高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第九章
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第八章
第八章 解析几何第41讲 直线的斜率与方程A 应知应会一、 选择题1. (2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( )A. 3x +4y +15=0B. 3x +4y +6=0C. 3x +y +6=0D. 3x -4y +10=02. 直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3 的倾斜角的取值范围是 ( ) A. ⎣⎡⎦⎤π6,π3 B. ⎣⎡⎦⎤π4,π3 C. ⎣⎡⎦⎤π4,π2 D. ⎣⎡⎦⎤π4,2π33. (2019·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A. π4B. π3C. 2π3D. 3π44. 如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2019·张家口模拟)若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3 x -y =33 的倾斜角的2倍,则( )A. m =-3 ,n =1B. m =-3 ,n =-3C. m =3 ,n =-3D. m =3 ,n =1二、 解答题6. 求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.7. 求适合下列条件的直线方程.(1) 经过点P(3,2),且在两坐标轴上的截距相等;(2) 求过点(2,1)且在x轴上的截距与在y轴上的截距之和为6的直线方程.B巩固提升一、填空题1. 直线x+3y+1=0的倾斜角是________.2. 过点P(2,3)且在两坐标轴上截距相等的直线方程为________.3. 已知直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.4. (2019·江苏姜堰中学)已知△ABC的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________.二、解答题5. (2019·启东检测)已知直线l:(2+m)x+(1-2m)y+4-3m=0.(1) 求证:不论m为何实数,直线l过一定点M;(2) 过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.6. 如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.(第6题)第42讲两条直线的位置关系A应知应会一、选择题1. 若直线2x+3y-1=0与直线4x+my+11=0平行,则m的值为()A. 83 B. -83 C. -6 D. 62. 若直线l过点(3,1)且与直线2x-y-2=0平行,则直线l的方程为()A. 2x-y-5=0B. 2x-y+1=0C. x+2y-7=0D. x+2y-5=03. (2019·石家庄模拟)若直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k 的值为()A. -24B. 24C. 6D. ±64. 若直线a1x+b1y=2和a2x+b2y=2交于点P(3,2),则过点A(a1,b1),B(a2,b2)的直线方程是()A. 2x+3y-2=0B. 3x+2y-2=0C. 3x+2y+2=0D. 2x+3y+2=05. 已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m =-2”是“l1∥l2”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件二、解答题6. 已知三角形三边所在的直线方程分别为2x-y+4=0,x+y-7=0,2x-7y-14=0,求边2x-7y-14=0上的高所在的直线方程.7. 已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),求顶点A的坐标.B 巩固提升一、 填空题1. 若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.2. 如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.3. 已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.4. (2019·南通中学)已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =________.二、 解答题5. (2019·海门实验中学)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得:(1) l 1∥l 2;(2) l 1⊥l 2.6. 已知点P (a ,b )在x ,y 轴上的射影分别为点A ,B .(1) 求直线AB 的方程;(2) 求过点P 且垂直于AB 的直线m 的方程.第43讲 距离公式与对称问题A 应知应会一、 选择题1. 点A (2,5)到直线l :x -2y +3=0的距离为( )A. 25B. 55C. 5D. 2552. 两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A. 235B. 2310C. 7D. 723. 已知坐标原点关于直线l 1:x -y +1=0的对称点为A ,设直线l 2经过点A ,则当点B (2,-1)到直线l 2的距离最大时,直线l 2的方程为( )A. 2x +3y +5=0B. 3x -2y +5=0C. 3x +2y +5=0D. 2x -3y +5=04. 已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 的最大距离为3,则12a +2c的最小值为( ) A. 92 B. 94C. 1D. 9 5. (多选)在平面直角坐标系中,定义d (P ,Q )=|x 1-x 2|+|y 1-y 2|为两点P (x 1,y 1),Q (x 2,y 2)之间的“折线距离”,则下列命题中为真命题的是( )A. 若点A (-1,3),B (1,0),则有d (A ,B )=5B. 到原点的“折线距离”等于1的所有点的集合是一个圆C. 若点C 在线段AB 上,则有d (A ,C )+d (C ,B )=d (A ,B )D. 到M (-1,0),N (1,0)两点的“折线距离”相等的点的轨迹是直线x =0二、 解答题6. (2019·江苏启东中学)已知直线l :y =12x -1. (1) 求点P (3,4)关于l 对称的点Q ;(2) 求l 关于点(2,3)对称的直线方程.7. 已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1) 证明:直线l 过某定点,并求该定点的坐标;(2) 当点P 到直线l 的距离最大时,求直线l 的方程.B 巩固提升一、 填空题1. 已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________.2. 直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.3. 已知l 1,l 2是分别经过A (2,1),B (0,2)两点的两条平行直线,当l 1,l 2之间的距离最大时,直线l 1的方程是________.4. “c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)二、 解答题5. 已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1) 若点A (5,0)到l 的距离为3,求l 的方程;(2) 求点A (5,0)到l 的距离的最大值.6. 已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1) 求a 的值;(2) 能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2 ∶5 ?若能,求点P 的坐标;若不能,说明理由.第44讲 圆的方程A 应知应会一、 选择题1. (2019·太原模拟)若两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是( )A. ⎝⎛⎭⎫-15,1B. ⎝⎛⎭⎫-∞,-15 ∪(1,+∞) C. ⎣⎡⎭⎫-15,1 D. ⎝⎛⎦⎤-∞,-15 ∪[1,+∞) 2. (2019·长沙模拟)已知三点A (1,0),B (0,3 ),C (2,3 ),则△ABC 外接圆的圆心到原点的距离为( )A. 53B. 213C. 253D. 433. 方程|x |-1=1-(y -1)2 所表示的曲线是( )A. 一个圆B. 两个圆C. 半个圆D. 两个半圆4. (2019·邯郸一模)若x ,y 满足约束条件(x -1)2+(y -1)2≤1,则x 2+y 2的最小值为( )A. 2 -1B. 3-22C. 2 +1D. 3+225. (2019·黄冈调研)若长度为定值4的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,P (x ,y )为△OAB 的外心轨迹上一点,则x +y 的最大值为( )A. 1B. 4C. 2D. 22二、 解答题6. 已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410 .(1) 求直线CD 的方程;(2) 求圆P 的方程.7. 已知圆经过点A (2,-3)和B (-2,-5).(1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程.B巩固提升一、填空题1. 若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a=________.2. 已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,6)在圆C内,则m的取值范围为________.3. (2019·南师附中)经过三点A(-1,0),B(3,0),C(1,2)的圆的面积S=________.4. 已知点A(-2,0),B(0,2).若点M是圆x2+y2-2x+2y=0上的动点,则△ABM面积的最小值为________.二、解答题5. 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1) 求线段AP中点的轨迹方程;(2) 若∠PBQ=90°,求线段PQ中点的轨迹方程.6. 如图,已知圆O的直径AB=4,定直线l到圆心的距离为4,且直线l垂直于直线AB,点P 是圆O上异于A,B的任意一点,直线P A,PB分别交l于M,N两点.(1) 若∠P AB=30°,求以MN为直径的圆的方程;(2) 当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.(第6题)第45讲直线与圆、圆与圆的位置关系课时1直线与圆相关问题A应知应会一、选择题1. 以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为()A. (x-2)2+(y+1)2=3B. (x+2)2+(y-1)2=3C. (x-2)2+(y+1)2=9D. (x+2)2+(y-1)2=92. (2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O 为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A. 6或-6B. 5或-5C. 6D. 53. “a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A. 相离B. 相切C. 相交D. 不确定5. (多选)(2019·合肥模拟)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A. 3x+4y-12=0B. 4x-3y+9=0C. x=0D. 4x+3y+9=0二、解答题6. (2019·启东模拟)已知直线l:kx-y+k-3=0与圆x2+y2=12交于A,B两点,过A,B 分别作l的垂线与x轴交于C,D两点,若|AB|=43,求|CD|.7. 已知圆C经过点A(2,-1),与直线x+y=1相切,且圆心在直线y=-2x上.(1) 求圆C的方程;(2) 已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.B 巩固提升一、 填空题1. (2019·衡水调研)过M (-3,1),N (0,a )两点的光线经y 轴反射后所在直线与圆x 2+y 2=1存在公共点,则实数a 的取值范围为________.2. (2019·扬州期末)已知直线l :y =-x +4与圆C :(x -2)2+(y -1)2=1相交于P ,Q 两点,则CP → ·CQ → =________.3. 已知过点P ⎝⎛⎭⎫32,32 的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,当∠ACB 最小时,直线l 的方程为________,∠ACB =________.4. (2019·启东考前卷)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 在点B 处的切线在x 轴上的截距为________.(第4题)二、 解答题5. 已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(1) 求过点A 的圆的切线方程;(2) 点O 是坐标原点,连接OA ,OC ,求△AOC 的面积S .6. 已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1) 求k 的取值范围;(2) 直线l 能否将圆C 分割成弧长的比为13的两段弧?若能,求出直线l 的方程;若不能,请说明理由.课时2圆与圆的位置关系A应知应会一、选择题1. 圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为()A. 相交B. 外切C. 内切D. 外离2. 已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A. {1,-1}B. {3,-3}C. {1,-1,3,-3}D. {5,-5,3,-3}3. 若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b应满足的关系式是()A. a2-2a-2b-3=0B. a2+2a+2b+5=0C. a2+2b2+2a+2b+1=0D. 3a2+2b2+2a+2b+1=04. 两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r等于()A. 5B. 4C. 3D. 225. 已知A={(x,y)|x2+y2=1},B={(x,y)|(x-5)2+(y-5)2=4},则A∩B等于()A. ∅B. {(0,0)}C. {(5,5)}D. {(0,0),(5,5)}二、解答题6. 已知圆A:x2+y2+2x+2y-2=0,若圆B平分圆A的周长,且圆B的圆心在直线l:y =2x上,求满足上述条件的半径最小的圆B的方程.7. 圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1) 若圆O1与圆O2外切,求圆O2的方程;(2) 若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.B 巩固提升一、 填空题1. 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________.2. 已知线段AB 的长为2,动点C 满足CA → ·CB →=λ(λ<0),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值是________.3. (2019·江苏天一中学)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.4. 如图,在平面四边形ABCD 中,AB =4,AD =2,∠DAB =60°,AC =3BC ,则边CD 长的最小值为________.(第4题)二、 解答题 5. (2019·江苏准阴中学)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1) 求M 的轨迹方程;(2) 当|OP |=|OM |时,求l 的方程及△POM 的面积.6. (2019·泰州中学)在平面直角坐标系xOy 中,过点P (0,1)且互相垂直的两条直线分別与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1) 若AB =327 ,求CD 的长;(2) 若CD 中点为E ,求△ABE 面积的取值范围.(第6题)第46讲 椭圆A 应知应会一、 选择题1. 过点A (3,-2)且与椭圆x 29 +y 24 =1有相同焦点的椭圆的方程为( )A. x 215 +y 210 =1B. x 225 +y 220 =1 C. x 210 +y 215 =1 D. x 220 +y 215 =12. 设F 1,F 2分别是椭圆x 225 +y 216 =1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A. 4B. 3C. 2D. 53. (多选)已知P 为椭圆x 25 +y 24 =1上一点,以点P 及焦点F 1,F 2为顶点的三角形的面积为S ,则( )A. 若S =1,则满足条件的点P 有4个B. 若S =2,则满足条件的点P 有2个C. 若S =5 ,则满足条件的点P 有2个D. 若S =12 ,则满足条件的点P 有4个4. 若中心为(0,0),一个焦点为F (0,52 )的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( ) A. 2x 275 +2y 225 =1 B. x 275 +y 225 =1C. x 225 +y 275 =1D. 2x 225 +2y 275 =15. 已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A. 35B. 12C. 23D. 34二、 解答题6 . 分别求出满足下列条件的椭圆的标准方程.(1) 与椭圆x 24 +y 23=1有相同的离心率且经过点(2,-3 );(2) 已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3.7. (2019·厦门期中)如图,已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右顶点分别为A ,B ,右焦点为F ,一条准线方程是x =-4,短轴一端点与两焦点构成等边三角形,点P ,Q 为椭圆C上异于A ,B 的两点,点R 为PQ 的中点.(1) 求椭圆C 的标准方程;(2) 直线PB 交直线x =-2于点M ,记直线P A 的斜率为k P A ,直线FM 的斜率为k FM ,求证:k FM ·k P A 为定值.(第7题)B 巩固提升一、 填空题1. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.2. 已知F 1,F 2分别为椭圆C :x 2a 2 +y 2=1(a >1)的左、右焦点,点F 2关于直线y =x 的对称点Q 在椭圆上,则长轴长为________;若P 是椭圆上的一点,且PF 1·PF 2=43 ,则S △F 1PF 2=________.3. (2019·江苏海门中学)设F 1,F 2分别为椭圆x 24 +y 2=1的左、右焦点,点P 在椭圆上,且|PF 1+PF 2|=23 ,则∠F 1PF 2=________.4. (2019·淮北一模)在平面直角坐标系xOy 中,点P 是椭圆C :x 2a 2 +y 24 =1(a >0)上一点,F为椭圆C 的右焦点,直线FP 与圆O :x 2+y 2=1相切于点Q ,若Q 恰为线段FP 的中点,则a =________.二、 解答题5. (2019·南昌一模)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)经过点M (0,-1),长轴长是短轴长的2倍.(1) 求椭圆C 的方程;(2) 设直线l 经过点N (2,1)且与椭圆C 相交于A ,B 两点(异于点M ),记直线MA 的斜率为k 1,直线MB 的斜率为k 2,求证:k 1+k 2为定值.6. (2019·揭阳二模)已知椭圆C :x 2a 2 +y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :(x -3)2+(y -1)2=3相切.(1) 求椭圆C 的方程;(2) 若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP → ·AQ →=0,试探究:直线l 是否过定点?若是,求该定点的坐标;若不是,请说明理由.第47讲 双曲线 A 应知应会一、 选择题1. (多选)下列各条件下求得的双曲线标准方程,正确的是( )A. 与x 轴交于两点A (-2,0),B (2,0),c =3,则方程为x 24 -y 25 =1B. a =25 ,过点A (2,-5),焦点在y 轴上,则方程为y 220 -x 216=1C. 与椭圆x 227 +y 236 =1有相同的焦点,它们的一个交点的纵坐标为4,则方程为y 24 -x 25=1D. 过P 1⎝⎛⎭⎫-2,352 ,P 2⎝⎛⎭⎫473,4 两点,则方程是y 29 -x 216 =12. 若双曲线E :x 29 -y 216 =1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A. 11B. 9C. 5D. 33. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一个焦点为F (-2,0),且双曲线的两条渐近线的夹角为60°,则双曲线的方程为( )A. x 23 -y 2=1B. x 26 -y 22=1C. x 23 -y 2=1或x 2-y 23 =1 D. x 2-y 23 =1或x 26 -y 22=1 4. (2019·济宁期末)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2 -y 2b 2 =1(a >0,b >0)的顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为( )A. 2B.322 C. 113 D. 2225. (2019·秦皇岛模拟)已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线平行于直线l :y=2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. x 25 -y 220 =1B. x 220 -y 25 =1C. 3x 225 -3y 2100 =1D. 3x 2100 -3y 225 =1二、 解答题6. 根据下列条件,求双曲线的标准方程. (1) 虚轴长为12,离心率为54 ;(2) 焦距为26,且经过点M (0,12);(3) 经过两点P (-3,27 )和Q (-62 ,-7).7. 根据下列条件,求双曲线的标准方程. (1) 经过点P ⎝⎛⎭⎫3,154 ,Q ⎝⎛⎭⎫-163,5 ; (2) c =6 ,经过点(-5,2),焦点在x 轴上.B 巩固提升一、 填空题1. (2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2 =1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.2. (2019·晋中二模)过双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的下焦点F 1作y 轴的垂线,交双曲线于A ,B 两点,若以AB 为直径的圆恰好过其上焦点F 2,则双曲线的离心率为________.3. 已知M (x 0,y 0)是双曲线C :x 22 -y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1·MF 2<0,则y 0的取值范围是________.4. (2019·马鞍山一检)已知双曲线C :x 24 -y 25 =1的焦点为F 1,F 2,P 为双曲线C 上的一点,且△F 1PF 2的内切圆半径为1,则△F 1PF 2的面积为________.二、 解答题5. 已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1) 求双曲线的标准方程;(2) 若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63 ,试判断△MF 1F 2的形状.6. 已知双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的两个焦点分别为F 1,F 2,一条渐近线方程为2x +y=0,且焦点到这条渐近线的距离为1.(1) 求此双曲线的方程;(2) 若点M ⎝⎛⎭⎫55,m 在双曲线上,求证:点M 在以F 1F 2为直径的圆上.第48讲 抛物线A 应知应会一、 选择题 1. (2019·南昌一模)已知抛物线方程为x 2=-2y ,则其准线方程为( ) A. y =-1 B. y =1 C. y =12 D. y =-122. 过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A. 9B. 8C. 7D. 6 3. (2019·石家庄检测)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22 )的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A. 1∶2B. 1∶3C. 1∶2D. 1∶3 4. (2019·武汉调研)已知A ,B 为抛物线y 2=4x 上两点,O 为坐标原点,且OA ⊥OB ,则|AB |的最小值为( )A. 42B. 22C. 8D. 825. (多选)设抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若AF ,BF ,CF 成等差数列,则( )A. x 1,x 2,x 3成等差数列B. x 1,x 2,x 3成等比数列C. y 21 ,y 22 ,y 23 成等差数列D. y 21 ,y 22 ,y 23 成等比数列 二、 解答题6. 已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,且OA → ·OB → =12.(1) 求抛物线的方程;(2) 当以AB 为直径的圆与y 轴相切时,求直线l 的方程.7. 一种高脚酒杯的轴截面近似一条抛物线如图所示,已知杯口宽4 cm,杯深8 cm.若将一些大小不等的玻璃球放入酒杯中,试问:半径为多大时,玻璃球触及酒杯底部?(第7题)B 巩固提升一、 填空题1. 若直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与抛物线C 交于A ,B 两点,则p =________,1AF +1BF=________.2. (2019·河南六市二联)已知抛物线y 2=4x 的焦点为F ,其准线为直线l ,过点M (5,25 )作直线l 的垂线,垂足为H ,则∠FMH 的平分线所在直线的斜率是________.3. (2019·福州一模)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点,若AF → =5FB →,则直线l 的斜率为________.4. (2019·深圳二调)已知抛物线C :y 2=2px (p >0)上一点P 到焦点F 和到点(2,0)的距离之和的最小值为3,过点F 作斜率为3 的直线l 与抛物线C 及其准线从上到下依次交于点A ,B ,M ,则|AF ||BF | +|AF ||MF |=________.二、 解答题 5. (2019·唐山摸底)斜率为k (k ≠0)的直线l 与抛物线y =x 2交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点.(1) 当x 1+x 2=2时,求k ;(2) 若OB ⊥l ,且|AB |=3|OB |,求|AB |.6. (2019·合肥二模)已知抛物线C :x 2=2py (p >0)上一点M (m ,9)到其焦点F 的距离为10.(1) 求抛物线C 的方程;(2) 设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求|AP |·|BQ |的取值范围.第49讲 解析几何的综合问题课时1 解析几何中的最值、范围问题A 应知应会一、 选择题1. 设A ,B 为椭圆C :x 23 +y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A. (0,1]∪[9,+∞)B. (0,3 ]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0,3 ]∪[4,+∞)2. (2019·襄阳调研)已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若在右支上存在点A 使得点F 2到直线AF 1的距离为2a ,则离心率e 的取值范围是( ) A. [2 ,+∞) B. (2 ,+∞) C. (1,2 ) D. (1,2 ]3. (多选)已知O 是坐标原点,A ,B 是抛物线y =x 2上不同于O 的两点,OA ⊥OB ,则下列结论中正确的是( )A. OA ·OB ≥2B. OA +OB ≥22C. 直线AB 过抛物线y =x 2的焦点D. O 到直线AB 的距离小于等于1二、 解答题4. (2019·安庆二模)已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为22,且过点(2,2 ). (1) 求椭圆C 的标准方程;(2) 设A ,B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.5. (2019·荆州二模)已知椭圆C :x 2a 2 +y 2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为22 . (1) 求椭圆C 的方程;(2) 已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.B 巩固提升一、 填空题1. (2017·全国卷Ⅱ)若a >1,则双曲线x 2a 2 -y 2=1的离心率的取值范围是________. 