§3-2多跨静定梁
结构力学第三章静定结构受力分析
MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
四川大学锦城学院结构力学复习题
2、几何常变体系、几何瞬变体系
FP FP
体系受到任意荷载作用,在不考虑材料应变的 前提下,体系产生瞬时变形后,变为几何不变体系, 则称几何瞬变体系。
3
3、自由度
自由度:体系运动时,可以独立改变的几何参数的 数目,即确定体系位置所需要独立坐标的数目
A
y
y y x
A
x
x
1动点= 2自由度
1刚片= 3自由度
A
FAx=120kN FAy=45kN 4m
C
F
G
15kN 4m
15kN 4m
15kN
a.求支座反力 FAy=45kN
FAx=120kN
(对于这种悬臂型结构可不必先求反力)
38
3m FBx=120kN
B
D
E
3m
FNGE XNGE FNGF
YNGE
G
A
C
F
G
4m
15kN 4m
15kN 4m
15kN
15kN
MA
l
MB MA
ql2/8
26
§3-2 静定多跨梁
1.传力关系
组成顺序
基本部分
附属部分1
附属部分2 ¨ ¨ ¨
传力顺序
2.计算原则
与传力顺序相同,先计算附属部分后计算基本部分
27
画出图示梁的弯矩图、剪力图
40kN/m
K 120kN
8m
2m
3m
3m
120kN
40kN/m
60kN 235kN
60kN
36
结点法、截面法
1、结点法
取单结点为分离体, 其受力图为一平面汇 交力系。 它有两个独 立的平衡方程。
结构力学第3章
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
§3-2多跨静定梁
一、定义及常用形式
多跨静定梁:由若干根梁用铰连接而成、用来跨越几个相连跨度的静定梁。
无铰跨和两铰跨交替 出现
除第一跨外,其余各 跨皆有一铰
前两种方式组合
二、几何构造特点及受力特点
主梁或基本部分 1、几何组成 次梁或附属部分 不依赖其它部分的存在,本身就 能独立地承受荷载并能维持平衡 的部分 需要依赖其它部分的支承才可以 承受荷载并保持平衡的部分
F -0.25 -0.25
0.5 0.5 -0.25 -0.25
Step3:绘制内力图。
FPa
D A B C
0.25 Pa F
E F
0.5FP
A B C D E F
0.5FPa
0.25FP
FP
M图
FQ图
【例3.3 】
试求铰D的位置,使负弯矩峰值与正弯矩峰值相等
q
A
q
B C A D B
q
C
l−x
D
x
例:作内力图
1、几何组成分析: 2、分层法:将附 属部分的支座反力 反向指其基本部分, 就是加于基本部分 的荷载; 3、内力使梁正负最大弯矩的绝对值相等,试确定铰B、E的位置。 欲使梁正负最大弯矩的绝对值相等,试确定铰B 的位置。
1、几何组成分析: 2、内力分析:分 层法:将附属部分 的支座反力反向指 其基本部分,就是 加于基本部分的荷 载; 3、内力图:各单跨梁的 内力图连在一起
FRB
FRC
q (l − x) 2 q (l − x) x qx 2 M 跨中 = ,M B = + 8 2 2
得:
M 跨中 = M B
⇒
q (l − x) 2 q (l − x) x qx 2 = + 8 2 2
结构力学 第3章静 定梁、平面刚架受力分析
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力
结构力学第三章习题参考解答
FAy 6 FAx 2 0
1 ql 2A
1 ql 4
取整体:M A 0
Fy 0
取AC: MC 0
取整体: Fx 0
l
l
0.45ql
FBy
1 2l
ql 3l 2
3 ql 4
FAy
ql
3 4
ql
1 4
ql
FAx
2 ql 2 l4
1 ql 2
FBx
1 ql 2
l 2
1 ql B2 3 ql 4
取左段
FNK
ql cos
3l 4
1 q 3 l 2 2 4
9 ql 2 32
D
C
q
3 ql
4
A
1 ql
l
4
1 ql
4
1 ql 4
3 ql
4
FQ KN
1 ql 2
E
4
1 ql 2 4
9 ql2 32
1 ql
B
4
ql 2 8
M KNm
l
1 ql
4
1 ql
4
1 ql
4
