
需要注意的是,上述给出的公式仅适用于一些常见的截面形状,并且仅考虑了截面的几何特性。
在实际的工程设计中,还需要考虑材料的弹性模量等参数,并基于这些参数进行更精确的计算。
此外,还有一些其他复杂截面的惯性矩和截面系数的计算公式,如梯形截面、圆环截面等。
对于这些复杂截面的计算,可以借助数值方法或计算机辅助设计软件进行求解。
总之,截面的惯性矩和截面系数是结构力学和工程设计中常用的参数,通过计算这些参数可以评估截面的抗弯刚度和抗剪性能,为工程结构的设计提供依据。
转动惯量 惯性矩 惯性积
转动惯量惯性矩惯性积
转动惯量是动力学学科中的一个重要概念,它表示物体自身抗旋转的能力。
它是一个矢量,表示物体转动惯性矩的大小和方向,其中矩可以定义为质量及其距离物体轴心的距离之积。
惯性矩又称转动惯量,它可以被定义为物体抗旋转的力、质量及其距离物体轴心的距离的乘积。
二.算方法
转动惯量是由物体的质量和距离物体轴心的距离求出的,可以用下面公式来计算:
I=m*r^2
其中,I为转动惯量,m为质量,r为距离物体轴心的距离。
转动惯量可以通过惯性矩来描述,它是一个矢量,其方向取决于物体的转动方向。
它可以用下面的方程式来表示:
I=∑m_i*r^2_i
其中,m_i表示质量,r_i表示距离物体轴心的距离。
三.用
1.宙轨道运动:宇宙间的物体轨道运动时,物体的转动惯量是它的能量的特征,除了重力势能以外,物体还需要有一定的转动惯量来稳定轨道。
2.体动力学:在流体动力学中,转动惯量是流体旋转时受到影响的一个重要概念,在模拟流体运动时,转动惯量会对流体的运动产生重大影响。
3.行器控制:在飞行器控制中,转动惯量也是一个非常重要的概念,它决定了飞行器的性能,不同飞行器所需要的转动惯量也是不同的,这些都是飞行器控制的重要参数。
四.结
转动惯量是动力学学科中重要的概念,它表示物体自身抗旋转的能力。
转动惯量可以通过物体的质量和距离物体轴心的距离来计算,它是一个矢量,其方向取决于物体的转动方向。
转动惯量在宇宙轨道运动、流体动力学和飞行器控制等领域都具有重要的意义,是不可或缺的重要概念。
惯性矩、静矩、截面抵抗矩计算
惯性矩和对Y轴的惯性矩。
y
解:
100
1)求出A1和A2分别对自身形心 2
轴的惯性矩
0
I x1
b1h13 12
100 203 12
66.67 103
100
A1 •Ⅱ•ຫໍສະໝຸດ A2Ⅰx1
xc a2 30 x
Ix2
b2h23 12
20 100 3 12
16.67 105
2 0
2)求对整个截面形心X轴的惯性矩
截面对x轴的惯性矩:
I x y2dA
量纲:L4 y
A
截面对y轴的惯性矩: I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
x
dA
y r
x
3)惯性矩的单位为m4;
2、惯性半径(回转半径)
截面对x轴的惯性半径: ix I x / A 截面对y轴的惯性半径: iy I y / A
二、常见截面的惯性矩和惯性半径
形心轴:通过截面形心的坐标轴 ➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性矩。
y
对x轴的惯性矩
x
Ix
1 12
bh3
h 对y轴的惯性矩:
b
Iy
1 12
hb3
➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性半径。
y
对x轴的惯性半径
x
h
ix
Ix A
1/12bh3 h
截面的几何性质
知识点:截面惯性矩和静矩的计算 一、截面惯性矩的定义及计算 二、常见截面的惯性矩和惯性半径 三、组合截面的概念 四、惯性矩的平行移轴公式 五、静矩的概念及公式 六、常见截面的静矩
惯性矩计算公式
惯性矩计算公式(总1页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
惯性矩计算公式:
矩形:b*h^3/12
三角形:b*h^3/36
圆形:π*d^4/64
环形:π*D^4*(1-α^4)/64;α=d/D
^3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值1)找出达到极限弯矩时截面的中和轴。
它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。
在双轴对称截面中,这条轴是主轴。
2)分别求两侧面积对中和轴的面积矩,面积矩之和即为塑性截面模量。
矩形截面抵抗矩W=bh^2/6 圆形截面的抵抗矩W=^3/32 圆环截面抵抗矩:W=π(R4-
r4)/(32R)
2。
惯性矩的定义和计算公式
惯性矩的定义和计算公式惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。
●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y 到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。
惯性矩
分类
截面极
截面
主
截面惯性矩(I=截面面积X截面轴向长度的二次方) 截面惯性矩:the area moment of inertia characterized an object's ability to resist bending and is required to calculate displacement. 截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y^2dF.