2. 已知线段|AB |=4,|P A |+|PB |=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值为________.3. 已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若双曲线上存在点P 满足PF 1·PF 2=-a 2,则双曲线离心率的取值范围为________.二、 解答题4. (2019·新乡三模)已知抛物线E :y 2=2px (p >0)的准线与x 轴交于点K ,过点K 作圆C :(x -5)2+y 2=9的两条切线,切点为M ,N ,|MN |=33 .(1) 求抛物线E 的方程;(2) 若直线AB 是过定点Q (2,0)的一条直线,且与抛物线E 交于A ,B 两点,过定点Q 作AB 的垂线与抛物线交于G ,D 两点,求四边形AGBD 面积的最小值.5. (2019·江西质检)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率e =22,过点A (-m ,0),B (m ,0)(m >0)分别作两平行直线l 1,l 2,l 1与椭圆C 相交于M ,N 两点,l 2与椭圆C 相交于P ,Q两点,且当直线l 2过右焦点和上顶点时,四边形MNQP 的面积为163. (1) 求椭圆C 的标准方程;(2) 若四边形MNQP 是菱形,求正数m 的取值范围.课时2 解析几何中的定点、定值问题A 应知应会一、 选择题1. (2019·武汉模拟)曲线x 225 +y 29 =1与曲线x 225-k +y 29-k=1(k <9)的( )A. 长轴长相等B. 短轴长相等C. 离心率相等D. 焦距相等2. 已知直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原点,若直线OA ,OB 的斜率k 1,k 2满足k 1k 2=23,则l 一定过点( ) A. (-3,0) B. (3,0) C. (-1,3) D. (-2,0)3. (2019·德阳模拟)设P 为椭圆C :x 249 +y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A. 24B. 12C. 8D. 6二、 解答题4. (2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1) 当k =0时,分别求C 在点M 和N 处的切线方程;(2) y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.5. 已知椭圆C :x 23+y 2=1,圆O :x 2+y 2=4上一点A (0,2). (1) 过点A 作两条直线l 1,l 2都与椭圆C 相切,求直线l 1,l 2的方程并判断其位置关系;(2) 同学甲:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终相互垂直; 同学乙:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终不垂直. 请判定两个同学观点是否正确,并证明.B 巩固提升一、 填空题1. 过抛物线y 2=8x 上的任意一点为圆心作与直线x +2=0相切的圆,这些圆必过一定点,则定点的坐标是________.2. 设A (x 1,y 1),B ⎝⎛⎭⎫4,95 ,C (x 2,y 2)是右焦点为F 的椭圆x 225 +y 29 =1上三个不同的点,若AF ,BF ,CF 成等差数列,则x 1+x 2=________.二、 解答题3. (2019·烟台一模)已知F 为抛物线C :y 2=2px (p >0)的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,|AB |=4.(1) 求抛物线C 的方程;(2) 若直线AB 与抛物线的准线l 相交于点M ,在抛物线C 上是否存在点P ,使得直线P A ,PM ,PB 的斜率成等差数列?若存在,求出点P 的坐标;若不存在,说明理由.4. (2019·池州期末)已知定点A (-3,0),B (3,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-19,记动点M 的轨迹为曲线C . (1) 求曲线C 的方程;(2) 过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (s ,0),使得直线SP 与SQ 斜率之积为定值?若存在,求出S 的坐标;若不存在,请说明理由.微难点10 解析几何运算中的常用技巧一、 选择题1. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线方程是y =3 x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A. x 236 -y 2108 =1B. x 29 -y 227=1 C. x 2108 -y 236 =1 D. x 227 -y 29=12. 已知椭圆E :x 2a 2 +y 2b 2 =1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A. x 245 +y 236 =1B. x 236 +y 227=1 C. x 227 +y 218 =1 D. x 218 +y 29=13. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),P 为双曲线上任一点,且PF 1·PF 2最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2 ,则该双曲线的离心率的取值范围为( ) A. (1,2 ] B. [2 ,2] C. (0,2 ] D. [2,+∞)二、 填空题4. (2019·清江中学)已知F (2,0)为椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2 ),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.5. 如图,已知椭圆C 的中心为原点O ,F (-25 ,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为________.(第5题)三、 解答题6. 已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)上的点到两个焦点的距离之和为23 ,短轴长为12,直线l 与椭圆C 交于M ,N 两点.(1) 求椭圆C 的方程;(2) 若直线l 与圆O :x 2+y 2=125相切,求证:OM → ·ON → 为定值.7. 已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率e =12,且椭圆C 经过点P (2,3),过椭圆C 的左焦点F 1且不与坐标轴垂直的直线交椭圆C 于A ,B 两点.(1) 求椭圆C 的方程;(2) 设线段AB 的垂直平分线与x 轴交于点G ,求△PF 1G 的面积S 的取值范围.8. 如图,O 为坐标原点,点F 为抛物线C 1:x 2=2py (p >0)的焦点,且抛物线C 1上点P 处的切线与圆C 2:x 2+y 2=1相切于点Q .(1) 当直线PQ 的方程为x -y -2 =0时,求抛物线C 1的方程;(2) 当正数p 变化时,记S 1 ,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.(第8题)。
2018版高考数学(浙江专用文理通用)大一轮复习讲义第九章平面解析几何第5讲Word版含答案
基础巩固题组 (建议用时:40分钟)一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.8解析 当m >4时,m -4=1,∴m =5;当0<m <4时,4-m =1,∴m =3. 答案 C2.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 若x 2m -2+y 26-m=1表示椭圆.则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.答案 B3.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A.36B.13C.12D.33解析 在Rt △PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.故e =2c 2a =|F 1F 2||PF 1|+|PF 2|=33.故选D. 答案 D4.(2015·全国Ⅰ卷)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A.3B.6C.9D.12解析 抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.答案 B5.(2017·东阳调研)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba的值为( ) A.32B.233C.932D.2327解析 设A (x 1,y 1),B (x 2,y 2), 则ax 21+by 21=1,ax 22+by 22=1,即ax 21-ax 22=-(by 21-by 22),by 21-by 22ax 21-ax 22=-1,b (y 1-y 2)(y 1+y 2)a (x 1-x 2)(x 1+x 2)=-1,∴b a ×(-1)×32=-1,∴b a =233,故选B. 答案 B 二、填空题6.(2017·宁波月考)焦距是8,离心率等于0.8. (1)若焦点在x 轴,则椭圆的标准方程为________; (2)若焦点在y 轴,则椭圆的标准方程为________. 解析 由题意知⎩⎪⎨⎪⎧2c =8,c a =0.8,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,∴b =3.当焦点在x 轴上时,椭圆方程为x 225+y 29=1, 当焦点在y 轴上时,椭圆方程为y 225+x 29=1.答案 (1)x 225+y 29=1 (2)y 225+x 29=17.(2017·昆明质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25. ∴点P 的坐标为(-3,0)或(3,0). 答案 (-3,0)或(3,0)8.(2017·温州十校联考)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c2, 又x 2∈,∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.答案 ⎣⎢⎡⎦⎥⎤33,22 三、解答题9.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1. 解得a =7,b 2=4a =28,故a =7,b =2 7.10.(2017·兴义月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.解 (1)由已知得⎩⎪⎨⎪⎧6a 2+2b 2=1,c a =63,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0).由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m ,即D ⎝ ⎛⎭⎪⎫-34m ,14m .因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB , 即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2.此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32,所以△PAB 的面积为S =12|AB |·d =92.能力提升题组 (建议用时:30分钟)11.(2016·高安模拟)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( ) A.12 B.3-12C.32D.3-1解析 设F (-c ,0)关于直线3x +y =0的对称点A (m ,n ),则⎩⎪⎨⎪⎧n m +c ·(-3)=-1,3·⎝ ⎛⎭⎪⎫m -c 2+n 2=0,∴m =c 2,n =32c ,代入椭圆方程可得c 24a2+34c 2b2=1,并把b 2=a 2-c 2代入,化简可得e 4-8e 2+4=0,解得e 2=4±23,又0<e <1,∴e =3-1,故选D. 答案 D12.(2017·绍兴一中质检)已知直线l :y =kx +2过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,55B.⎝ ⎛⎦⎥⎤0,255C.⎝⎛⎦⎥⎤0,355D.⎝⎛⎦⎥⎤0,455解析 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455,解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45, 解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,解得0<e ≤255.故选B.答案 B13.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________. 解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0,即34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈⎝ ⎛⎭⎪⎫-263,263.答案 ⎝ ⎛⎭⎪⎫-263,26314.(2015·安徽卷)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x5b+yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.15.(2017·沈阳质监)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点. (1)若△AF 1F 2的周长为16,求椭圆的标准方程; (2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线PA 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解 (1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2, 解得a 2=25,b 2=16.所以椭圆的标准方程为x 225+y 216=1.(2)法一 由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎪⎫b 2+18a 2x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=0,x 1x 2=-a 2b2b 2+18a2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2, 因为F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2),所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2=⎝ ⎛⎭⎪⎫1+18x 1x 2+9=0.即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8,结合b 2+9=a 2,解得a 2=12,∴e =32.法二 设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得⎩⎪⎨⎪⎧x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1,将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝ ⎛⎭⎪⎫1-x 2012-3⎝ ⎛⎭⎪⎫1-x 2112x 20-x21=-14.即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 故直线PB 的斜率k 2的取值范围是⎝ ⎛⎭⎪⎫18,14.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第二章
第二章 基本初等函数第6讲 函数的概念及其表示方法A 组 应知应会一、 选择题1. (2019·北京一模)已知函数f (x )=x 3-2x ,则f (3)等于( )A. 1B. 19C. 21D. 352. (2019·石家庄二模)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )A BCD3. (2019·厦门质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,-⎝⎛⎭⎫12x ,x >0, 则f (f (log 23))等于( ) A. -9 B. -1C. -13D. -1274. (2019·河南名校段测)设函数f (x )=⎩⎪⎨⎪⎧log 3x ,0<x ≤9,f (x -4),x >9,则f (13)+2f ⎝⎛⎭⎫13 的值为( ) A. 1 B. 0 C. -2 D. 25. (2019·河北衡水)若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4 ,则实数m的取值范围是( )A. (0,4]B. ⎣⎡⎦⎤32,4C. ⎝⎛⎭⎫32,+∞D. ⎣⎡⎦⎤32,3二、 解答题6. (1) 已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(2) 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x )的解析式.7. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1) 求f (g (2))和g (f (2))的值;(2) 求f (g (x ))和g (f (x ))的表达式.B 组 能力提升一、 填空题1. 已知函数f (x )=-x 2+3x +4 ,则函数y =f (x )的定义域为________,函数y =f (2x +1)的定义域为________.2. (2019·南京三模)若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -2),x >0, 则f (log 23)=________. 3. (2018·南阳一模)已知函数y =f (x )满足f (x )=2f ⎝⎛⎭⎫1x +3x ,则f (x )的解析式为________.4. (2018·郴州质量监测)已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (a )=-1成立的a 值是________.二、 解答题5. (1) 已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ).(2) 已知定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg (x +1),求f (x ).6. 对于每个实数x ,设f (x )取y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,用分段函数写出f (x )的解析式,并求f (x )的最大值.第7讲 函数的单调性与最值A 组 应知应会一、 选择题1. (多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件可以断定f (x )为增函数的是( )A. 对任意x ≥0,都有f (x +1)>f (x )B. 对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C. 对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D. 对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0 2. 下列函数中,在区间(-1,1)上为减函数的是( )A. y =11-xB. y =cos xC. y =ln (x +1)D. y =2-x 3. 若函数y =2-x x +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( ) A. (1,2) B. (-1,2) C. [1,2) D. [-1,2)4. (2019·郑州调研)若函数f (x )=x -1x 2 在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( )A. 3116B. 2C. 94D. 1145. (2019·武汉质检)若函数y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A. (-∞,-4)∪[2,+∞)B. (-4,4]C. [-4,4)D. [-4,4]二、 解答题6. 已知f (x )=x x 2+1,判断并证明函数f (x )在区间[-1,0]上的单调性.7. 求下列函数的值域.(1) f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1; (2) y =x -x .B 巩固提升一、填空题1. 函数f (x )=1-2x +1的单调增区间是________. 2. (2019·太原期末)已知函数f (x )=x +1x -1,x ∈[2,5],则f (x )的最大值是________. 3. (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________.4. 已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1 满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2 >0成立,那么实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=1a -1x(a >0,x >0). (1) 求证:f (x )在(0,+∞)上是增函数;(2) 若f (x )在⎣⎡⎦⎤12,2 上的值域是⎣⎡⎦⎤12,2 ,求a 的值.6. 已知函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1) 求f (1)的值;(2) 判断f (x )的奇偶性并证明;(3) 如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.第8讲 函数的奇偶性与周期性课时1 函数奇偶性判定与周期性A 组 应知应会一、 选择题1. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A. y =x 3B. y =ln 1|x |C. y =2|x |D. y =cos x 2. (2019·济宁二模)已知f (x )是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f (x )=x 2+ln x ,则f (2 019)等于( )A. -1B. 0C. 1D. 23. (2019·烟台一模)若函数f (x )是定义在R 上的奇函数,f ⎝⎛⎭⎫14 =1,当x <0时,f (x )=log 2(-x )+m ,则实数m 等于( )A. -1B. 0C. 1D. 24. 已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A. -2B. 2C. -98D. 985. (多选)设函数f (x )的定义域为R,且f ⎝⎛⎭⎫π2 =0,f (0)≠0,若对于任意实数x ,y ,恒有f (x )+f (y )=2f ⎝⎛⎭⎫x +y 2 ·f ⎝⎛⎭⎫x -y 2 ,则下列说法正确的是( )A. f (0)=1B. f (x )=f (-x )C. f (x +2π)=f (x )D. f (2x )=2f (x )-1二、 解答题6. 已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg (2-x ),求函数f (x )的解析式.7. 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],且a +b ≠0时,有f (a )+f (b )a +b>0恒成立. (1) 用定义证明函数f (x )在[-1,1]上是增函数;(2) 解不等式:f ⎝⎛⎭⎫x +12 <f (1-x ).B 组 能力提升一、 填空题1. (2019·日照一模)若函数f (x )=x 2+(3-a )x +1为偶函数,则a =________.2. 设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则当x ∈[1,2]时,f (x )=________.3. (2019·苏州期初调查)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0 为奇函数,则实数a 的值为________.4. (2019·南通、泰州、扬州一调)已知函数f (x )是定义在R 上的奇函数,且f (x +2)=f (x ).当0<x ≤1时,f (x )=x 3-ax +1,则实数a 的值为________.二、 解答题5. 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1) 求f (π)的值;(2) 当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.6. 设f (x )是定义在R 上的奇函数,且对任意实数x 恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1) 求证:f (x )是周期函数;(2) 当x ∈[2,4]时,求f (x )的解析式;(3) 计算f (0)+f (1)+…+f (2 020)的值.课时2 函数性质的应用A 组 应知应会一、 选择题1. (2019·山西考前训练)下列函数中,既是奇函数,又在区间(0,1)内是增函数的是( )A. y =x ln xB. y =x 2+xC. y =sin 2xD. y =e x -e -x2. (2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于 ( )A. -50B. 0C. 2D. 503. (2019·九江二模)已知函数f (x )满足:①对任意x ∈R,f (x )+f (-x )=0,f (x +4)+f (-x )=0成立;②当x ∈(0,2]时,f (x )=x (x -2),则f (2 019)等于( )A. 1B. 0C. 2D. -14. (多选)已知定义在R 上的奇函数y =f (x )和偶函数y =g (x )满足f (x )+g (x )=4x ,下列结论正确的有( )A. f (x )=4x -4-x 2,且0<f (1)<f (2) B. ∀x ∈R,总有[g (x )]2-[f (x )]2=1C. ∀x ∈R,总有f (-x )g (-x )+f (x )g (x )=0D. ∃x 0∈R,使得f (2x 0)>2f (x 0)g (x 0)5. (2019·临沂一模)已知函数g (x )=f (x )+x 2是奇函数,当x >0时,函数f (x )的图象与函数y =log 2x 的图象关于y =x 对称,则g (-1)+g (-2)等于( )A. -7B. -9C. -11D. -13二、 解答题6. 若f (x )是定义在(-1,1)上的奇函数,且x ∈[0,1)时f (x )为增函数,求不等式f (x )+f ⎝⎛⎭⎫x -12 <0的解集.7. 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1).(1) 求f (0)与f (2)的值;(2) 求f (3)的值;(3) 求f (2 021)+f (-2 022)的值.B 组 能力提升一、 填空题1. 已知函数f (x )同时满足条件:①偶函数;②值域为[0,+∞);③周期为2 020,请写出f (x )的一个解析式:______________.2. 已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系是________.3. 设函数f (x )=ln (1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________. 4. 函数f (x )=x 3-3x 2的对称中心是________.二、 解答题5. 若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.6. 设函数f (x )是定义在R 上的奇函数,对任意实数x 都有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1) 证明:y =f (x )是周期函数,并指出其周期;(2) 若f (1)=2,求f (2)+f (3)的值;(3) 若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值.第9讲二次函数与幂函数A组应知应会一、选择题1. 若a=3221⎪⎭⎫⎝⎛,b=3251⎪⎭⎫⎝⎛,c=3121⎪⎭⎫⎝⎛,则a,b,c的大小关系是()A. a<b<cB. c<a<bC. b<c<aD. b<a<c2. 若幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的大致图象是()A BC D3. (2019·安阳模拟)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为()A. 1B. 0C. -1D. 24. 