FN KN
1 ql2 4
1 ql 4
3-12解:
q C
q
3 ql
4
A
l
1 ql
B
4
Fy 0
FAy
1 ql 4
1 ql 4
l
l
1 ql
4
取BC:
MC 0
FBx
1 4
ql
取整体:
Fx 0
FAx
ql
1 ql 4
3 ql 4
AD段的最大弯矩 M x 3 qlx 1 qx2 dM 3 ql qx 0
结构力学 第三章 静定结构
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
结构力学第3章静定梁的内力计算
精品课件
简支梁在两支座端有外力偶作 用时,梁两端截面有等于该端 力偶的弯矩,无外力偶在端部 作用时端部截面的弯矩为零。 所以简支梁两端支座处的弯矩 值竖标可直接绘出。
精品课件
注意:
❖ 图的叠加是弯矩竖标的叠加,而 不是图形的简单叠加。 ❖ 每叠加一个弯矩图,都以紧前一 次弯矩图外包线为新基线,并由此 基线为所叠加的弯矩图的拉压分界 线。见图3-1-6。
精品课件
❖ 又由于区段AB两端的轴力在 弯曲小变形的假设下对弯矩不 产生影响
❖ 所以从弯矩图的角度说, (a)右、(b)右两受力图是相 同的。
精品课件
区段AB的弯矩图可以利用与简支 梁相同的叠加法制作。其步骤相 类似:
➢ 求出直杆区段两端的弯矩值, 在杆轴原始基线相应位置上画出 竖标,并将两端弯矩竖标连直线。
1)求支座反力
去掉支座约束,以整体为隔离 体,由静力平衡条件得
MB 0
MA 0
精品课件
F A y 7 1(1 4 4376)3k0N m(↑)
F B y7 1(1 44471)3k3N m (↑)
FAx=0 FAy=30kN
q=14kN/m
精品课件
(a) FBy=33kN
2)计算控制截面弯矩值
取D截面以左(下侧受拉)
精品课件
➢ 在新的基线上叠加相应简支 梁与区段相同荷载的弯矩图。 (相应简支梁,指与所考虑区段 等长且其上荷载也相同的,相应
于该区段的简支梁)
上述方法即为直杆区段弯矩图的 叠加法。
精品课件
例3-1-3 计算图示简支梁,并作 弯矩图和剪力图。
q=14kN/m
1m 1m
静定梁ppt课件
60kN.m
2m
2m
55 30
20 30 5 m/2 m
m/2
15kN 2m
30 M 图 (kN.m)
18
8kN
4kN/m
16kN.m
A
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
G
BC
D
E
F
1m 1m
2m
RA=17kN
2m
1m 1m
RB=7kN
17 + 9
H
16
Q图(kN) x
-
7
7
26
28
7
30
23
Q图
因为在集中力作用处,剪力图发生突变,如将正剪力画在基线上侧,突 变的方向即集中力的指向。当支座反力求出以后,可直接根据荷载和支座 反力的指向作静定梁的剪力图。
按这种作剪力图的方法若最后不能回到基线零点,说明计算过程中有 错误,因此这种方法能自动检验计算结果的正确性。
17
10kN/m ↓↓↓↓↓↓↓
ΔM=m
Q
N
m
Px
M
Py
Q+ΔQ
N+ΔN M+ ΔM
增量关系说明了内力图的突变特征
3) 积分关系:由微分关系可得
QB=QA-∫qydx
MB=MA+∫Qdx
右端剪力等于左端剪力减去
该段qy的合力; 右端弯矩等于左端弯矩加上
该段剪力图的面积。
Q图 M图
内力图形状特征
无荷载区段 均布荷载区段 集中力作用处
q
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MB
MA
l
MB
MA
ql2/8
20
§3-2多跨静定梁(statically determinate multi-span beam)
多跨静定梁的类型(共3张PPT)
型用,这如 种上方图式(组成c)的所多示跨。静定梁称连续简支型,如下图(a)所示。
用(这2)种间方束隔式搭相组接成连型的。。多若跨静搭定接梁称梁连段续简是支间型隔,如出下现图(的a),所将示这。 种多跨静定梁称间隔搭接
用 (这1)种连方续式简组支成型的。多跨静定梁称连续简支型,如下图(a)所示。
)所示。 型,如上图(c 基后本边梁 的段双与支基座础梁组段成与一地个基无则多用余两约个束链的杆几支何座不约变体。
多跨静定梁
多跨静定梁的类型