定义
面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA的积分,分别称为该面积元素对于z轴或y轴的惯性矩 或截面二次轴矩。惯性矩的数值恒大于零
对Z轴的惯性矩: 对Y轴的惯性矩: 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。 极惯性矩常用计算公式: 矩形对于中线(垂直于h边的中轴线)的惯性矩: 三角形: 圆形对于坐标轴的惯性矩: 圆形对于圆心的惯性矩: 环形对于圆心的惯性矩:,
截面极惯性矩(Ip=面积X垂直轴二次)。 扭转惯性矩Ip: the torsional moment of inertia 极惯性矩:the polar moment of inertia 截面各微元面积与各微元至某一指定截面距离二次方乘积的积分Iρ= ρ^2dF。 a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
惯性矩
几何量
01 定义
目录
02 静矩
ห้องสมุดไป่ตู้
03 分类
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 yydAdSx xdA dS y == x dA 整个图形对y 、z 轴的静矩分别为⎰⎰==A Ay ydA Sx xdA S (I-1) 0 A y 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0A S y x = , AS x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========n i n i ii xi x n i ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===n i i n i i iAx A x 11, ∑∑===n i in i i i A y A y 11 (I-4) 4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩计算方法及常用截面惯性矩计算公式惯性矩(也称为惯性矩、二阶矩)是描述物体抵抗绕轴旋转的特性的物理量。
在工程中,惯性矩常用于计算和设计梁、轴等结构的强度和稳定性。
本文将介绍惯性矩的计算方法以及常用的截面惯性矩计算公式。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
1.几何法:几何法是一种通用的计算惯性矩的方法,适用于简单的几何形状,如矩形、圆形等。
几何法的思想是将复杂的截面分解为简单的几何形状,并使用其相关的公式计算每个部分的惯性矩,然后将它们相加。
2.积分法:积分法是一种基于微积分的方法,适用于复杂的截面形状。
该方法基于将截面分割为无穷小的面积元,然后使用积分计算每个面积元的惯性矩,并将它们相加得到整个截面的惯性矩。
3.转动倾斜坐标:转动倾斜坐标是一种特殊的坐标系选择方法,适用于具有对称轴的截面。
在该方法中,坐标轴被选择为与截面的对称轴对齐,这样会使得部分惯性矩相消,从而简化惯性矩的计算。
下面介绍几个常见截面形状的惯性矩计算公式:1.矩形截面:- 矩形的惯性矩计算公式:I = (bh^3)/12,其中b为矩形的宽度,h为矩形的高度。
2.圆形截面:-圆形的惯性矩计算公式:I=πr^4/4,其中r为圆的半径。
3.圆环截面:-圆环的惯性矩计算公式:I=π(R^4-r^4)/4,其中R为外圆半径,r 为内圆半径。
4.T形截面:-T形的惯性矩计算公式:I=(b1h1^3)/12+b1h1(y1-y)^2+(b2h2^3)/12,其中b1和b2为宽度,h1和h2为高度,y为距离底边的垂直距离。
这些是一些常见的截面形状的惯性矩计算公式,对于其他复杂的截面形状,可以使用几何法、积分法或转动倾斜坐标方法来计算惯性矩。
总结起来,惯性矩是描述物体抵抗绕轴旋转的特性的物理量。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
常见截面的惯性矩计算公式包括矩形截面、圆形截面、圆环截面和T形截面。
这些公式在结构工程中广泛应用,可以帮助工程师设计和计算各种结构的强度和稳定性。
模板的惯性矩计算
模板惯性矩(Inertia Moment of a Template)是指模板在给定自重和材料特性的作用下,对外力的反应矩,也就是模板的刚度。
它是计算模板的主要参数,其大小决定了模板的稳定性和承受外力的能力。
模板惯性矩的计算一般是根据模板的几何形状进行计算。
模板惯性矩的计算公式可以根据模板的不同几何形状而有所不同,但大致可以分为以下几种情况:
(1)对于平面模板,其计算公式为:I=M*l^2/6,其中I为模板惯性矩,M为模板自重,l为模板边长。
(2)对于圆柱模板,其计算公式为:I=M*r^2/2,其中I为模板惯性矩,M为模板自重,r 为模板半径。
(3)对于圆锥模板,其计算公式为:I=M*H^2/4,其中I为模板惯性矩,M为模板自重,H为模板的高度。
(4)对于三角柱模板,其计算公式为:I=M*h^2/6,其中I为模板惯性矩,M为模板自重,h为模板的高度。
(5)对于椭圆模板,其计算公式为:I=M*a^2/4,其中I为模板惯性矩,M为模板自重,a 为模板的长轴。
(6)对于圆环模板,其计算公式为:I=M*r^4/4,其中I为模板惯性矩,M为模板自重,r 为模板内径。
模板惯性矩的计算是一个复杂的过程,它的计算结果受到外力的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I等. I等是从不同角度反映了截
S,其数学表达式
(4 -1a )
(4-1b)
(4 -2a )
(4-2b)
式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成
(4-3)
性质:
•若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.