将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为()A. 50元B. 60元C. 70元D. 100元5. (多选)已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题,其中是真命题的是()A. 若a2-b≤0,则f(x)在区间[a,+∞)上是增函数B. 存在a∈R,使得f(x)为偶函数C. 若f(0)=f(2),则f(x)的图象关于x=1对称D. 若a2-b-2>0,则函数h(x)=f(x)-2有2个零点二、解答题6. 已知二次函数f(x)同时满足条件:①对称轴方程是x=1;②f(x)的最大值为15;③f(x)=0的两根立方和等于17.求f(x)的解析式.7. 已知函数f(x)=x2-2tx+1在(-∞,1]上单调递减,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,求实数t的取值范围.B 组 能力提升一、 填空题1. 已知函数f (x )=ax 2-2x -3在区间为(-∞,4)上单调递减,则a 的取值范围是________.2. 若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,则实数a 的取值范围是________.3. 函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,-2≤x <0,x 2-2x -3,0≤x ≤3 的值域是________. 4. 已知二次函数f (x )=ax 2-4x +c +1(a ≠0)的值域为(-∞,1],则1a +4c的最大值是________.二、 解答题5. (1) 已知函数f (x )=4x 2-kx -8在[5,20]上具有单调性,求实数k 的取值范围.(2) 已知关于x 的方程mx 2+2(m +3)x +2m +14=0有两个不同的实根,且一个大于4,另一个小于4,求m 的取值范围.6. 已知函数f (x )=x 2-kx +3.(1) 若f (x )在[-2,2]上存在单调减区间,求k 的取值范围;(2) 从下面三个函数中:①g (x )=mx +5-m ;②h (x )=2x -m ;③r (x )=log 2(3-x )-m ,任选一个函数补充在下列问题中,若m 存在,求m 的取值范围;若不存在,请说明理由.问题:当k =0时,若对任意的x 1∈[1,2],总存在x 2∈[-1,2],使得f (2x 1)=k (x 2)成立.(其中k (x )是你选择的函数)第10讲 指数式与指数函数A 组 应知应会一、 选择题1. (多选)下列结论中不正确的是( )A. 函数f (x )=x x -⎪⎭⎫⎝⎛221的单调增区间为⎝⎛⎭⎫-∞,12 B. 函数f (x )=2x -12x +1为奇函数 C. 函数y =1x +1的单调减区间是(-∞,1)和(1,+∞) D. 1x>1是x <1的必要不充分条件 2. 已知a =243 ,b =425 ,c =2513,则( )A. b <a <cB. a <b <cC. b <c <aD. c <a <b3. 若3x =a ,5x =b ,则45x 等于( )A. a 2bB. ab 2C. a 2+bD. a 2+b 24. (2019·东北三校联考)已知函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A. y =1-xB. y =|x -2|C. y =2x -1D. y =log 2(2x )5. (多选)已知函数f (x )=e x -e -x 2 ,g (x )=e x +e -x 2,则f (x ),g (x )满足( ) A. f (-x )=-f (x ),g (-x )=g (x )B. f (-2)<f (3)C. f (2x )=2f (x )g (x )D. [f (x )]2-[g (x )]2=1二、 解答题6. 已知函数f (x )=⎝⎛⎭⎫12 ax ,a 为常数,且函数的图象过点(-1,2).(1) 求a 的值;(2) 若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.7. 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1) 求f (3)+f (-1);(2) 求f (x )在R 上的解析式;(3) 求不等式-7≤f (x )≤3的解集.B 组 能力提升一、 填空题1. (2019·菏泽九校联考)已知函数f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (32a -1)≥f (-3 ),则a 的最大值是________.2. (2019·石家庄二模)若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则g (-1),f (-2),f (-3)从大到小的顺序是________.3. (2018·苏锡常镇调研)已知函数f (x )=⎩⎪⎨⎪⎧a -e x ,x <1,x +4x,x ≥1 (e 是自然对数的底).若函数y =f (x )的最小值是4,则实数a 的取值范围为________.4. (2019·聊城一模)设函数f (x )=1e x -1+a ,若f (x )为奇函数,则不等式f (x )>1的解集为________.二、解答题5. 已知函数f (x )=b ·a x (a >0,且a ≠1,b ∈R)的图象经过点A (1,6),B (3,24).(1) 设g (x )=1f (x )+3 -16,确定函数g (x )的奇偶性; (2) 若对任意x ∈(-∞,1],不等式⎝⎛⎭⎫a b x≥2m +1恒成立,求实数m 的取值范围.6. 设f (x )=a x +a -x 2 ,g (x )=a x -a -x 2,其中a 为常数,且a >0,a ≠1. (1) 求证:g (5)=g (2)f (3)+f (2)g (3);(2) 试写出一个f (x )和g (x )的函数值满足的等式,使得第(1)问的结论是这个等式的一个特例,并证明它在f (x )和g (x )的公共定义域R 上恒成立;(3) 试再写出一个f (x )和g (x )的函数值满足的等式.第11讲 对数与对数函数A 组 应知应会一、 选择题1. (2019·全国卷Ⅰ) 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a2. (多选)已知函数f (x )=ax 3-1x+b (a >0,b ∈Z),选取a ,b 的一组值计算f (lg a )和f ⎝⎛⎭⎫lg 1a 所得出的结果可以是( )A. 3和4B. -2和5C. 6和2D. -2和23. (2019·枣庄一模)已知2x =5y =t ,1x +1y=2,则t 等于( ) A. 110 B. 1100C. 10D. 100 4. (2019·汕头一模)已知当0<x ≤12时,不等式log a x <-2恒成立,则实数a 的取值范围是( ) A. (2 ,2) B. (1,2 )C. ⎝⎛⎭⎫22,1 D. (0,2 ) 5. (2019·肇庆二模)已知f (x )=lg (10+x )+lg (10-x ),则( )A. f (x )是奇函数,且在(0,10)上是增函数B. f (x )是偶函数,且在(0,10)上是增函数C. f (x )是奇函数,且在(0,10)上是减函数D. f (x )是偶函数,且在(0,10)上是减函数二、 解答题6. 已知函数f (x )=log 4(ax 2+2x +3).(1) 若f (1)=1,求f (x )的单调区间;(2) 若f (x )的最小值为0,求a 的值.7. 已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1) 求函数f (x )的解析式;(2) 解不等式f (x 2-1)>-2.B 组 能力提升一、 填空题1. (2019·南京、盐城一模)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln 2)的值为________.2. (2019·孝义二模)若函数y =log 2(x 2-ax +3a )在[2,+∞)上是增函数,则a 的取值范围是________.3. 若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,a ≠1)在区间⎝⎛⎭⎫12,+∞ 内恒有f (x )>0,则f (x )的单调增区间为________.4. 设函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12 =________, 方程f (f (x ))=1的解集是________. 二、 解答题5. 已知函数f (x )=log a (x +1)(a >0,a ≠1)在区间[1,7]上的最大值比最小值大12,求a 的值.6. 已知函数f (x )=ln (1+x )+ln (a -x )为偶函数,a ∈R .(1) 求a 的值,并讨论f (x )的单调性;(2) 若f ⎝⎛⎭⎫12 <f (lg x ),求x 的取值范围.第12讲函数的图象课时1图象变换及识别A组应知应会一、选择题1. (2019·黄山一模)已知图(1)中的图象对应的函数为y=f(x),则图(2)中的图象对应的函数为()(第1题)A. y=f(|x|)B. y=f(-|x|)C. y=|f(x)|D. y=-f(|x|)2. (2019·厦门质检)函数y=cos x+ln (|x|+1)(x∈[-2π,2π])的图象大致为()A BC D3. (2019·泉州质检)函数f(x)=e|x|2x的部分图象大致为()A BC D4. (2019·长沙月考)函数f(x)=ln (x-1)+ln (x+1)+cos x的大致图象是()A BC D5. (2019·济南一模)若函数f (x )=a x -a -x (a >0)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )A BC D二、解答题6. 如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,求f (x )的解析式.(第6题)7. 已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1) 用分段函数的形式表示该函数;(2) 画出该函数的图象;(3) 写出该函数的值域.B 组 能力提升一、 填空题1. 设函数f (x )=⎩⎪⎨⎪⎧|x +1|,x <1,-x +3,x ≥1, 使得f (x )≥1的自变量x 的取值范围是________. 2. 已知函数f (x )=1x,则y =f (x -1)+1的单调减区间为________. 3. 若函数f (x )=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为________.4. (2019·龙岩质检)已知定义在R 上的可导函数f (x ),g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g (1)=3,g ′(x )=f ′(x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =________.二、 解答题5. 已知函数f (x )=|x |(x -a ),a >0.(1) 作出函数f (x )的图象;(2) 写出函数f (x )的单调区间;(3) 当x ∈[0,1]时,由图象写出f (x )的最小值.6. 设函数f (x )=ax +1x +b(a ,b 为常数),且方程f (x )=32 x 的两个实根分别为x 1=-1,x 2=2.(1) 求y =f (x )的解析式;(2) 证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心.课时2以函数图象为背景的问题A组应知应会一、选择题1. (2019·合肥质检)函数f(x)=x2+x sin x的图象大致为()A BC D2. (2019·芜湖期末)函数f(x)=ln |x+1|x+1的部分图象大致为()A BC D3. (2019·广州一模)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是()(第3题)ABCD4. (多选)函数f (x )=|x |+ax2 (其中a ∈R)的图象可能是( )ABCD二、 填空题5. 已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.6. 若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)=________.(第6题)7. 若函数f (x )=x +1x 的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________.8. (2019·长沙统测)已知f (x )=|e x -1|+1,若函数g (x )=[f (x )]2+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是________.9. 不等式3sin ⎝⎛⎭⎫π2x -log 12x <0的整数解的个数为________.B 组 能力提升一、 选择题 1. (2019·潍坊模拟)函数y =4cos x -e |x |的图象可能是( )ABCD2. (2019·河南省六市联考)设实数a ,b ,c 分别满足a =5-12 ,b ln b =1,3c 3+c =1,则a ,b ,c 的大小关系为( )A. c >b >aB. b >c >aC. b >a >cD. a >b >c3. 已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象成中心对称的点为( )A. (1,0)B. (-1,0)C. ⎝⎛⎭⎫12,0D. ⎝⎛⎭⎫-12,04. 若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为( )(第4题)A. (-∞,-1)B. (-1,2)C. (0,2)D. (1,2)二、 填空题 5. (2019·新余模拟)若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________.6. (2019·荆州三模)已知偶函数f (x )和奇函数g (x )的图象如图所示,若关于x 的方程f (g (x ))=1,g (f (x ))=2的实根个数分别为m ,n ,则m +n =________.(第6题)7. 已知函数f (x )=log a x (a >0且a ≠1)和函数g (x )=sin π2 x ,若f (x )与g (x )的图象有且只有3个交点,则a 的取值范围是________.8. 已知函数f (x )对于任意实数x ∈[a ,b ],当a ≤x 0≤b 时,记|f (x )-f (x 0)|的最大值为D [a ,b ](x 0). (1) 若f (x )=(x -1)2,则D [0,3](2)=________;(2) 若f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≤0,2-|x -1|,x >0, 则D [a ,a +2](-1)的取值范围是________.第13讲 函数与方程A 组 应知应会一、 选择题1. 若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A. (1,3)B. (1,2)C. (0,3)D. (0,2)2. 已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1, 则函数f (x )的零点为( )A. 12 ,0B. -2,0C. 12D. 0 3. 已知函数f (x )=2x +x +1,g (x )=log 2x +x +1,h (x )=log 2x -1的零点依次为a ,b ,c ,则( )A. a <b <cB. a <c <bC. b <c <aD. b <a <c4. 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A. 10个B. 9个C. 8个D. 1个 5. (2019·九江模拟)已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围是( )A. (5,6)B. (7,8)C. (8,9)D. (9,10) 二、 解答题6. 若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.7. 已知函数f (x )=x 2+ax +2,a ∈R .(1) 若不等式f (x )≤0的解集为[1,2],求不等式f (x )≥1-x 2 的解集;(2) 若函数g (x )=f (x )+x 2+1在区间(1,2)上有两个不同的零点,求实数a 的取值范围.B 组 能力提升一、 填空题1. 方程log 2(x -1)=2-log 2(x +1)的解集为________.2. 设f (x )是定义在R 上的偶函数,满足f (x )=f (2-x ),当0≤x ≤1时,f (x )=-x 2+1,方程f (x )=⎝⎛⎭⎫12 |x |在区间[-5,5]内实根的个数为________.3. 在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.4. 设函数f (x )=⎩⎪⎨⎪⎧3x -a ,x <1,π(x -3a )(x -2a ),x ≥1, 若f (x )恰有2个零点,则实数a 的取值范围是________.二、 解答题5. 已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1) 求函数y =f (x )的解析式;(2) 若方程f (x )=a 恰有3个不同的解,求a 的取值范围.6. (2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1) 求证:f ′(x )在区间(0,π)上存在唯一零点; (2) 若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.第14讲数学建模——函数的模型及其应用A组应知应会一、选择题1. 国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A. 3 000元B. 3 800元C. 3 818元D. 5 600元2. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A. 2020年B. 2021年C. 2022年D. 2023年3. (2019·三明联考)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3 010)()A. 3B. 4C. 5D. 64. (2019·安庆二模)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20 min,在乙地休息10 min后,他又以匀速从乙地返回到甲地用了30 min,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A BC D5. (多选)汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,则下列叙述不正确的是()(第5题)A. 消耗1 L汽油,乙车最多可行驶5 kmB. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少C. 甲车以80 km/h的速度行驶1 h,消耗10 L汽油D. 某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油二、解答题6. 网店销售某一品牌的商品,购买人数n是商品标价x的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零;标价为每件225元时,购买人数为75人.若这种商品的成本价是100元/件,网店以高于成本价的相同价格(标价)出售.(1) 网店要获取最大利润,商品的标价应定为每件多少元?(2) 通常情况下,获取最大利润只是一种“理想结果”,如果网店要获得最大利润的75%,那么商品的标价为每件多少元?7. 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:kg)与销售价格x(单位:元/kg)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/kg时,每日可售出该商品11 kg.(1) 求a的值;(2) 若该商品的成本为3元/kg,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.B组能力提升一、填空题1. (2019·唐山联考)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a A (a为常数),广告效应为D=a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a表示)2. (2019·湖北八校联考)某人根据经验绘制了2019年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y(kg)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________kg.(第2题)3. 某公司一年购买某种货物600 t,每次购买x t,运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.4. 根据相关规定,机动车驾驶员血液中的酒精含量大于(等于)20毫克/100毫升时属于醉酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x h,酒精含量降为p毫克/100毫升,且满足关系式p=p0·e rx(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2 h后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过________h方可驾车.(精确到h)二、解答题5. 某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图(1)),B产品的利润与投资额的算术平方根成正比(如图(2)).(注:利润与投资额的单位均为万元)(1) 分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2) 该团队已筹集到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润?最大利润为多少?图(1)图(2)(第5题)6. 某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本p (x )=1600x 2+x +150(万元). (1) 若使每台机器人的平均成本最低,则应买多少台?(2) 现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q (m )=⎩⎪⎨⎪⎧815m (60-m ),1≤m ≤30,480,m >30(单位:件),已知传统人工分拣每人每日的平均分拣量为1 200件,问:引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之多少?(第6题)微难点2 分段函数的研究一、 选择题1. (2019·湖北四地联考)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-7,x <0,log 2(x +1),x ≥0, 若f (a )<1,则实数a 的取值范围是( )A. (-∞,-3)∪[0,1)B. (-3,0)∪(-1,1)C. (-3,1)D. (1,+∞)2. (2019·开封一模)已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3(x 2-1),x ≥2, 若f (a )≥1,则a 的取值范围是( )A. [1,2)B. [1,+∞)C. [2,+∞)D. (-∞,-2]3. (2019·廊坊三模)若函数f (x )=⎩⎪⎨⎪⎧e 2x -2x +a ,x >0,ax +3a -2,x ≤0 在(-∞,+∞)上是单调函数,且f (x )存在负的零点,则a 的取值范围是( )A. ⎝⎛⎭⎫23,1B. ⎝⎛⎦⎤23,32C. ⎝⎛⎦⎤0,32D. ⎝⎛⎭⎫23,+∞4. 已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3, 若存在实数a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是( )A. (21,25)B. (21,24)C. (20,24)D. (20,25)5. (2019·驻马店期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+2,x ≤0,e ax x >0 在[-2,2]上的最大值为3,则实数a 的取值范围是( )A. (ln 3,+∞)B. ⎣⎡⎦⎤0,12ln 3C. ⎝⎛⎦⎤-∞,12ln 3 D. (-∞,ln 3]二、 填空题6. (2019·佛山二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-x 2+2x +1,x <0 (其中e 是自然对数的底数),且函数y=|f (x )|-mx 有两个不同的零点,则实数m 的取值范围是________.7. 设f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1. 若存在x 1,x 2∈R,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.8. (2019·滨州期末)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,x ≤0,|log 2x |,x >0.若方程f (x )=a 恰有4个不同的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23 x 4的取值范围为________.微难点3 由函数的性质求参数范围一、 填空题1. 已知函数f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0, 若f (a -1)+f (a )>0,则实数a 的取值范围是________.2. 若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2-mx ,x >1,⎝⎛⎭⎫4-m 2x +2,x ≤1 是R 上的增函数,则实数m 的取值范围是________.4. 若函数f (x )=ax 2+x +a +1在(-2,+∞)上单调递增,则a 的取值范围是________.5. 已知f (x )=log a (8-3ax )在[-1,2]上是减函数,则实数a 的取值范围是________.6. 已知函数f (x )=ax +1x +2 在区间(-2,+∞)上为增函数,则实数a 的取值范围是________.7. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0, 若f (2-a 2)<f (a ),则实数a 的取值范围是________.二、解答题8. 设定义在[-2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1-m)<f(3m).(1) 若函数f(x)在区间[-2,2]上是奇函数,求实数m的取值范围;(2) 若函数f(x)在区间[-2,2]上是偶函数,求实数m的取值范围.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第三章
第三章 导数及其应用第15讲 导数的几何意义和四则运算A 应知应会一、 选择题1. 已知f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( )A. e 2B. 1C. ln 2D. e2. 若函数f (x )=33x 3+ln x -x ,则曲线y =f (x )在点(1,f (1))处的切线的倾斜角是( ) A. π6 B. π3 C. 2π3 D. 5π63. 已知函数f (x )=ln (x +1)·cos x -ax 在(0,f (0))处的切线倾斜角为45°,则a 等于( )A. -2B. -1C. 0D. 34. (2019·泰安一模)已知函数f (x )满足f ⎝⎛⎭⎫x 2 =x 3-3x ,则函数f (x )的图象在x =1处的切线斜率为( )A. 0B. 9C. 18D. 275. 已知曲线y =sin x 在点P (x 0,sin x 0)(0≤x 0≤π)处的切线为l ,则下列各点中不可能在直线l 上的是( )A. (-1,-1)B. (-2,0)C. (1,-2)D. (4,1)二、 解答题6. 求下列函数的导数.(1) y =5x 3 ; (2) y =1x4 ; (3) y =-2sin x 2 ⎝⎛⎭⎫1-2cos 2x 4 ; (4)y =log 2x 2-log 2x .7. 已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1) 求P 0的坐标;(2) 若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.B 巩固提升一、 填空题1. (2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.2. 已知函数f (x )满足满足f (x )=f ′(1)e x -1-f (0)x +12x 2,则f (x )的解析式为________________.3. (2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是________.4. (2019·厦门一模)在平面直角坐标系xOy 中,已知x 21 -ln x 1-y 1=0,x 2-y 2-2=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为________.二、 解答题5. 已知曲线y =(ax -1)e x 在点A (x 0,y 1)处的切线为l 1,曲线y =1-x e x 在点B (x 0,y 2)处的切线为l 2.若存在x 0∈⎣⎡⎦⎤0,32 ,使得l 1⊥l 2,求实数a 的取值范围.6. 已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1) 求a 的值;(2) 是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.第16讲 导数与函数的单调性A 应知应会一、 选择题1. (2019·福建四校二联)函数f (x )=(x 2-2x )e x 的图象大致是( )A BC D2. 若函数y =f (x )的导函数f ′(x )的图象如图所示,则下列判断中正确的是 ( )(第2题)A. 在区间(-3,1)内f (x )是增函数B. 在区间(1,3)内f (x )是增函数C. 在区间(5,6)内f (x )是增函数D. 在区间(-∞,1)内f (x )是增函数3. (2019·宣城二调)若函数f (x )=43x 3-2ax 2-(a -2)x +5恰好有三个单调区间,则实数a 的取值范围为( )A. [-1,2]B. [-2,1]C. (-∞,-1)∪(2,+∞)D. (-∞,-2)∪(1,+∞)4. 若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为( )A. -1+52B. 1+52C. 1-52D. -1-525. (多选)已知函数f (x )=e x -1,对于满足0<x 1<x 2<e 的任意x 1,x 2,下列结论中正确的是( )A. (x 2-x 1)[f (x 2)-f (x 1)]<0B. x 2f (x 1)>x 1f (x 2)C. f (x 2)-f (x 1)>x 2-x 1D. f (x 1)+f (x 2)2 >f ⎝⎛⎭⎫x 1+x 22二、 解答题 6. (2019·太原一模节选)已知函数f (x )=x 3-32 ax 2(a >0),若函数h (x )=f (x )·e x x 在(0,1)上单调递减,求a 的取值范围.7. (2019·南昌一模)已知函数f (x )=(x +a )e x (x >-3),其中a ∈R .(1) 若曲线y =f (x )在点A (0,a )处的切线l 与直线y =|2a -2|x 平行,求直线l 的方程;(2) 讨论函数y =f (x )的单调性.B 巩固提升一、 填空题1. (2019·泰州一模)已知函数f (x )=2x 4+4x 2,若f (a +3)>f (a -1),则实数a 的取值范围为________.2. 已知函数f (x )的定义域为R,f (0)=2,对任意x ∈R,都有f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________.3. 已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.4. (2019·盐城期中)已知函数f (x )=(x -a )ln x (a ∈R),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=x e x -a ⎝⎛⎭⎫x 22+x (a ∈R),讨论函数f (x )的单调性.6. 已知函数f (x )=e x ln x -a e x (a ∈R).(1) 若f (x )在点(1,f (1))处的切线与直线y =1ex +1垂直,求a 的值; (2) 若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.第17讲 导数与函数的极值、最值A 应知应会一、 选择题1. 函数f (x )=x 3+3x 2+3x -a 的极值点的个数为( )A. 0B. 1C. 2D. 32. (2019·安庆二模)已知函数f (x )=2e f ′(e)ln x -x e(e 是自然对数的底数),则f (x )的极大值为( )A. 2e -1B. -1eC. 1D. 2ln 2 3. 若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( )A. (-5 ,1)B. [-5 ,1)C. [-2,1)D. (-2,1)4. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值是( )A. 1B. 12C. 52D. 225. (多选)设函数f (x )=ax 22e-ln |ax |(a >0),若f (x )有4个零点,则a 的可能取值个数为( ) A. 1 B. 2 C. 3 D. 4二、 解答题6. 已知函数f (x )=e x cos x -x .(1) 求曲线y =f (x )在点(0,f (0))处的切线方程;(2) 求函数f (x )在区间⎣⎡⎦⎤0,π2 上的最大值和最小值.7. (2019·邵阳期末)已知a ∈R,函数f (x )=a x+ln x -1. (1) 当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2) 求f (x )在区间(0,e]上的最小值.B 巩固提升一、 填空题1. 若函数f (x )=12x 2f ′(2)+ln x ,则f (x )的极大值点为________,极大值为________. 2. 已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________.3. (2019·滁州期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3-3x 2+1,x ≥0,e ax +1,x <0 在[-2,2]上的最大值为5,则实数a 的取值范围是________.4. (2019·唐山一模)在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的边,若函数f (x )=13x 3+bx 2+(a 2+c 2-ac )x +1有极值点,则sin ⎝⎛⎭⎫2B -π3 的最小值为________. 二、 解答题5. (2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1) 讨论f (x )的单调性;(2) 当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.6. 解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向问题”.例如:原问题是“若矩形的边长为3和4,则其周长为14”,它的一个“逆向问题”是:“若矩形的周长为14,一边长为3,求另一边长”,也可以是“若矩形的周长为14,求其面积的最大值”等等.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1) 求f (x )在[-1,e](e 为自然对数的底数)上的最大值; (2) 请对(1)提出两个“逆向问题”,并作解答.第18讲生活中的优化问题举例A应知应会一、解答题1. 某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(8≤x≤9)元时,一年的销售量为(10-x)2万件.(1) 求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2) 当每件商品的售价为多少元时,该连锁分店一年的利润L最大?并求出L的最大值.2. 如图所示是一个帐篷,它下部分的形状是一个正六棱柱,上部分的形状是一个正六棱锥,其中帐篷的高为PO,正六棱锥的高为PO1,且PO=3PO1.设PO1=x.(1) 当x=2 m,P A1=4 m时,求搭建的帐篷的表面积;(2) 在P A1的长为定值l m的条件下,已知当且仅当x=23m时,帐篷的容积V最大,求l的值.(第2题)B 巩固提升一、 解答题1. (2019·徐州期中)如图所示是一个半径为2 km,圆心角为π3的扇形游览区的平面示意图,点C 是半径OB 上一点,点D 是圆弧AB 上一点,且CD ∥OA .现在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设∠AOD =x 弧度,广告位出租的总收入为y 元.(1) 求y 关于x 的函数解析式,并指出该函数的定义域;(2) 试问x 为何值时,广告位出租的总收入最大?并求出其最大值.(第1题)2. (2019·盐城期中)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据以往的经验知道,该厂生产这种仪器次品率P 与日产量x (件)之间近似满足关系:P =⎩⎨⎧196-x ,1≤x ≤c ,x ∈N ,1≤c <96,23,x >c ,x ∈N (注:次品率P =次品数总生产量,如P =0.1表示每生产10件产品,约有1件为次品,其余为合格品).已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损A 2元,故厂方希望定出合适的日产量. (1) 试将生产这种仪器每天的盈利额T (元)表示为日产量x (件)的函数;(2) 当日产量x 为多少时,可获得最大利润?微难点4 构造函数研究不等关系一、 选择题1. 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A. [-5,-3]B. ⎣⎡⎦⎤-6,-98 C. [-6,-2] D. [-4,-3] 2. (2019·上饶一模)已知函数f (x )=ln x +a 的导数为f ′(x ),若方程f ′(x )=f (x )的根x 0小于1,则实数a 的取值范围为( )A. (1,+∞)B. (0,1)C. (1,2 )D. (1,3 )3. 已知函数f (x )=x +1x 2 ,g (x )=log 2x +m ,若对x 1∈[1,2],x 2∈[1,4],使得f (x 1)≥g (x 2),则m 的取值范围是( )A. ⎝⎛⎦⎤-∞,-54B. (-∞,2]C. ⎝⎛⎦⎤-∞,34 D. (-∞,0] 二、 填空题4. 设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R,有f (-x )+f (x )=x 2,当x ∈(0, +∞)时,f ′(x )<x .若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为________.5. 已知f (x )是定义在R 上的偶函数,其导函数为f ′(x ),若f ′(x )<f (x ),且f (x +1)=f (3-x ),f (2 019)=2,则不等式f (x )<2e x -1的解集为________.6. 若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为________.三、 解答题7. 已知函数f (x )=(x 2-3x +3)e x ,若不等式f (x )ex +7x -2>k (x ln x -1)(k 为正整数)对任意正实数x 恒成立,求k 的最大值.(参考数据:ln 7≈1.95,ln 8≈2.08)8. 已知函数f (x )=ln x -ax 3,g (x )=a e xe. (1) 若直线y =x 与y =g (x )的图象相切,求实数a 的值;(2) 若存在x 0∈[1,e],使得f (x 0)>(1-3a )x 0+1成立,求实数a 的取值范围.微难点5 利用导数研究函数的零点一、 解答题1. 已知函数f (x )=2e x +ax .(1) 求f (x )的单调区间;(2) 讨论f (x )在(0,+∞)上的零点个数.2. (2019·抚州调研)已知函数f (x )=a 6 x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103 . (1) 求函数f (x )的单调增区间;(2) 若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围.3. 已知函数f (x )=ln x ,g (x )=3x -2a 2x. (1) 求函数F (x )=f (x )-x +2在x ∈[4,+∞)上的最大值;(2) 若函数H (x )=2f (x )-ln [g (x )]在区间⎣⎡⎦⎤12,1 上有零点,求实数a 的取值范围.4. 已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R,e 为自然对数的底数).(1) 当a =1时,求f (x )的单调区间;(2) 若函数f (x )在⎝⎛⎭⎫0,12 上无零点,求a 的最小值.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第7章第37讲直线平面垂直的判定与性质
第七章 立体几何
第七章 立体几何 第37讲 直线、平面垂直的判定与性质
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
栏 目 导 航
第2页
栏目导航
链教材 ·夯基固本 研题型 ·技法通关
第七章 立体几何
高考总复习 一轮复习导学案 ·数学提高版
链教材 ·夯基固本
第15页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
研题型 ·技法通关
第16页
栏目导航
第七章 立体几何
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
分类解析
目标 1 直线与平面垂直的判定与性质 如图,在直三棱柱 ABC-A1B1C1 中,AB=AC=AA1=3,BC=2,D 是 BC
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
【解析】 因为 DD1⊥平面 ABCD,所以 AC⊥DD1.又因为 AC⊥BD,DD1∩BD =D,所以 AC⊥平面 BDD1B1.因为 OM⊂平面 BDD1B1,所以 OM⊥AC.设正方体的棱 长为 2,则 OM= 1+2= 3,MN= 1+1= 2,ON= 1+4= 5,所以 OM2+MN2 =ON2,所以 OM⊥MN.故选 A.
α⊥β,
lα⊂∩ββ,=a,⇒l⊥α
l⊥a
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
ቤተ መጻሕፍቲ ባይዱ
5.常用结论 (1) 过一点有且只有一条直线与已知平面垂直. (2) 过一点有且只有一个平面与已知直线垂直. (3) 若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(不能直接 应用). (4) 若一条直线和两个不重合的平面都垂直,那么这两个平面平行.
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第7章第38讲直线平面平行与垂直的综合问题
第16页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
D为等腰梯形,且AB=2a,AC=a,所以AC⊥BC, 又平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC, 所以BC⊥平面ACEF.
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
4.(必修2P44习题改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O. (1) 若PA=PB=PC,则点O是△ABC的_____外___心. 【 解 析 】 (1) 如 图 (1), 连 接 OA,OB,OC,OP, 在 Rt△POA 、 Rt△POB 和 Rt△POC 中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.
第17页
第4页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
2.如图(1),四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且
MD=NB=1,G为MC的中点,则下列结论中不正确的是
(C)
A.MC⊥AN
B.GB∥平面AMN
C.平面CMN⊥平面AMN
D.平面DCM∥平面ABN
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
(2) 若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________垂心.
【 解 析 】 如 图 (2), 延 长 AO,BO,CO 分 别 交 BC,AC,AB 于 点 H,D,G. 因 为 PC⊥PA,PB⊥PC,PA∩PB = P, 所 以 PC⊥ 平 面 PAB,AB⊂ 平 面 PAB, 所 以 PC⊥AB, 又 AB⊥PO,PO∩PC = P, 所 以 AB⊥ 平 面 PGC, 又 CG⊂ 平 面 PGC, 所 以 AB⊥CG, 即 CG 为 △ABC边AB的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.
【新步步高】2018版高考数学(理)一轮复习第九章解析几何9.7
→ → (3)中证明QA· QB=0.
课时作业
1.(2017· 昆明调研)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴 → → =-12,那么 上,经过F的直线与抛物线C交于A、B两点,如果 OA · OB 抛物线C的方程为 答案
0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物
线C于点Q.
(1)求抛物线C的焦点坐标; (2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,
求出m的值;若不存在,请说明理由.
思维点拨 规范解答 答题模板
考点自测
1.(2016· 四川)抛物线y2=4x的焦点坐标是 A.(0,2) C.(2,0) B.(0,1) D.(1,0)
答案
解析
a ∵对于抛物线y2=ax,其焦点坐标为 ,0 , 4 ∴对于y2=4x,焦点坐标为(1,0).
2.(2016· 甘肃张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与一个定点 F和一条定直线l的距离相等的点的轨迹一定是抛
物线.( × )
(2)方程y=ax2(a≠0)表示的曲线是焦点在 x轴上的抛物线,且其焦点坐 a a 标是( ,0),准线方程是x=- .( × ) 4 4 (3)抛物线既是中心对称图形,又是轴对称图形.( × ) p 2 (4)AB为抛物线y =2px(p>0)的过焦点F( ,0)的弦,若A(x1,y1),B(x2, 2 2 p y2),则x1x2= ,y1y2=-p2,弦长|AB|=x1+x2+p.( √ ) 4
(浙江专用)2021版新高考数学一轮复习第九章平面解析几何5第5讲椭圆教学案
第5讲 椭 圆1.椭圆的定义条件结论1结论2平面内的动点M 与平面内的两个定点F 1,F 2M 点的轨迹为 椭圆F 1、F 2为椭圆的焦点|F 1F 2|为椭圆的焦距|MF 1|+|MF 2|=2a 2a >|F 1F 2|标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:x 轴、y 轴 对称中心:(0,0)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)轴 长轴A 1A 2的长为2a 短轴B 1B 2的长为2b焦距 |F 1F 2|=2c离心率e =ca,e ∈(0,1) a ,b ,c 的关系c 2=a 2-b 2已知点P (x 0,y 0),椭圆x 2a 2+y 2b 2=1(a >b >0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.4.椭圆中四个常用结论(1)P 是椭圆上一点,F 为椭圆的焦点,则|PF |∈[a -c ,a +c ],即椭圆上的点到焦点距离的最大值为a +c ,最小值为a -c .(2)椭圆的通径(过焦点且垂直于长轴的弦)长为2b2a,通径是最短的焦点弦.(3)P 是椭圆上不同于长轴两端点的任意一点,F 1,F 2为椭圆的两焦点,则△PF 1F 2的周长为2(a +c ).(4)设P ,A ,B 是椭圆上不同的三点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为定值-b 2a2.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(5)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ [教材衍化]1.(选修21P40例1改编)若F 1(-3,0),F 2(3,0),点P 到F 1,F 2距离之和为10,则P 点的轨迹方程是( )A.x 225+y 216=1B.x 2100+y 29=1 C.y 225+x 216=1 D.x 225+y 216=1或y 225+x 216=1 解析:选A.设点P 的坐标为(x ,y ),因为|PF 1|+|PF 2|=10>|F 1F 2|=6,所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中a =5,c =3,b =a 2-c 2=4,故点P 的轨迹方程为x 225+y 216=1.故选A.2.(选修21P49A 组T6改编)设椭圆的两个焦点分别为F 1,F 2,过点F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A.22B.2-12C .2- 2 D.2-1解析:选D.设椭圆方程为x 2a 2+y 2b 2=1,依题意,显然有|PF 2|=|F 1F 2|,则b 2a =2c ,即a 2-c 2a=2c ,即e 2+2e -1=0,又0<e <1,解得e =2-1.故选D.[易错纠偏](1)忽视椭圆定义中的限制条件; (2)忽视椭圆标准方程中焦点位置的讨论; (3)忽视点P 坐标的限制条件.1.平面内一点M 到两定点F 1(0,-9),F 2(0,9)的距离之和等于18,则点M 的轨迹是________.解析:由题意知|MF 1|+|MF 2|=18,但|F 1F 2|=18,即|MF 1|+|MF 2|=|F 1F 2|,所以点M 的轨迹是一条线段.答案:线段F 1F 22.椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.解析:当焦点在x 轴上时,10-m >m -2>0,10-m -(m -2)=4,所以m =4.当焦点在y 轴上时,m -2>10-m >0,m -2-(10-m )=4,所以m =8.所以m =4或8.答案:4或83.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0).由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 答案:⎝⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1椭圆的定义及应用(1)(2019·高考浙江卷)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.(2)(2020·杭州模拟)已知F1、F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=________.【解析】(1)如图,取PF的中点M,连接OM,由题意知|OM|=|OF|=2,设椭圆的右焦点为F1,连接PF1.在△PFF1中,OM为中位线,所以|PF1|=4,由椭圆的定义知|PF|+|PF1|=6,所以|PF|=2,因为M为PF的中点,所以|MF|=1.在等腰三角形OMF中,过O作OH⊥MF于点H,所以|OH|=22-⎝⎛⎭⎪⎫122=152,所以k PF=tan∠HFO=15212=15.(2)设|PF1|=r1,|PF2|=r2,则⎩⎪⎨⎪⎧r1+r2=2a,r21+r22=4c2,所以2r1r2=(r1+r2)2-(r21+r22)=4a2-4c2=4b2,所以S△PF1F2=12r1r2=b2=9,所以b=3.【答案】(1)15 (2)3(变条件)本例(2)中增加条件“△PF1F2的周长为18”,其他条件不变,求该椭圆的方程.解:由原题得b2=a2-c2=9,又2a+2c=18,所以a-c=1,解得a=5,故椭圆的方程为x225+y29=1.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的结论椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫作焦点三角形.如图所示,设∠F1PF2=θ.①|PF1|+|PF2|=2a.②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. ③焦点三角形的周长为2(a +c ).④S △PF 1F 2=12|PF 1||PF 2|·sin θ=b 2·sin θ1+cos θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P为短轴端点时,S △PF 1F 2取最大值,为bc .1.(2020·温州模拟)设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积为( )A .4B .6C .2 2D .4 2解析:选A.因为点P 在椭圆上,所以|PF 1|+|PF 2|=6,又因为|PF 1|∶|PF 2|=2∶1,所以|PF 1|=4,|PF 2|=2,又易知|F 1F 2|=25,显然|PF 1|2+|PF 2|2=|F 1F 2|2,故△PF 1F 2为直角三角形,所以△PF 1F 2的面积为12×2×4=4.故选A.2.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________.解析:设动圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,所以动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,所以b 2=48,又焦点C 1、C 2在x 轴上,故所求的轨迹方程为x 264+y 248=1.答案:x 264+y 248=1椭圆的标准方程(1)(2020·金丽衢十二校联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 (2)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的标准方程为________.【解析】 (1)依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. (2)不妨设点A 在第一象限,如图所示.因为AF 2⊥x 轴,所以|AF 2|=b 2.因为|AF 1|=3|BF 1|, 所以B ⎝ ⎛⎭⎪⎫-53c ,-13b 2.将B 点代入椭圆方程,得⎝ ⎛⎭⎪⎫-53c 2+⎝ ⎛⎭⎪⎫-13b 22b 2=1,所以259c 2+b 29=1.又因为b 2+c 2=1,所以⎩⎪⎨⎪⎧c 2=13,b 2=23.故所求的方程为x 2+y 223=1. 【答案】 (1)A (2)x 2+y 223=11.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.解析:设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以P 1,P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎪⎨⎪⎧m =19,n =13.所以所求椭圆方程为x 29+y 23=1. 答案:x 29+y 23=12.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率,则椭圆C 2的方程为________.解析:法一:(待定系数法)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1.法二:(椭圆系法)因椭圆C 2与C 1有相同的离心率,且焦点在y 轴上,故设C 2:y 24+x2=k (k >0),即y 24k +x 2k=1.又2k =2×2,故k =4,故C 2的方程为y 216+x 24=1.答案:y 216+x 24=13.与椭圆x 24+y 23=1有相同离心率且经过点(2,-3)的椭圆的方程为________________.解析:法一:(待定系数法)因为e =c a =a 2-b 2a =1-b 2a 2=1-34=12,若焦点在x 轴上,设所求椭圆方程为x 2m2+y 2n 2=1(m >n >0), 则1-⎝ ⎛⎭⎪⎫n m 2=14.从而⎝ ⎛⎭⎪⎫n m 2=34,n m =32.又4m 2+3n2=1,所以m 2=8,n 2=6.所以方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 2h 2+x 2k 2=1(h >k >0),则3h 2+4k 2=1,且kh =32,解得h 2=253,k 2=254.故所求方程为y 2253+x 2254=1.法二:(椭圆系法)若焦点在x 轴上,设所求椭圆方程为x 24+y 23=t (t >0),将点 (2,-3)代入,得t =224+(-3)23=2.故所求方程为x 28+y26=1. 若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0),代入点(2,-3),得λ=2512,故所求方程为y 2253+x2254=1.答案:y 2253+x 2254=1或x 28+y 26=1椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.主要命题角度有:(1)由椭圆的方程研究其性质; (2)求椭圆离心率的值(范围); (3)由椭圆的性质求参数的值(范围); (4)椭圆性质的应用.角度一 由椭圆的方程研究其性质已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)【解析】 因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4, 所以a =b 2+c 2=5.因为椭圆的焦点在x 轴上, 所以椭圆的左顶点为(-5,0). 【答案】 D角度二 求椭圆离心率的值(范围)(1)(2020·丽水模拟)椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( ) A .e ≤12B .e ≥14C.14≤e ≤12D .0<e ≤14或12≤e <1(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.【解析】 (1)因为椭圆C 上的点P 满足|PF 1|=32|F 1F 2|,所以|PF 1|=32×2c =3c .由a -c ≤|PF 1|≤a +c , 解得14≤c a ≤12.