•若坐标轴通过截面形心,则截面对此轴的静矩必为零.
•由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。
4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式
(4-4)
(4-5)
式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数.
即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的.
例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.
、两个矩形,则
设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.
数学表达式为
极惯性矩 (4-6)
对 y 轴惯性矩 (4 -7a )
同理,对 z 轴惯性矩 (4-7b)
由图 4-3 看到所以有
即(4-8) 式 (4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。
在任一截面图形中 ( 图 4 —3) ,取微面积 dA 与它的坐标 z 、 y 值的乘积,沿整个截面积分,定义此积分为截面图形对 y 、z 轴的惯性积,简称惯积.表达式为
(4-9)
惯性矩、极惯性矩与惯性积的量纲均为长度的四次方. I,I,I恒为正值.而惯性积 I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零.
当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴 ( 或称主形心惯轴 ) .截面对形心主惯性轴的惯性矩称为形心主惯性矩 ( 或称主形心惯矩 ) .例如,图 4-4 中若这对 yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.
工程应用中 ( 如压杆稳定中 ) ,有时将惯性矩表示成截面面积与某一长度平方的乘积,即
,
或写成
, ( 4-10 )
式中 i分别称为截面图形对 y 轴、 z 轴的惯性半径.其量纲为长度的一次方.
例 4-2 已知矩形截面的尺寸 b,h( 图 4-5) ,试求它的形心主惯性矩.
解:取形心主惯性轴 ( 即对称轴 )y,z ,及 dA=dy,代入公式 (I— 7a ,) 得
同理:
例 4-3 设圆的直径为 D( 图 4-6) ,试求图形对其形心轴的惯性矩及惯性半径值.
解: (1) 求惯性矩因为图形对称, y,z 为对称轴,所以 I= I
这是较简单的解法.本例也可取出图 4-6 上的微面积 dA ,按积分法来求得。
(2) 求惯性半径
Y,Z的惯性矩已知.有另一对坐标轴 y 轴。
两平行轴
,
z=z+a
(
I可正、可负或为零.
(
式中 I, , 分别表示每个简单图形对自身形心轴的惯性矩、惯性积. a分别表示每个简单图形的形心坐标轴到组合图形 y,z 轴的距离. A表示各简单图形的面积.
例 4-4 已知截面图形尺寸如图 4-8 所示,试求图形对水平形心轴的惯性矩 I.
解: (1) 将图形分成三个小矩形①、②、⑧.
(2) 选参考轴在①的形心上.
(3) 由公式 ( I— 5) 求形心
=
= 124.89
因为 z 是对称轴,故
(4) 由公式 ( I— 12) .第一式计算 I
=
+
I。
若将坐标轴旋转一角 ( 以逆时针转为正,顺时针转为负,图为正
y. y轴的惯性矩与惯性积为 I. 与
I之间的关系。
y坐标系的坐标为 (y)
(
( b )
将 (a) 式分别代入 (b) 式,利用三角函数关系
整理后得到
( 4-13 )
(4-13) 式即为惯性矩和惯性积的转轴公式.它反映了惯性矩、惯性积随 a 而改变的规律.将式 (1 —13) 的前两式相加,可得
这说明截面图形对正交轴系的惯性矩之和为一常数.
现在我们来研究 (4-13) 的第三式. I随 a 而改变,当=0 时,相应的坐标轴为主惯性轴,用
y表示,即
(c)
由此求得(4-14)
上式中的和表示了主轴的方位角.
将关系式 (4-14) 代入转轴公式 (4-13) 第一、第二式,运算时利用三角函数关系
(4-15)
的第一式对求一阶导数且令其为零,即可得到惯性矩的极值,即
I.
I
=
=1.84
4) 由式 (4-14) 确定形心主轴的方位
由于, 所以图形对绝对值较小的所确定的形心主轴的惯性矩为最大值,另一轴的惯性矩为最
小值.如图 4-10 所示的图形,对 y0轴的形心主惯性矩为最大值,对 z0轴的形心主惯性矩为最小值。
(5) 由公式 (4-15) 计算形心主惯性矩
=
=3.46
◆
◆。