所以椭圆C 的离心率e 的取值范围是⎣⎢⎡⎦⎥⎤14,12. (2)设椭圆的另一个焦点为F 1(-c ,0),如图,连接QF 1,QF ,设QF 与直线y =b cx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ , 又O 为线段F 1F 的中点, 所以F 1Q ∥OM ,所以F 1Q ⊥QF ,|F 1Q |=2|OM |. 在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc,|OF |=c , 可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c2a.由椭圆的定义得|QF |+|QF 1|=2bc a +2c2a=2a ,整理得b =c ,所以a =b 2+c 2=2c , 故e =c a =22. 【答案】 (1)C (2)22角度三 由椭圆的性质求参数的值(范围)已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于( ) A .2 B .2或83C .2或6D .2或8【解析】 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m =2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8. 【答案】 D角度四 椭圆性质的应用(2020·嘉兴质检)如图,焦点在x 轴上的椭圆x 24+y 2b2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.【解析】 设P 点坐标为(x 0,y 0). 由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.【答案】 4(1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式e =ca =1-b 2a2直接求解. ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.1.已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)解析:选B.因为正数m 是2和8的等比中项,所以m 2=16,即m =4,所以椭圆x 2+y 24=1的焦点坐标为(0,±3),故选B.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13解析:选A.以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63,选A.3.椭圆x 24+y 2=1上到点C (1,0)的距离最小的点P 的坐标为________.解析:设点P (x ,y ),则|PC |2=(x -1)2+y 2=(x -1)2+⎝ ⎛⎭⎪⎫1-x 24 =34x 2-2x +2=34⎝⎛⎭⎪⎫x -432+23.因为-2≤x ≤2,所以当x =43时,|PC |min =63,此时点P 的坐标为⎝ ⎛⎭⎪⎫43,53或⎝ ⎛⎭⎪⎫43,-53.答案:⎝ ⎛⎭⎪⎫43,53或⎝ ⎛⎭⎪⎫43,-53[基础题组练]1.已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:选A.因为椭圆x 2m -2+y 210-m=1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.2.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为( )A.33B.13C.23D.63解析:选C.PQ 为过F 1垂直于x 轴的弦,则Q ⎝⎛⎭⎪⎫-c ,b 2a ,△PF 2Q 的周长为36.所以4a =36,a =9.由已知b 2a =5,即a 2-c 2a=5.又a =9,解得c =6,解得c a =23,即e =23.4.(2020·杭州地区七校联考)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2D .2 2解析:选D.设a ,b ,c 分别为椭圆的长半轴长,短半轴长,半焦距,依题意知,当三角形的高为b 时面积最大,所以12×2cb =1,bc =1,而2a =2b 2+c 2≥22bc =22(当且仅当b =c =1时取等号),故选D.5.(2020·富阳二中高三调研)在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=( ) A.34 B.23 C.45D.54解析:选D.椭圆x 225+y 29=1中,a =5,b =3,c =4,故A (-4,0)和C (4,0)是椭圆的两个焦点, 所以|AB |+|BC |=2a =10,|AC |=8,由正弦定理得sin A +sin C sin B =|AB |+|BC ||AC |=108=54.6.若椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2(c 为椭圆的半焦距)有四个不同的交点,则椭圆的离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫55,35B.⎝⎛⎭⎪⎫25,55 C.⎝⎛⎭⎪⎫25,35 D.⎝ ⎛⎭⎪⎫0,55 解析:选A.因为椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2(c 为椭圆的半焦距)的中心都在原点,且它们有四个交点,所以圆的半径⎩⎪⎨⎪⎧b 2+c >bb 2+c <a,由b2+c >b ,得2c >b ,再平方,4c 2>b 2,在椭圆中,a 2=b 2+c 2<5c 2, 所以e =c a >55; 由b2+c <a ,得b +2c <2a , 再平方,b 2+4c 2+4bc <4a 2, 所以3c 2+4bc <3a 2, 所以4bc <3b 2,所以4c <3b , 所以16c 2<9b 2,所以16c 2<9a 2-9c 2,所以9a 2>25c 2,所以c 2a 2<925,所以e <35.综上所述,55<e <35. 7.(2020·义乌模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.解析:由题意可知e =c a =32,2b =4,得b =2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=18.(2020·义乌模拟)已知圆(x -2)2+y 2=1经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个顶点和一个焦点,则此椭圆的离心率e =________.解析:圆(x -2)2+y 2=1经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个顶点和一个焦点,故椭圆的一个焦点为F (1,0),一个顶点为A (3,0),所以c =1,a =3,因此椭圆的离心率为13.答案:139.(2020·瑞安四校联考)椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x=m 与椭圆相交于点A ,B .若△FAB 的周长的最大值是12,则该椭圆的离心率是________.解析:设椭圆的右焦点为F ′,如图,由椭圆定义知,|AF |+|AF ′|=|BF |+|BF ′|=2a .又△FAB 的周长为|AF |+|BF |+|AB |≤|AF |+|BF |+|AF ′|+|BF ′|=4a ,当且仅当AB 过右焦点F ′时等号成立.此时周长最大,即4a =12,则a =3.故椭圆方程为x 29+y 25=1,所以c =2,所以e =c a =23.答案:2310.已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点⎝⎛⎭⎪⎫1,22在椭圆上,且点(-1,0)到直线PF 2的距离为455,其中点P (-1,-4),则椭圆的标准方程为________.解析:设F 2的坐标为(c ,0)(c >0),则kPF 2=4c +1,故直线PF 2的方程为y =4c +1(x -c ),即4c +1x -y -4c c +1=0,点(-1,0)到直线PF 2的距离d =⎪⎪⎪⎪⎪⎪-4c +1-4c c +1⎝ ⎛⎭⎪⎫4c +12+1=4⎝ ⎛⎭⎪⎫4c +12+1=455,即⎝ ⎛⎭⎪⎫4c +12=4,解得c =1或c =-3(舍去),所以a 2-b 2=1.①又点⎝ ⎛⎭⎪⎫1,22在椭圆E 上, 所以1a 2+12b 2=1,② 由①②可得⎩⎪⎨⎪⎧a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.答案:x 22+y 2=111.已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.求该椭圆的标准方程.解:由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1. 12.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B ⎝ ⎛⎭⎪⎫3c 2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2①.又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c 2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1②.由①②解得c 2=1,a 2=3,从而有b 2=2.所以椭圆的方程为x 23+y 22=1.[综合题组练]1.(2020·浙江百校联盟联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( )A.35B.12C.23D.34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即|OC |=bc a,因为四边形FAMN 是平行四边形,所以点M 的坐标为⎝ ⎛⎭⎪⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.2.设A 、B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:选A.依题意得,⎩⎪⎨⎪⎧3m≥tan∠AMB 20<m <3或 ⎩⎪⎨⎪⎧m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3或⎩⎪⎨⎪⎧m3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 3.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|PA |+|PF |的最大值为________,最小值为________.解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|PA |+|PF |=|PA |-|PF 1|+6.利用-|AF 1|≤|PA |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|PA |+|PF |≤6+2,|PA |+|PF |≥6- 2. 故|PA |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+ 2 6- 24.(2020·富阳市场口中学高三期中)如图,已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.解析:连接OQ ,F 1P 如图所示, 由切线的性质,得OQ ⊥PF 2,又由点Q 为线段PF 2的中点,O 为F 1F 2的中点, 所以OQ ∥F 1P ,所以PF 2⊥PF 1, 故|PF 2|=2a -2b , 且|PF 1|=2b ,|F 1F 2|=2c , 则|F 1F 2|2=|PF 1|2+|PF 2|2, 得4c 2=4b 2+4(a 2-2ab +b 2), 解得b =23a .则c =53a ,故椭圆的离心率为53. 答案:535.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知,k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程是x 220+y 210=1.6.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →.(1)求椭圆的方程; (2)求m 的取值范围.解:(1)由题意知椭圆的焦点在y 轴上,可设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆的方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,得⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m . 则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k2x 1x 2=m 2-42+k2,又由AP →=2PB →,即(-x 1,m -y 1)=2(x 2,y 2-m ),得-x 1=2x 2,故⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22, 可得m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22, 整理得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时不符合题意,所以k 2=8-2m29m 2-4>0,解得49<m 2<4,此时Δ>0,解不等式49<m 2<4,得23<m <2或-2<m <-23,所以m 的取值范围为⎝ ⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.。
高2021届高2018级步步高苏教版一轮复习第九章 第9节 第1课时 最值、范围、证明问题
第9节 圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知 识 梳 理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎨⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2.[微点提醒]1.直线与椭圆位置关系的有关结论 (1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.()(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.()(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.()(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=1+t2 |y1-y2|.()解析(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案(1)√(2)×(3)×(4)√2.(选修2-1P71例6改编)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条解析结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).答案 C3.(选修2-1P69例4改编)已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________. 解析 法一 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14, ∴|AB |=y 1+y 2+p =14+2=16.法二 如图所示,过F 作AD 的垂线,垂足为H ,则|AF |=|AD |=p +|AF |sin 60°,即|AF |=p 1-sin 60°=21-sin 60°.同理,|BF |=21+sin 60°,故|AB |=|AF |+|BF |=16.答案 164.(2019·浙江八校联考)抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且这两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则( ) A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0解析 由⎩⎨⎧y =ax 2,y =kx +b ,消去y 得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-b a ,令kx +b=0得x 3=-bk ,所以x 1x 2=x 1x 3+x 2x 3.答案 B5.(2019·唐山市五校联考)直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,M 是线段AB 的中点,若l 与OM (O 是原点)的斜率的乘积等于1,则此双曲线的离心率为( ) A.3B.2C. 3D. 2解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),把A ,B 两点坐标分别代入双曲线的方程,得⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,又⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22,所以x 0a 2=y 0(y 1-y 2)b 2(x 1-x 2),所以b 2a 2=y 0(y 1-y 2)x 0(x 1-x 2)=k OM k l =1,所以e 2=1+b 2a 2=2,又e >1,所以e = 2. 答案 D6.(2019·岳阳二模)已知抛物线y =ax 2(a >0)的准线为l ,l 与双曲线x 24-y 2=1的两条渐近线分别交于A ,B 两点,若|AB |=4,则a =________.解析 抛物线y =ax 2(a >0)的准线l :y =-14a ,双曲线x 24-y 2=1的两条渐近线分别为y =12x ,y =-12x ,可得x A =-12a ,x B =12a ,可得|AB |=12a -⎝ ⎛⎭⎪⎫-12a =4,解得a =14.答案 14第1课时 最值、范围、证明问题考点一 最值问题多维探究角度1 利用几何性质求最值【例1-1】 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A.9,12 B.8,11 C.8,12D.10,12解析 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.答案 C角度2 利用基本不等式或二次函数求最值【例1-2】 (2018·郑州二模)已知动圆E 经过点F (1,0),且和直线l :x =-1相切. (1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B ,C 两点,求△ABC 面积的最大值.解 (1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,∴动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x . (2)设直线l ′的方程为y =x +m ,其中-3<m <0,C (x 1,y 1),B (x 2,y 2), 联立得方程组⎩⎨⎧y =x +m ,y 2=4x消去y ,得x 2+(2m -4)x +m 2=0, Δ=(2m -4)2-4m 2=16(1-m )>0恒成立. 由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,∴|CB |=42(1-m ), 点A 到直线l ′的距离d =3+m2, ∴S △ABC =12×42(1-m )×3+m 2=21-m ×(3+m ),令1-m =t ,t ∈(1,2),则m =1-t 2, ∴S △ABC =2t (4-t 2)=8t -2t 3, 令f (t )=8t -2t 3,∴f ′(t )=8-6t 2,令f ′(t )=0,得t =23(负值舍去). 易知y =f (t )在⎝⎛⎭⎪⎫1,23上单调递增,在⎝ ⎛⎭⎪⎫23,2上单调递减. ∴y =f (t )在t =23,即m =-13时取得最大值为3239.∴△ABC 面积的最大值为3239.规律方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何方法,即通过利用 圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数表达式表示为某个(些)变量的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练1】 已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12. (1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值. 解 (1)由已知,得|PF 1|+|PF 2|=2a ,① |PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,②12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,③联立①②③解得a 2-c 2=3.又c a =12,∴c 2=1,a 2=4,b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1.(2)根据题意可知直线MN 的斜率存在,且不为0. 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 代入椭圆方程,整理得(3m 2+4)y 2-24my +36=0, 则Δ=(24m )2-4×36×(3m 2+4)>0,所以m 2>4. y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4,则△MNF 1的面积S △MNF 1=|S △NTF 1-S △MTF 1| =12|TF 1|·|y 1-y 2|=32(y 1+y 2)2-4y 1y 2=32⎝⎛⎭⎪⎫24m3m2+42-1443m2+4=18m2-44+3m2=6×1m2-4+163m2-4=6×1m2-4+163m2-4≤62163=334.当且仅当m2-4=163m2-4,即m2=283时(此时适合Δ>0的条件)取得等号.故△MNF1面积的最大值为334.考点二范围问题【例2】(2018·浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x 上存在不同的两点A,B满足P A,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+y24=1(x<0)上的动点,求△P AB面积的取值范围.(1)证明设P(x0,y0),A⎝⎛⎭⎪⎫14y21,y1,B⎝⎛⎭⎪⎫14y22,y2.因为P A,PB的中点在抛物线上,所以y1,y2为方程⎝⎛⎭⎪⎫y+y022=4·14y2+x02,即y2-2y0y+8x0-y20=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)解由(1)可知⎩⎨⎧y1+y2=2y0,y1y2=8x0-y20,所以|PM|=18(y21+y22)-x0=34y2-3x0,|y 1-y 2|=22(y 20-4x 0).因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 24=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练2】 (2019·南昌调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围. 解 (1)由题知e =c a =32,2b =2, 又a 2=b 2+c 2,∴b =1,a =2, ∴椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0, 依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2. 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0, 化简得m 2+k 2=54,② 由①②得0≤m 2<65,120<k 2≤54. ∵原点O 到直线l 的距离d =|m |1+k 2, ∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147. 考点三 证明问题【例3】 (2018·全国Ⅲ卷)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差. (1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .① 由于点M (1,m )(m >0)在椭圆x 24+y 23=1内, ∴14+m 23<1,解得0<m <32,故k <-12. (2)解 由题意得F (1,0).设P (x 3,y 3), 则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34, 从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB →|=2-x 22.所以|F A →|+|FB→|=4-12(x 1+x 2)=3. 故2|FP →|=|F A →|+|FB →|, 即|F A →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|F A →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.② 将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0. 故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128. 规律方法 圆锥曲线中的证明问题常见的有:(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等. (2)数量关系方面的:如存在定值、恒成立、相等等.在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明.【训练3】 (2019·唐山模拟)如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM=∠BNM .(1)解 设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). 因为|MN |=3,所以r 2=⎝ ⎛⎭⎪⎫322+22=254.所以r =52,圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -522=254.(2)证明 把x =0代入方程(x -2)2+⎝ ⎛⎭⎪⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4).①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. 所以k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x2=1x 1x 2⎝ ⎛⎭⎪⎫-12k 1+2k 2+12k 1+2k 2=0. 所以∠ANM =∠BNM . 综合①②知∠ANM =∠BNM .基础巩固题组 (建议用时:40分钟)一、选择题1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( ) A.1B.2C.1或2D.0解析 由直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的渐近线y =ba x 平行,故直线与双曲线的交点个数是1. 答案 A2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),斜率为1的直线与C 交于两点A ,B ,若线段AB 的中点为(4,1),则双曲线C 的渐近线方程是( ) A.2x ±y =0 B.x ±2y =0 C.2x ±y =0D.x ±2y =0解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2-y 21b 2=1①,x 22a 2-y 22b 2=1②,由①-②得(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,结合题意化简得4b 2a 2=1,即b a =12,所以双曲线C 的渐近线方程为x ±2y =0. 答案 B3.抛物线y =x 2上的点到直线x -y -2=0的最短距离为( ) A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时, d min =728.答案 B4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( )A.2B.3C.6D.8解析 由题意得F (-1,0),设点P (x 0,y 0), 则y 20=3⎝⎛⎭⎪⎫1-x 204(-2≤x 0≤2).OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14·(x 0+2)2+2. 因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值,最大值为6.答案 C5.(2019·石家庄一模)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为6,则|AB |=( ) A.6B.8C.12D.16解析 由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),易知当直线AB 垂直于x 轴时,△AOB 的面积为2,不满足题意,所以可设直线AB 的方程为y =k (x -1)(k ≠0),与y 2=4x 联立,消去x 得ky 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4k ,y 1y 2=-4, 所以|y 1-y 2|=16k 2+16,所以△AOB 的面积为12×1×16k 2+16=6,解得k =±2,所以|AB |=1+1k 2|y 1-y 2|=6. 答案 A 二、填空题6.抛物线C :y 2=2px (p >0)的准线与x 轴的交点为M ,过点M 作C 的两条切线,切点分别为P ,Q ,则∠PMQ =________.解析 由题意得M ⎝ ⎛⎭⎪⎫-p 2,0,设过点M 的切线方程为x =my -p 2,代入y 2=2px 得y 2-2pmy +p 2=0,∴Δ=4p 2m 2-4p 2=0,∴m =±1,则切线斜率k =±1,∴MQ ⊥MP ,因此∠PMQ =π2. 答案 π27.(2019·太原一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为________.解析 由过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得ba <2. ∴e =c a =a 2+b 2a 2<1+4=5,∵e >1,∴1<e <5,∴此双曲线离心率的取值范围为(1,5). 答案 (1,5)8.(2018·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △ABQ S △ABO=________.解析 设直线OP 的方程为y =kx (k ≠0), 联立得⎩⎨⎧y =kx ,y 2=2px ,解得P ⎝ ⎛⎭⎪⎫2p k 2,2p k ,联立得⎩⎨⎧y =kx ,y 2=8px ,解得Q ⎝ ⎛⎭⎪⎫8p k 2,8p k ,∴|OP |=4p 2k 4+4p 2k 2=2p 1+k 2k 2,|PQ |=36p 2k 4+36p 2k 2=6p 1+k 2k 2,∴S △ABQ S △ABO =|PQ ||OP |=3.答案 3 三、解答题9.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB→⊥BC →,AD →∥OC →,连接AC 交DE 于点P ,求证:|PD |=|PE |.(1)解 由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23, 所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1. (2)证明 由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1), 由AD →∥OC →可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2. 所以直线AC 的方程为:y -02y 0x 0+2-0=x +22-(-2).整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,所以P 为DE 的中点,|PD |=|PE |.10.如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 由题意知m ≠0,可设直线AB 的方程为 y =-1m x +b ,A (x 1,y 1),B (x 2,y 2),AB 中点为M , 由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y , 得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①则x 1+x 2=4mb m 2+2,y 1+y 2=2m 2bm 2+2,(1)将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2,②由①②得m <-63或m >63.故实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞.(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝ ⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22.当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.能力提升题组 (建议用时:20分钟)11.(2019·开封一模)已知抛物线M :y 2=4x ,过抛物线M 的焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),且交抛物线的准线于点E .若AE →=2BE →,则直线l 的斜率为( ) A.3B.2 2C. 3D.1解析 分别过A ,B 两点作AD ,BC 垂直于准线,垂足分别为D ,C , 由AE→=2BE →,得B 为AE 的中点,∴|AB |=|BE |, 则|AD |=2|BC |,由抛物线的定义可知|AF |=|AD |,|BF |=|BC |, ∴|AB |=3|BC |,∴|BE |=3|BC |,则|CE |=22|BC |, ∴tan ∠CBE =|CE ||CB |=22,∴直线l 的斜率k =tan ∠AFx =tan ∠CBE =2 2. 答案 B12.已知抛物线y 2=4x ,过其焦点F 的直线l 与抛物线分别交于A ,B 两点(A 在第一象限内),AF →=3 FB →,过AB 的中点且垂直于l 的直线与x 轴交于点G ,则△ABG 的面积为( ) A.839B.1639C.3239D.6439解析 设A (x 1,y 1),B (x 2,y 2),因为AF→=3FB →,所以y 1=-3y 2,设直线l 的方程为x =my +1, 由⎩⎨⎧y 2=4x ,x =my +1消去x 得y 2-4my -4=0,∴y 1y 2=-4,∴⎩⎨⎧y 1=23,y 2=-233,∴y 1+y 2=4m =433, ∴m =33,∴x 1+x 2=103,AB 的中点坐标为⎝ ⎛⎭⎪⎫53,233,过AB 中点且垂直于直线l 的直线方程为y -233=-33⎝ ⎛⎭⎪⎫x -53,令y =0,可得x =113,所以S △ABG =12×⎝ ⎛⎭⎪⎫113-1×⎝ ⎛⎭⎪⎫23+233=3239. 答案 C13.(一题多解)(2018·全国Ⅲ卷)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析 法一 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y =k (x -1)(k ≠0),由⎩⎨⎧y =k (x -1),y 2=4x ,消去y 得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由⎩⎨⎧y =k (x -1),y 2=4x ,消去x 得y 2=4⎝ ⎛⎭⎪⎫1k y +1,即y 2-4k y -4=0,则y 1+y 2=4k ,y 1y 2=-4,则∠AMB =90°,得MA →·MB→=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k 2,x 1x 2=1与y 1+y 2=4k ,y 1y 2=-4代入,得k =2.法二 设抛物线的焦点为F ,A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,所以y 21-y 22=4(x 1-x 2),则k =y 1-y 2x 1-x 2=4y 1+y 2,取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,又∠AMB =90°,点M 在准线x =-1上,所以|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|).又M ′为AB 的中点,所以MM ′平行于x 轴,且y 0=1,所以y 1+y 2=2,所以k =2. 答案 214.(2018·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 解 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59, 又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍,可得|PM |=2|PQ |, 从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎨⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4. 由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0, 解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.。
2021届高考数学一轮复习新人教A版教学案:第九章平面解析几何创新引领微课盘点优化解析几何中的方略
姓名,年级:时间:盘点优化解析几何中的方略技法微点聚焦突破技法一巧用定义,揭示本质定义是导出其性质的“发源地”,解题时,善于运用圆锥曲线的定义,以数形结合思想为指导,把定量分析有机结合起来,可使解题计算量大为简化.【例1】如图,F1,F2是椭圆C1:错误!+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点。
若四边形AF1BF2为矩形,则C2的离心率是( )A。
错误! B.错误! C.错误! D.错误!解析焦点F1(-错误!,0),F2(错误!,0),在Rt△AF1F2中,|AF1|+|AF2|=4,①|AF1|2+|AF2|2=12,②联立①②可解得|AF2|-|AF1|=2错误!,即2a =22,又2c=2错误!,故双曲线的离心率e=错误!=错误!=错误!,故选D.答案D思维升华本题巧妙运用椭圆和双曲线的定义建立|AF1|,|AF2|的等量关系,从而快速求出双曲线的实轴长,进而求出双曲线的离心率,大大减小了运算量.【训练1】抛物线y2=4mx(m>0)的焦点为F,点P为该抛物线上的动点,若点A(-m,0),则错误!的最小值为________.解析设点P的坐标为(x P,y P),由抛物线的定义,知|PF|=x P+m,又|PA|2=(x P+m)2+y错误!=(x P+m)2+4mx P,则错误!错误!=错误!=错误!≥错误!=错误! (当且仅当x P=m时取等号),所以错误!≥错误!,所以错误!的最小值为错误!。
答案错误!技法二设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程时,常常用代点法求解。
【例2】已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且它们的斜率之积为-2。
(1)求动点M的轨迹方程;(2)若过点N错误!的直线l交动点M的轨迹于C,D两点,且N为线段CD的中点,求直线l的方程.解(1)设M(x,y),因为k AM·k BM=-2,所以错误!·错误!=-2(x≠±1),化简得2x2+y2=2(x≠±1),即为动点M的轨迹方程.(2)设C(x1,y1),D(x2,y2)。
高考数学一轮复习 第九章 解析几何 9.7 抛物线学案(文,含解析)新人教A版
学习资料9.7 抛物线必备知识预案自诊知识梳理 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的 的点的轨迹叫做抛物线。
点F 叫做抛物线的 ,直线l 叫做抛物线的 .F 在定直线l 上,则动点的轨迹为过点F 且垂直于l 的一条直线。
2。
抛物线的几何性质Fp2,0 F —p2,0 F 0,p 2F 0,-p 2e=1。
设AB 是过抛物线y 2=2px (p>0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),如图所示,则 (1)x 1x 2=p 24,y 1y 2=-p 2;(2)弦长|AB|=x 1+x 2+p=2psin 2α(α为弦AB 所在直线的倾斜角);(3)以弦AB 为直径的圆与准线相切;(4)S △AOB =p 22sinα(α为弦AB 所在直线的倾斜角); (5)∠CFD=90°。
2.抛物线y 2=2px (p 〉0)的通径长为2p 。
考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线. ( ) (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切. ( ) (3)若一抛物线过点P (—2,3),则其标准方程可写为y 2=2px (p 〉0). ( ) (4)抛物线既是中心对称图形,又是轴对称图形。
( )(5)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是a,0.4()2.(2020天津河北区线上测试,5)已知抛物线y2=4x与x2=2py(p>0)的焦点间的距离为2,则p的值为()A。
2√3B。
4 C.6 D.123。
(2020北京,7)设抛物线的顶点为O,焦点为F,准线为l。
P是抛物线上异于O 的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A。
经过点O B。
经过点PC。
平行于直线OP D.垂直于直线OP4。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第一章
第1讲 集合及其运算A 应知应会一、 选择题 1. (2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B 等于( ) A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 2. (2019·全国卷Ⅲ)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B 等于( ) A. {-1,0,1} B. {0,1} C. {-1,1} D. {0,1,2} 3. (2019·宁德质检)已知集合A ={x |x ≥1},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A. {x |1≤x <3} B. {x |x >-1} C. {x |1<x <3} D. {x |x ≥1}4. (多选)设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A. 15B. 0C. 3D. 135. (多选)给出下列关系,其中正确的选项是( ) A. ∈{{}} B. ⊆{{}} C. ∈{} D. ⊆{}二、 解答题6. 已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求实数a ,b 的值.7. 若A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (1) 若A =B ,求a 的值;(2) 若B ∩A ≠,C ∩A =,求a 的值.∅∅∅∅∅∅∅∅∅∅B 巩固提升一、 填空题 1. (2018·南通模拟)已知集合A ={0,e x },B ={-1,0,1},若A ∪B =B ,则x =________. 2. (2018·青岛模拟)设集合A ={x |(x +3)(x -6)≥0},B =⎩⎨⎧⎭⎬⎫x |2x ≤14 ,则(∁R A )∩B =________.3. (2019·张家口期末)已知全集U =Z,A ={x |x =3n -1,n ∈Z},B ={x ||x |>3,x ∈Z},则A ∩(∁U B )中元素的个数为________.4. (2019·深圳调研)已知集合M ={x |x >0},N ={x |x 2-4≥0},则M ∪N =________. 二、 解答题5. 设集合U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.6. 已知全集S ={1,3,x 3+3x 2+2x },A ={1,|2x -1|},如果∁S A ={0},则这样的实数x 是否存在?若存在,请说明理由.第2讲 充分条件与必要条件A 应知应会一、 选择题1. 设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 2. (2019·淄博诊断)若a ,b ∈R,则“|a |+|b |>1”是“|a +b |>1”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知直线b 和平面α,则“b α”是b 与α平行的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. (2019·江西九校联考)已知命题p :A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -21-x ≤0 ,命题q :B ={x |x -a <0},若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. (-∞,1)D. (-∞,1]5. “a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6. (2019·烟台一模)已知a ,b ∈R,则“ab >0”是“b a +ab >2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. (2019·济宁一模)将函数f (x )=sin (2x +φ)的图象向左平移π6 个单位长度后,得到函数g (x )的图象,则“φ=π6”是“g (x )为偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. (2019·枣庄一模)设a ,b 都是不等于1的正数,则“0<b <a <1”是“log a 3<log b 3”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件二、 解答题9. 已知p :(x -m )2>3(x -m ),q :x 2+3x -4<0.若p 是q 的必要不充分条件,求实数m 的取值范围.⊂B巩固提升一、填空题1. (2019·合肥质检)若“x>2”是“x>m”的必要不充分条件,则m的取值范围是________.2. “|x|<3”是“x2-x-6<0”的________条件.3. 设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行”的________条件.4. (2019·郴州三模)已知p:x2-3x-4≤0;q:x2-6x+9-m2≤0,若非q是非p的充分不必要条件,则实数m的取值范围是________.二、解答题5. (2020·江苏八校联考)已知集合A={x|y=log2(-4x2+15x-9),x∈R},B={x||x-m|≥1,x∈R}.(1) 求集合A;(2) 若p:x∈A,q:x∈B,且p是q的充分不必要条件,求实数m的取值范围.6. 已知数列{a n}的前n项和S n=3n+t(n∈N*).求证:数列{a n}是等比数列的充要条件是t=-1.第3讲全称量词和存在量词A应知应会一、选择题1. (多选)下列命题中是全称命题并且是假命题的是()A. π是无理数B. 若2x为偶数,则任意x∈NC. 对任意x∈R,x2+2x+1>0D. 所有菱形的四条边都相等2. (2019·南昌调研)下列命题中的假命题是( ) A. 存在x 0∈R,lg x 0=1 B. 存在x 0∈R,sin x 0=0 C. 任意x ∈R,x 3>0 D. 任意x ∈R,2x >03. 命题“任意n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A. 任意n ∈N *,f (n )∉N *且f (n )>n B. 任意n ∈N *,f (n )N *或f (n )>n C. 存在n 0∈N *,f (n 0)N *且f (n 0)>n 0 D. 存在n 0∈N *,f (n 0)N *或f (n 0)>n 04. (2019·中原名校联盟)已知命题“x ∈R,4x 2+(a -2)x +14 ≤0”是假命题,则实数a 的取值范围为( )A. (-∞,0)B. [0,4]C. [4,+∞)D. (0,4)5. 若命题p :x 0∈⎣⎡⎦⎤0,π4 ,sin 2x 0+cos 2x 0<a 是假命题,则实数a 的取值范围是( )A. (-∞,1]B. (-∞,2 ]C. [1,+∞)D. [2 ,+∞) 二、 解答题6. 判断下列命题的真假.(1) 已知a ,b ,c ,d ∈R,若a ≠c 或b ≠d ,则a +b ≠c +d ; (2) ∀x ∈N,x 3>x 2;(3) 若m >1,则方程x 2-2x +m =0无实数根; (4) 存在一个三角形没有外接圆.7. 已知命题“∀x ∈R,x 2-5x +152a >0”的否定为假命题,求实数a 的取值范围.∉∉∉∃∃B 巩固提升一、 填空题1. 若命题p :x ∈⎣⎡⎦⎤12,2 ,使得2x 2-λx +1<0成立,则非p 为_______________. 2. 若命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________. 3. 若命题“t ∈R, t 2-2t -a <0”是假命题,则实数a 的取值范围是________.4. 已知函数f (x )=x +4x ,g (x )=2x +a ,若任意x 1∈⎣⎡⎦⎤12,1 ,存在x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________. 二、 解答题5. 已知函数f (x )=x 2-2ax +5(a >1).若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.6. 已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意x ∈[1,2],都有f (x )>g (x )恒成立,求实数a 的取值范围;(2) 对任意x 1∈[1,2],x 2∈[2,4],都有f (x 1)>g (x 2)恒成立,求实数a 的取值范围.∃∃第4讲 不等式的性质、一元二次不等式一、 选择题1. (2019·南昌模拟)下列三个不等式:①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0);③a +m b +m>ab(a ,b ,m >0且a <b ),恒成立的个数为( ) A. 3 B. 2 C. 1 D. 02. (多选)已知a ,b ,c ,d 均为实数,则下列命题中正确的是( ) A. 若ab >0,bc -ad >0,则c a -db >0B. 若ab >0,c a -db >0,则bc -ad >0C. 若bc -ad >0,c a -db>0,则ab >0D. 若a >b >0,c >d >0,则ac >bd3. (多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),下列判断正确的是( ) A. 若不等式的解集为{x |x <-3或x >-2},则k =-25B. 若不等式的解集为⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠1k ,则k =66C. 若不等式的解集为R,则k <-66 D. 若不等式的解集为,则k ≥664. (2019·黄冈联考)若关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( )A. (-∞,1)∪(2,+∞)B. (-1,2)C. (1,2)D. (-∞,-1)∪(2,+∞)5. (2019·合肥模拟)若不等式2kx 2+kx -38 <0对一切实数x 都成立,则k 的取值范围为( )A. (-3,0)B. [-3,0)C. [-3,0]D. (-3,0] 二、 解答题6. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式ax 2-bx +c >0的解集.7. 若对于满足0≤p ≤3的任意实数p ,不等式x 2+2px >4x +p -3恒成立,求x 的取值范围.∅B 巩固提升一、 填空题1. 不等式4x -2x +2>0的解集为________.2. 若关于x 的不等式kx 2-6kx +k +8<0的解集为空集,则实数k 的取值范围为________.3. 已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集为________.4. 已知集合A ={x |x 2+a ≤(a +1)x ,a ∈R},∃a ∈R,使得集合A 中所有整数的元素和为28,则a 的取值范围是________.二、 解答题5. 若不等式ax 2+5x -2>0的解集是⎩⎨⎧⎭⎬⎫x |12<x <2 .(1) 求实数a 的值;(2) 求不等式ax 2-5x +a 2-1>0的解集.6. 已知f (x )=x 2-2ax +2(a ∈R),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.第5讲 基本不等式一、 选择题1. (多选)有下面四个不等式,其中恒成立的有( ) A.a +b2≥ab B. a (1-a )≤14C. a 2+b 2+c 2≥ab +bc +caD. b a +ab≥2 2. (多选)下列四个函数中,最小值为2的是( ) A. y =sin x +1sin x ⎝⎛⎭⎫0<x ≤π2 B. y =ln x +1ln x (x >0,x ≠1)C. y =x 2+6x 2+5D. y =4x +4-x3. 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A. 9B. 12C. 18D. 244. (2019·豫南九校一联)若a >0,b >0,且2a +b =4,则1ab 的最小值为( )A. 2B. 12C. 4D. 145. (2019·济宁期末)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过定点(a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( )A. ⎝⎛⎭⎫0,14B. ⎝⎛⎦⎤0,14C. ⎝⎛⎭⎫-∞,14D. ⎝⎛⎦⎤-∞,14 二、 解答题6. (2019·黄山质检)已知f (x )=x 2+3x +6x +1 (x >0),求f (x )的最小值.7. 已知lg 3x +lg y =lg (x +y +1). (1) 求xy 的最小值; (2) 求x +y 的最小值.B 巩固提升一、 填空题1. (2017·山东卷)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.2. (2017·天津卷)若a ,b ∈R,ab >0,则a 4+4b 4+1ab 的最小值为________.3. 若a >0,b >0,且12a +b +1b +1=1,则a +2b 的最小值为________.4. 已知a ,b 均为正数,且ab -a -2b =0,则a 2 +b 的最小值为________,a 24 -2a +b 2-1b的最小值为________.二、 解答题5. (1) 设x 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. (2) 若a ,b 均为大于1的正数,且ab =10,求lg a ·lg b 的最大值.6. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30 m,其中大圆弧所在圆的半径为10 m .设小圆弧所在圆的半径为x m,圆心角为θ(弧度).(1) 求y 关于x 的函数关系式;(2) 已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值.(第6题)微难点1 “三个二次”关系一、 选择题1. 若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( )A. (-∞,1)B. (1,+∞)C. (-∞,1]D. [1,+∞)2. 若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( )A. 在(-∞,2]上单调递减,在(2,+∞)上单调递增B. 在(-∞,3)上单调递增C. 在[1,3]上单调递增D. 单调性不能确定二、 填空题3. (2019·南昌质检)若二次函数f (x )=ax 2-x +b (a ≠0)的最小值为0,则a +4b 的取值范围是________.4. 已知函数f (x )=x 2+abx +a +2b .若f (0)=4,则f (1)的最大值为________.5. 已知二次函数f (x )=ax 2-x +c (x ∈R)的值域为[0,+∞),则c +2a +a +2c的最小值为________.6. 已知函数f (x )=x 2-2|x |+4的定义域为[a ,b ],其中a <b ,值域为[3a ,3b ],则满足条件的数组(a ,b )为________.三、 解答题7. 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,求x 的取值范围.8. 已知函数f (x )=ax 2+2x +c 的零点为-13 ,12. (1) 试求a +c 的值;(2) 解不等式-cx 2+2x -a >0.9. 设a ∈R,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两实数根x 1,x 2,且0<x 1<1<x 2<2,求a 的取值范围.10. 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1) 若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2) 在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第9章第51讲课时1一元线性回归模型及其应用
第13页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
下表数据是退水温度 x(℃)对黄酮延长性 y(%)效应的试验结果,y 是以延
长度计算的,且对于给定的 x,y 为正态变量,其方差与 x 无关.
x(℃) 300 400 500 600 700 800
y(%) (1)画出散点图;
40 50 55 60 67 70
第17页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
(4)估计退水温度是1 000 ℃时,黄酮延长性的情况. 【解答】将x=1 000代入回归方程得 y=0.058 86×1 000+24.627=83.487, 即退水温度是1 000 ℃时,黄酮延长性大约是83.487%.
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关
【解析】 由图(1)可知,各点整体呈递减趋势,x与y负相关;由图(2)可知,各点整体 呈递增趋势,u与v正相关.
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
目标 2 线性回归方程及其应用 (2019·重庆调研)从某居民区随机抽取 10 个家庭,获得第 i 个家庭的月收入
【解答】散点图如图所示.
第14页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
(2)指出x,y是否线性相关; 【解答】由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.
第15页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
(3)若线性相关,求y关于x的回归方程; 【解答】列出下表并用科学计算器进行有关计算.
【新步步高】2018版高考数学(理)一轮复习第九章解析几何9.8
3.(2016· 南昌模拟 ) 已知 A( - 2,0) , B(1,0) 两点,动点 P 不在 x 轴上,且满足 ∠APO=∠BPO,其中O为原点,则P点的轨迹方程是 A.(x+2)2+y2=4(y≠0) B.(x+1)2+y2=1(y≠0) C.(x-2)2+y2=4(y≠0) D.(x-1)2+y2=1(y≠0) 由角的平分线性质定理得|PA|=2|PB|,
由抛物线定义得|AA1|+|BB1|=|FA|+|FB|,
∴|FA|+|FB|=4>2=|AB|,故F点的轨迹是以A,B为焦点,
题型二 直接法求轨迹方程
x2 y2 例 2 (2017· 广州调研)已知椭圆 C:a2+b2=1(a>b>0)的一个焦点为 5 ( 5,0),离心率为 3 .
(1)求椭圆C的标准方程; 解答
c 5 依题意得,c= 5,e=a= 3 , 因此a=3,b2=a2-c2=4, x2 y 2 故椭圆 C 的标准方程是 9 + 4 =1.
1 2 ③若点P在曲线C上,则△F1PF2的面积不大于 2a . ②③ 答案 解析 其中,所有正确结论的序号是________.
1
2
3
4
5
6
7
8
9
10 11 12 13
8.(2017· 西安月考)已知△ABC的顶点 A,B坐标分别为(-4,0),(4,0),C 5 为 动 点 , 且 满 足 sin B + sin A = 4 sin C , 则 C 点 的 轨 迹 方 程 为 x2 y2 + = 1( x ≠ ± 5) 答案 解析 25 9 ________________.
设 P(x,y),则 x+2 +y =2 x-1 +y ,
2 2 2 2
2021届高三新高考数学复习教学案:第九章 顶层设计·前瞻 解析几何热点问题
解析几何热点问题三年真题考情核心热点真题印证核心素养直线方程、定值问题2019·Ⅰ,19;2018·Ⅰ,19;2018·北京,19数学运算、逻辑推理椭圆方程、定点问题2019·北京,19;2017·Ⅰ,20;2017·Ⅱ,20数学运算、逻辑推理直线与椭圆的位置关系2019·Ⅱ,19;2018·Ⅲ,20数学运算、逻辑推理直线与抛物线的位置关系2019·Ⅲ,21;2019·北京,18;2018·Ⅱ,19;2017·Ⅲ,20数学运算、逻辑推理热点聚焦突破教材链接高考—-求曲线方程及直线与圆锥曲线[教材探究](选修2-1P49习题A5(1)(2))求适合下列条件的椭圆的标准方程:(1)过点P(-2错误!,0),Q(0,错误!);(2)长轴长是短轴长的3倍,且经过点P(3,0).[试题评析]1。
问题涉及解析几何中最重要的一类题目:求曲线的方程,解决的方法都是利用椭圆的几何性质.2。
对于(1)给出的两点并不是普通的两点,而是长轴和短轴的端点,这就告诉我们要仔细观察、借助图形求解问题,(2)中条件给出a,b的值,但要讨论焦点的位置才能写出椭圆方程.【教材拓展】设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C错误!,AF与BC相交于点E,若|CF|=2|AF|,且△ACE的面积为3错误!,则p的值为________.解析易知抛物线的焦点F的坐标为错误!,又|CF|=2|AF|且|CF|=错误!=3p,∴|AB|=|AF|=错误!p,可得A(p,错误!p)。
易知△AEB∽△FEC,∴错误!=错误!=错误!,故S△ACE=错误!S△ACF=错误!×3p×错误!p×错误!=错误!p2=3错误!,∴p2=6,∵p>0,∴p=6。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第九章 9.2
§9.2随机事件的概率与古典概型1.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n An为事件A出现的频率.(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). (5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B). 4.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.5.古典概型满足以下两个条件的随机试验的概率模型称为古典概型.(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.6.如果1次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1n .如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=mn .7.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中,事件A 发生的频率稳定在事件A 发生的概率附近. 2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立;当随机事件A ,B 对立时,一定互斥.也即两事件互斥是对立的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × ) 题组二 教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( ) A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶答案 D解析 “至少有一次中靶”的对立事件是“两次都不中靶”.3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( ) A.25 B.415 C.35 D.23 答案 A解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P =615=25.4.同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 易错自纠5.(多选)若干个人站成排,其中不是互斥事件的是( ) A.“甲站排头”与“乙站排头” B.“甲站排头”与“乙不站排尾” C.“甲站排头”与“乙站排尾” D.“甲不站排头”与“乙不站排尾” 答案 BCD解析 排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B,C,D 中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.故选BCD.6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( ) A.115 B.15 C.14 D.12 答案 B解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 36·A 33=15.故选B.7.甲、乙两人做出拳(锤子、剪刀、布)游戏,则平局的概率为________;甲赢的概率为________. 答案 13 13解析 设平局(用△表示)为事件A ,甲赢(用⊙表示)为事件B ,乙赢(用※表示)为事件C .容易得到如图.平局含3个基本事件(图中的△),P (A )=39=13.甲赢含3个基本事件(图中的⊙),P (B )=39=13.随机事件命题点1 随机事件的关系例1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案 A解析 由题意知“2张全是移动卡”的对立事件是“至多有一张移动卡”,又1-310=710,故“至多有一张移动卡”的概率是710.(2)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ). 答案 ①④解析 显然A 与D 是对立事件,①正确;当取出的两个球为一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;C ∪E 为必然事件,P (C ∪E )=1,④正确;P (B )=45,P (C )=35,⑤不正确.命题点2 随机事件的频率与概率例2 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8. 命题点3 互斥事件与对立事件的概率例3 (1)某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中1个社团,则这两位同学参加不同社团的概率为( ) A.13 B.12 C.23 D.34 答案 C解析 这两位同学同时参加1个社团的概率为P =3×13×13=13,所以这两位同学参加不同社团的概率为P ′=1-P =1-13=23.(2)(2020·商丘联考)已知甲袋中有1个红球和1个黄球,乙袋中有2个红球和1个黄球,现从两袋中各随机选取一个球,则取出的两球中至少有1个红球的概率为( ) A.13 B.12 C.23 D.56 答案 D解析 从两袋中各随机选取一个球,基本事件总数为2×3=6,取出的两球中至少有1个红球的对立事件是取出的两球都是黄球,所以利用对立事件概率计算公式得,取出两球中至少有1个红球的概率P =1-16=56.思维升华 (1)判断互斥事件、对立事件一般用定义,不可能同时发生的两个事件为互斥事件;若两个事件中有且仅有一个发生,则这两个事件互为对立事件.对立事件一定是互斥事件. (2)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率随着试验次数的增加越来越接近概率,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(3)求复杂互斥事件的概率的两种方法:①将所求事件转化成几个彼此互斥事件的和事件,利用互斥事件概率的加法公式求解概率.②若将一个较复杂的事件转化为几个彼此互斥事件的和事件时分类太多,而其对立面的分类较少,可考虑先求其对立事件的概率,即运用“正难则反”的思想.常用此方法求“至少”“至多”型事件的概率.跟踪训练1 (1)袋中装有3个白球和4个黑球,从中任取3个球,给出下列四组事件:①“恰有1个白球”和“全是白球”;②“至少有1个白球”和“全是黑球”;③“至少有1个白球”和“至少有2个白球”;④“至少有1个白球”和“至少有1个黑球”.在上述每组事件中,互为对立事件的是( ) A.① B.② C.②③ D.①④ 答案 B解析①互斥但不对立;②互为对立事件,③不是互斥事件,④不是互斥事件.(2)下列说法正确的是()A.某人打靶,射击10次,中靶7次,则此人中靶的概率为0.7B.一位同学做抛硬币试验,抛6次,一定有3次“正面朝上”C.某地发行一种彩票,回报率为47%,若有人花了100元钱买此种彩票,则一定会有47元的回报D.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现在胃溃疡病人服用此药,则可估计有明显疗效的概率约为0.76答案 D解析A项,此人中靶的频率为0.7,是一个随机事件,错误;B项是一个随机事件,不一定有3次“正面向上”,错误;C项是一个随机事件,中奖或不中奖都有可能,但事先无法预料,错误;D正确.(3)有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布情况如下表所示,假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率),为了在各自允许的时间内将货物运至城市乙,汽车A和汽车B选择的最佳路径分别为()A.公路1和公路2B.公路2和公路1C.公路2和公路2D.公路1和公路1答案 A解析通过公路1到城市乙用时10,11,12,13天的频率分别为0.2,0.4,0.2,0.2;通过公路2到城市乙用时10,11,12,13天的频率分别为0.1,0.4,0.4,0.1,设A1,A2分别表示汽车A在约定日期前11天出发,选择公路1,2将货物运往城市乙.B1,B2分别表示汽车B在约定日期前12天出发选择公路1,2将货物运往城市乙,则P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,所以汽车A最好选择公路1,汽车B最好选择公路2.古典概型1.(2019·全国Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116 答案 A解析 由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A. 2.中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水,水生木,木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15 B.14 C.13 D.12 答案 D解析 从五种不同属性的物质中随机抽取2种,共有“金木,金水,金火,金土,木水,木火,木土,水火,水土,火土”10种,而相生的有5种, 则抽到的两种物质不相生的概率P =1-510=12.3.(2019·江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________. 答案710解析 记3名男同学为A ,B ,C ,2名女同学为a ,b ,则从中任选2名同学的情况有(A ,B ),(A ,C ),(A ,a ),(A ,b ),(B ,C ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b ),共10种,其中至少有1名女同学的情况有(A ,a ),(A ,b ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b ),共7种,故所求概率为710.4.(2020·湖北龙泉中学、钟祥一中、京山一中、沙洋中学联考)从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是________. 答案 23解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲乙丙、丙甲乙,∴经过两次这样的调换后,甲在乙左边包含的基本事件个数m =6,∴经过这样的调换后,甲在乙左边的概率P =m n =69=23.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法(列表法、树状图法)以及排列、组合法.古典概型与统计的综合应用例4某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1,得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量在[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量在[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3)(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a 3,c 1),(b 1,b 2),(b 1,c 1),(b 2,c 1),共15种取法,其中满足条件的有(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a 3,c 1),(b 1,c 1),(b 2,c 1),共11种,故参加节目的2户来自不同组的概率P (A )=1115.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频数分布表、频率分布直方图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练2“抢红包”的活动给节假日增添了一份趣味,某组织进行了一次关于“是否参与抢红包活动”的调查活动,在几个大型小区随机抽取50名居民进行问卷调查,对问卷结果进行了统计,并将调查结果统计如下表:(1)补全如图所示有关调查人数的频率分布直方图,并根据频率分布直方图估计这50名居民年龄的中位数和平均数(结果精确到0.1);(2)在被调查的居民中,若从年龄在[10,20),[20,30)内的居民中各随机选取1人参加抽奖活动,求选中的2人中仅有1人没有参与抢红包活动的概率.解(1)补全频率分布直方图,如图所示:这50名居民年龄的平均数约为(15×0.008+25×0.012+35×0.028+45×0.024+55×0.016+65×0.012)×10=41.4.设中位数为x ,则0.08+0.12+0.28+0.024(x -40)=0.5,解得x ≈40.8, 所以这50名居民年龄的中位数约为40.8.(2)记年龄在[10,20)内的居民为a 1,A 2,A 3,A 4(其中居民a 1没有参与抢红包活动),年龄在[20,30)内的居民为b 1,b 2,B 3,B 4,B 5,B 6(其中居民b 1,b 2没有参与抢红包活动).从年龄在[10,20),[20,30)内的居民中各选取1人的情形有(a 1,b 1),(a 1,b 2),(a 1,B 3),(a 1,B 4),(a 1,B 5),(a 1,B 6),(A 2,b 1),(A 2,b 2),(A 2,B 3),(A 2,B 4),(A 2,B 5),(A 2,B 6),(A 3,b 1),(A 3,b 2),(A 3,B 3),(A 3,B 4),(A 3,B 5),(A 3,B 6),(A 4,b 1),(A 4,b 2),(A 4,B 3),(A 4,B 4),(A 4,B 5),(A 4,B 6),共24种.其中仅有1人没有参与抢红包活动的情形有10种,所以选中的2人中仅有1人没有参与抢红包活动的概率P =1024=512.1.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是( )A.恰好有1件次品和恰好有2件次品B.至少有1件次品和全是次品C.至少有1件正品和至少有1件次品D.至少有1件次品和全是正品 答案 A解析 依据互斥和对立事件的定义知,B,C 都不是互斥事件;D 不但是互斥事件而且是对立事件;只有A 是互斥事件但不是对立事件.2.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310 B.15 C.110 D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数,有10种方法.能成为勾股数的只有3,4,5一组,∴P =110.3.某英语初学者在拼写单词“steak ”时,对后三个字母的记忆有些模糊,他只记得由“a ”“e ”“k ”三个字母组成,并且“k ”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为( ) A.16 B.14 C.13 D.12 答案 B解析 满足题意的字母组合有四种,分别是eka ,ake ,eak ,aek ,拼写正确的组合只有一种eak ,所以概率P =14.故选B.4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D.1 答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735. 5.(2020·湖南六校联考)某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )A.23B.12C.14D.16 答案 B解析 从黄、白、蓝、红4种颜色中任意挑选2种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共6种,其中包含白色的有3种,故选中白色的概率为12,故选B.6.(2019·苏州模拟)一个袋子中装有大小形状完全相同的4个白球和3个黑球,从中一次摸出3个球,则摸出白球个数多于黑球个数的概率为( ) A.1835 B.35 C.2235 D.1115 答案 C解析 一个袋子中装有大小形状完全相同的4个白球和3个黑球,从中一次摸出3个球,基本事件总数n =C 37=35, 摸出白球个数多于黑球个数包含的基本事件个数m =C 24C 13+C 34C 03=22, 则摸出白球个数多于黑球个数的概率为P =m n =2235.7.(多选)下列四个命题错误的是( ) A.对立事件一定是互斥事件B.若A ,B 为两个事件,则P (A +B )=P (A )+P (B )C.若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1D.若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件 答案 BCD解析 在A 中,对立事件一定是互斥事件,故A 正确;在B 中,若A ,B 为两个互斥事件,则P (A +B )=P (A )+P (B ),若A ,B 不为两个互斥事件,则P (A +B )=P (A )+P (B )-P (AB ),故B 错误;在C 中,若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )≤1,故C 错误;在D 中,若事件A ,B 满足P (A )+P (B )=1,则A ,B 有可能不是对立事件.8.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________. 答案 0.9解析 方法一 记“该食品企业在一个月内被消费者投诉的次数为0”为事件A ,“该食品企业在一个月内被消费者投诉的次数为1”为事件B ,“该食品企业在一个月内被消费者投诉的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D ,而事件D 包含事件A 与B ,所以P (D )=P (A )+P (B )=0.4+0.5=0.9.方法二 记“该食品企业在一个月内被消费者投拆的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉不超过1次”为事件D ,由题意知C 与D 是对立事件,所以P (D )=1-P (C )=1-0.1=0.9.9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球、1个红球的概率为________. 答案1021解析 从袋中任取2个球共有C 215=105(种)取法,其中恰有1个白球、1个红球共有C 110C 15=50(种)取法,所以所取的2个球恰有1个白球、1个红球的概率为50105=1021.10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,恰好取到1件次品的取法有C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)A ,B ,C 三个地区商品的总数量为50+150+100=300,抽样比为6300=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)方法一 设6件来自A ,B ,C 三个地区的样品分别为: A ;B 1,B 2,B 3;C 1,C 2. 则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会相等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.方法二 这2件商品来自相同地区的概率为C 23+C 22C 26=3+115=415.12.某中学有初中学生1 800人,高中学生1 200人.为了了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)求a 的值;(2)试估计该校所有学生中,阅读时间不少于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率. 解 (1)由题意得(0.005×2+0.020+a +0.040)×10=1,解得a =0.03.(2)∵初中生中,阅读时间不少于30个小时的学生频率为(0.020+0.005)×10=0.25. ∴所有初中生中,阅读时间不少于30个小时的学生约有0.25×1 800=450(人). 同理,高中生中,阅读时间不少于30个小时的学生频率为(0.030+0.005)×10=0.35, ∴所有高中生中,阅读时间不少于30个小时的学生约有0.35×1 200=420(人). ∴该校所有学生中,阅读时间不少于30个小时的学生人数约为450+420=870.(3)由分层抽样知,抽取的初中生有60名,高中生有40名.记“从阅读时间不足10个小时的样本学生中随机抽取2人,至少抽取1名高中生”为事件A .初中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×60=3. 高中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×40=2. 则从阅读时间不足10个小时的样本学生(共5人)中随机抽取2人,所有可能的情况有C 25=10(种),其中至少抽到1名高中生的情况有C 25-C 23=7(种),∴所求概率为710=0.7.13.3位大学生乘坐同一列动车,该动车有8节车厢,则至少有2位大学生在同一节车厢的概率为( )A.2132B.5764C.1132D.1116 答案 C解析 3位大学生的乘车方式共有83种,其中均不在同一节车厢的乘车方式有A 38种,所以3位大学生均不在同一节车厢的概率为A 3883=8×7×683=2132,故至少有2位大学生在同一节车厢的概率为1-2132=1132,故选C.14.无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是______. 答案215解析 ∵a 2>a 1,a 2>a 3,a 4>a 3,a 4>a 5,∴a 2只能是3,4,5中的一个.(1)若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有2×1=2(个)符合条件的五位数. (2)若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有3×2×1=6(个)符合条件的五位数. (3)若a 2=5,则a 4=3或4,此时分别与(1)(2)中的个数相同. ∴满足条件的五位数有2×(2+6)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有5×4×3×2×1=120(个),故所求概率为16120=215.15.某公司安排6位员工在“元旦(1月1日至1月3日)”假期值班,每天安排2人,每人值班1天,则6位员工中甲不在1日值班的概率为( )A.13B.23C.34D.56答案 B解析 该公司安排6位员工在“元旦(1月1日至1月3日)”假期值班,每天安排2人,每人值班1天,基本事件总数n =C 26C 24C 22,6位员工中甲不在1日值班包含的基本事件个数m =C 25C 24C 22,∴6位员工中甲不在1日值班的概率P =m n =C 25C 24C 22C 26C 24C 22=23. 16.箱中有a 个正品,b 个次品(a ,b 均为大于3的正整数),从箱中连续随机抽取3次,每次抽取一个产品,分别求采用以下两种抽样方式,抽取的3个产品全是正品的概率.(1)每次抽样后不放回;(2)每次抽样后放回.解 (1)方法一 若把不放回抽样3次看成有顺序抽样,则从a +b 个产品中不放回抽样3次共有A 3a +b 种方法,从a 个正品中不放回抽样3次共有A 3a 种方法,所以所求概率为A 3a A 3a +b. 方法二 若不放回抽样3次看成无顺序抽样,则从a +b 个产品中不放回抽样3次共有C 3a +b 种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,所以所求概率为C 3a C 3a +b =A 3a A 3a +b. (2)从a +b 个产品中有放回地抽取3次,每次都有a +b 种方法,所以共有(a +b )3种不同的方法,而3个全是正品的抽法共有a 3种,所以所求概率为a 3(a +b )3=⎝⎛⎭⎫a a +b 3.。
【新步步高】2018版高考数学(理)一轮复习第九章解析几何9.9第1课时
√
1
2
3
4
5
6
7
8
9
10 11 12 13
x2 2 3.斜率为1的直线l与椭圆 +y =1相交于A,B两点,则|AB|的最大值为 4
答案 解析
A.2
4 5 B. 5
√
4 10 C. 5
8 10 D. 5
1
2
3
4
5
6
7
8
9
10 11 12 13
2 2 b x y 4.(2017· 天津质检)直线y= x+3与双曲线 2- 2=1 的交点个数是 答案 a a b
√
A.1
B.2
C.1或2
D.0
解析
b b 因为直线 y=ax+3 与双曲线的渐近线 y=ax 平行,
所以它与双曲线只有1个交点,故选A.
1
2
3
4
5
6
7
8
9
10 11 12 13
x2 y2 5.设双曲线 2- 2=1(a>0,b>0)的一条渐近线与抛物线y=x2+1只有一 a b 个公共点,则双曲线的离心率为 答案 解析
点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意
利用判别式的前提是二次项系数不为0.
(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到
一元方程,此时注意观察方程的二次项系数是否为 0,若为0,则方程
为一次方程;若不为0,则将方程解的个数转化为判别式与 0的大小关
系求解.
跟踪训练1
考点自测
1.(2016· 黑龙江鹤岗一中月考 )在同一平面直角坐标系中,方程a2x2+ b2y2=1与ax+by2=0(a>b>0)表示的曲线大致是 答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章统计第50讲抽样的方法、用样本估计总体A应知应会一、选择题1. 下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A. 0B. 1C. 2D. 32. (2019·运城一模)在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是()(第2题)A. 15B. 18C. 20D. 253. (多选)如图是2018年第一季度五省GDP的情况图,则下列描述中正确的是()(第3题)A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长B. 2018年第一季度GDP增速由高到低排位第5的是浙江省C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D. 去年同期河南省的GDP总量不超过4 000亿元4. (多选)(2019·烟台一模)如图(1)为某省2019年1~4月快递业务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解正确的是()图(1)图(2)(第4题)A. 2019年1~4月的业务量,3月最高,2月最低,差值接近2 000万件B. 2019年1~4月的业务量同比增长率均超过50%,在3月底最高C. 从两图来看,2019年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长二、解答题5. (2019·张家口期末)某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如图所示的频率分布直方图.(1) 试问:完成年销售任务的销售点有多少个?(2) 若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),[10,14),[14,18),[18,22](单位:千台)中每组分别应抽取的销售点数量.(第5题)6. (2019·安师附中)从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量,被测学生的身高全部在155 cm 到195 cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第七组与第六组的人数差恰好为第八组与第七组的人数差.(第6题)求下列频率分布表中所标字母的值,并补充完成频率分布直方图.频率分布表:B组能力提升一、填空题1. 为调查德克士各分店的经营状况,某统计机构用分层抽样的方法,从A,B,C三个城市中(单位:个)则样本容量为________.2. 从某企业的某种产品中抽取1 000件,测量该种产品的一项质量指标值,由测量结果得到如图所示的频率分布直方图,假设这项指标在[185,215]内,则这项指标合格,估计该企业这种产品在这项指标上的合格率为________.(第2题)3. (2019·台州调研)已知一组数据x1,x2,x3,x4,x5的方差是2,则数据2x1,2x2,2x3,2x4,2x5的标准差为________.4. 某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为________.(第4题)二、解答题5. 甲、乙两人参加某体育项目训练,近期的五次测试成绩(单位:分)如图所示.(1) 分别求出甲、乙两人成绩的平均数与方差;(2) 根据(1)的结果,对两人的成绩作出评价.(第5题)6. (2019·焦作期中节选)炎炎夏季,水蜜桃成为备受大家欢迎的一种水果,某果园的水蜜桃质量分布如图所示.(1) 求m 的值;(2) 经市场调查,该种水蜜桃在过去50天的销售量(单位:kg)和价格(单位:元/kg)均为销售时间t (单位:天)的函数,且销售量近似地满足f (t )=-3t +300(1≤t ≤50,t ∈N),前30天价格为g (t )=13 t +20(1≤t ≤30,t ∈N),后20天价格为g (t )=30(31≤t ≤50,t ∈N),求日销售额S 的最大值.(第6题)第51讲 数据分析——成对数据的统计分析课时1 一元线性回归模型及其应用A 应知应会一、 选择题1. 线性回归方程表示的直线y =a +bx 必经过点( ) A. (0,0) B. (x ,0) C. (x ,y ) D. (0,y )2. 下列两个变量之间的关系是相关关系的是( ) A. 速度一定时,位移与时间B. 单位面积的产量为常数时,土地面积与总产量C. 身高与体重D. 电压一定时,电流与电阻3. (2019·合肥调研)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(第3题)A. 直线l 过点(x ,y )B. x 和y 的相关系数为直线l 的斜率C. x 和y 的相关系数在0到1之间D. 当n 为偶数时,分布在l 两侧的样本点的个数一定相同4. 在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A. -1B. 0C. 12D. 15.根据上表,利用最小二乘法得它们的回归直线方程为y ^ =10.5x +a ^,据此模型来预测当x =20时,y 的估计值为( )A. 210B. 210.5C. 211.5D. 212.5二、解答题(1) 画出数据对应的散点图;(2) 求回归方程,并在散点图中加上回归直线;(3) 据(2)的结果,估计当房屋面积为150 m2时的销售价格.(结果保留四位小数)7. (2019·上饶二模)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经(1) 已知代码超过60的为A等品,某公司从上表6种产品中任取2种产品进口,求2种产品全为A等品的概率;(2) 已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(3) 若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元.参考公式:回归直线的斜率和截距的最小二乘估计公式分B组能力提升一、 填空题1. 已知变量x ,y 具有线性相关关系,它们之间的一组数据如下表所示:若y 关于x 的回归方程为y ^=1.3x -1,则m =________.2. (2019·安庆二模)已知由样本数据点集合{(x i ,y i )|i =1,2,…,n }求得的回归直线方程为y ^=1.5x +0.5,且x =3.现发现两个数据点(1.1,2.1)和(4.9,7.9)误差较大,去除后重新求得的回归直线l 的斜率为1.2,那么,当x =2时,y 的估计值为________.3. 某男数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.4. (2019·厦门二模)某种细胞的存活率y (%)与存放温度x (℃) 之间具有线性相关关系,其存活率y (%)6142633436063计算得x =5,y =35,,并求得回归直线为y ^=-2x+45. 但实验人员发现表中数据x =-5的对应值y =60录入有误,更正为y =53,则更正后的回归直线方程为________.二、 解答题 5. (2019·烟台二模)混凝土具有原材料丰富、抗压强度高、耐久性好等特点,是目前使用量最大的土木建筑材料.抗压强度是混凝土质量控制的重要技术参数,也是实际工程对混凝土要求的基本指标.为了解某型号某批次混凝土的抗压强度(单位:MPa )随龄期(单位:天)的发展规律,质检部门在标准试验条件下记录了10组混凝土试件在龄期x i (i =1,2,…,10)分别为2,3,4,5,7,8,12,14,17,21时的抗压强度y i 的值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.(第5题)(1) 根据散点图判断y=a+bx与y=c+d ln x哪一个适宜作为抗压强度y关于龄期x的回归方程类型,选择其中的一个模型,并根据表中数据,建立y关于x的回归方程;(2) 工程中常把龄期为28天的混凝土试件的抗压强度f28视作混凝土抗压强度标准值.已知该型号混凝土设置的最低抗压强度标准值为40 MPa.①试预测该批次混凝土是否达标;②由于抗压强度标准值需要较长时间才能评定,早期预测在工程质量控制中具有重要的意义,经验表明,该型号混凝土第7天的抗压强度f7与第28天的抗压强度f28具有线性相关关系f28=1.2f7+7,试估计在早期质量控制中,龄期为7天的试件需达到的抗压强度.参考数据:ln 2≈0.69,ln 7≈1.95.6. (2019·武汉三模)菜市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m(单位:m2,60≤m≤130)进行了一次调查统计,制成了如图(1)所示的频率分布直方图,接着调查了该市2018年1月~2019年1月期间当月在售二手房均价y(单位:万元/平方米),制成了如图(2)所示的散点图(图中月份代码1~13分别对应2018年1月至2019年1月).图(1)图(2)(第6题)(1) 试估计该市市民的平均购房面积m .(2) 现采用分层抽样的方法从购房面积位于[110,130]的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在[120,130]的概率;(3) 根据散点图选择y ^ =a ^ +b ^ x 和y ^ =c ^ +d ^ln x 两个模型进行拟合,经过数据处理得到两个回归方程,分别为y ^ =0.936 9+0.028 5x 和y ^=0.955 4+0.030 6ln x 并得到一些统计量的值,如下表所示:请利用相关指数R 2判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到0.001).参考数据:ln 2≈0.69,ln 3≈1.10,ln 17≈2.83,ln 19≈2.94,2 ≈1.41,3 ≈1.73,17 ≈4.12,19 ≈4.36;参考公式:课时2分类变量与列联表A应知应会一、选择题1. 观察下列各图,其中两个分类变量x,y之间关系最强的是()A BC D2. 经过对K2的统计量的研究,得到了若干个临界值,当K2≤2.706时,我们认为事件A与B()A. 有95%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 没有充分理由说明事件A与B有关系D. 不能确定3. 为了了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:()A. 没有充足的理由认为课外阅读量大与作文成绩优秀有关B. 有0.5%的把握认为课外阅读量大与作文成绩优秀有关C. 在犯错误的概率不超过0.001的前提下认为课外阅读量大与作文成绩优秀有关D. 在犯错误的概率不超过0.005的前提下认为课外阅读量大与作文成绩优秀有关4. 某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取2 019人,计算发现K2的观测值k≈6.723,则根据这一数据,市政府断言“市民收入与旅游欲望有关系”犯错误的概率不超过()A. 0.005B. 0.05C. 0.025D. 0.015. 某班主任对全班50名学生进行了作业量的评价调查,所得数据如下表所示:则认为作业量的大小与学生的性别有关的犯错误的概率不超过( ) A. 0.01 B. 0.025C. 0.10D. 无充分证据 二、 解答题 6. (2019·芜湖二模)随着科技的发展,近年看电子书的国人越来越多,所以近期有许多人呼吁“回归纸质书”.目前出版物阅读中纸质书占比出现上升,现随机选出200人进行采访,经统计这200人中看纸质书的人数占总人数的45 ,将这200人按年龄分成五组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],其中统计看纸质书的人数得到的频率分布直方图如图所示.(1) 求a 的值及看纸质书的人的平均年龄;(2) 按年龄划分,把年龄在[15,45)的称青壮年组,年龄在[45,65]的称为中老年组,若选出的200人中看电子书的中老年人有10人,请完成下面2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为看书方式与年龄层有关.(第6题)附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d ).7. (2019·泸州调研)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩的平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下表所示的频数分布表:(1) 估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关?(2) 规定80分以上为优秀(含80分),请你根据已知条件作出2×2列联表,并判断是否在犯错误的概率不超过0.1的前提下认为数学成绩与性别有关.B组能力提升一、填空题1. 独立性检验所采用的思路是:要研究X,Y两个分类变量彼此相关,首先假设这两个分类变量彼此________,在此假设下构造随机变量K2.如果K2的观测值较大,那么在一定程度上说明假设________.2. 天宫二号成功发射,由此许多人认为中国进入了航天强国之列,也有许多人持反对意见,为此进行了调查.在参加调查的3 648名男性公民与3 432名女性公民中,持反对意见的男性有1 843人,女性有1 462人,在运用这些数据说明“天宫二号”成功发射是否与中国进入航天强国有关系时,用________最具说服力.(填序号)①回归直线方程;②平均数与方差;③独立性检验.3. 某部门通过随机调查89名工作人员的休闲方式,了解读书和健身的人数,得到的数据如下表:4. 为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:设H 0:服用此药的效果与患者的性别无关,则K 的观测值k ≈________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.二、 解答题 5. (2019·衡阳二模)教育局为贯彻两会精神,开展了送教下乡活动.为了了解该活动的受欢迎程度,对某校初一年级按分层抽样的方法抽取一部分进行调研,已知该年级学生共有 1 200人,其中女生共有540人,被抽到调研的男生共有55人.(1) 该校被抽到调研的女生共有多少人?(2) 若每个参与调研的学生都必须在“欢迎”与“不太欢迎”中选一项,调研的情况统计如下表:请将表格填写完整,并根据此表数据说明是否有95%的把握认为“欢迎活动与性别有关”;(3) 在该校初一(二)班被抽到的5名学生中有3名学生欢迎该活动,2名学生不太欢迎该活动,现从这5名学生中随机抽取2人,求恰有1人欢迎该活动的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).6. (2019·济南期末)某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数占总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有23选择了退货.(1) 请完成下面的2×2列联表,并判断是否有99%的把握认为“客户购买产品与对产品性能满意之间有关”;(2) 企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈,座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回地进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.微难点11建立统计模型进行预测一、解答题1. 某市房产契税标准如下:从该市某高档住宅小区随机调查了一百户居民,获得了他们的购房总额数据,整理得到了如图所示的频率分布直方图.(1) 假设该小区已经出售了2 000套住房,估计该小区有多少套房子的总价在300万以上,并说明理由;(2) 假设同组中的每个数据用该组区间的右端点值代替,估计该小区购房者缴纳契税的平均值.(第1题)2. 某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.表1 无酒状态表2 酒后状态已知表1数据的中位数估计值为26,回答以下问题.(1) 求m ,n 的值,并估计驾驶员无酒状态下停车距离的平均数;(2) 根据最小二乘法,由表2的数据计算y 关于x 的回归方程y ^ =b ^ x +a ^;(3) 该测试团队认为:驾驶员酒后驾车的平均“停车距离”y 大于(1)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程预测当每毫升血液酒精含量大于多少毫克时为“醉驾”.3. (2019·新乡三模)随着科技的发展,网络已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式,某公司组织统计了近五年来该公司网购的人数y i (单位:人)与时间t i (单位:年)的数据,列表如下:(1) 依据表中给出的数据,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r,并加以说明(计算结果精确到0.01).(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合,相关系数公式:(2) 某网购专营店为吸引顾客,特推出两种促销方案. 方案一:毎满600元可减100元;方案二:金额超过600元可抽奖三次,每次中奖的概率都为12 ,且毎次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.①两位顾客都购买了1 050元的产品,求至少有一名顾客选择方案二比选择方案一更优惠的概率;②如果你打算购买1 000元的产品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.4. (2019·厦门一模)某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图(1)).产品的质量指数在[50,70)的为三等品,在[70,90)的为二等品,在[90,110]的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.(1) 求每件产品的平均销售利润;(2) 该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x i 和年销售量y i (i =1,2,3,4,5)数据做了初步处理,得到的散点图(如图(2))及一些统计量的值.16.3024.870.411.64根据散点图判断,y =a·x b 可以作为年销售量y(单位:万件)关于年营销费用x(单位:万元)的回归方程.①建立y 关于x 的回归方程;②用所求的回归方程估计该公司应投入多少营销费用,才能使得该产品一年的收益达到最大.(收益=销售利润-营销费用,取e 4.159=64)参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α^ +β^u 的斜率和截距的最小二乘估计公式分别为β^ =∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2 ,α^ =v -β^u . 图(1)图(2) (第4题)。