根据多跨静定梁的几何组成规律,将多跨静定梁分为三种类型。
(1)连续简支型。基本梁段是一个简支梁,也可以是外伸梁或悬臂 梁。基ቤተ መጻሕፍቲ ባይዱ梁段与基础组成一个无多余约束的几何不变体。单支座梁段与 基本梁段总是用一个中间铰链相连,而与地基则用一个可动铰支座相连。 用这种方式组成的多跨静定梁称连续简支型,如下图(a)所示。
后型边,的 如双上支图座(梁c()段所3与示)地。基混则合用型两个。链由杆支简座支约与搭接混合形成的多跨静定梁称混合型多跨静定梁,如上图
(e)所示。
多跨静定梁
图1
多跨静定梁
(2)间隔搭接型。基本梁段是一个简支梁、外伸梁或悬臂梁。
型基,本如 梁上段基图是本(一个c)梁简所支段示梁。与、外基伸梁础或组悬臂成梁。一个无多余约束的几何不变体。搭接梁段与
第三章2 多跨静定梁
l
↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MG
q(l 2 x) 2
1 2 q(l 2 x) M B = × x + qx 2 2
ql MB = 解得: 12 3 3 6 l
2
ql 2 M B M = MB MG可按叠加法求得: G = 8 2
q(l 2 x) x qx ql + = 代入上式: 2 2 12
§3-2 多跨静定梁
一、多跨静定梁的组成
附属部分— 附属部分—依靠基本
部分才能维持其几何不变性。
基本部分-基本部分--能独立维持
几何不变性。 几何不变性。
基、附关系图
常见多跨静定梁的形式:
第一种,由伸臂梁与简支梁交叉排列
附属部分 基本部分
竖向荷载: 竖向荷载: 基本部分 水平荷载: 水平荷载: 附属部分
2 2
解得: x =
MB=ql2/12 q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
A G B C D E F
l/2 MG=ql2/12
ql2/24 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MG=ql2/8
由于多跨静定梁设置了带伸臂的基本部分,这不仅使中 间支座处产生了负弯矩,它将降低跨中正弯矩;另外减少了附 属部分的跨度。因此多跨静定梁较相应的多个简支梁弯矩分 布均匀,节省材料,但其构造要复杂一些!!
第二种,每个部分都是伸臂梁
第三种,由前两种形式混合组成
练习:区分基本部分和附属部分并画出关系图 练习 区分基本部分和附属部分并画出关系图
1 2 3 4
1
2
3
二、多跨静定梁的内力计算
受力特点:力作用在基本部分时附属部分不受力, 受力特点:力作用在基本部分时附属部分不受力,
结构力学-静定梁与静定刚架
A BC
D
130 210
E
F
140
340
280 M图(kN·m)
130 D
120
40
A B C 30
E
F
FS 图(kN)
190
26
小结: 1)弯矩叠加是指竖标以基线或杆轴为准叠加,而非 图形的简单拼合; 2)应熟悉简支梁在常见荷载下的弯矩图; 3)先画M 图后画FS图,注意荷载与内力之间的微分 关系。
B (qlcosθ)/2
B (qlcosθ)/2
32
3) 作内力图。
(qlcosθ)/2 (qlsinθ)/2
ql2/8 M图 FQ 图
FN 图
(qlcosθ)/2 (qlsinθ)/2
33
例3-1-3 作图示斜梁的内力图。
x FxA A θ
FyA
q
l /cosθ
C qlcosθ
l
ql θ qlsinθ
1.荷载与内力之间的微分关系
qy
M FN
FS
o qx dx
M+dM x
FN+dFN
FS dFS
y
Fy 0, F SdS F qyd xF S0ddFxS q y .
MO 0, M M dM F Sd 2 xF SdF Sd 2 x0,
dM dxFS,
3)定点:求控制截面在全部荷载作用下的 M 值, 将各控制面的 M 值按比例画在图上,在各控制截 面间连以直线——基线。
4)连线叠加:对于各控制截面之间的直杆段,在 基线上叠加该杆段作为简支梁时由杆间荷载产生的 M图。
18
例3-1-1 作图示静定单跨梁的M图和FS图。
8kN
多跨静定梁的计算顺序
计算多跨静定梁时,可以按照以下步骤进行计算顺序:
1. 确定梁的支座类型和位置:首先确定梁的支座类型,例如固定支座、铰支座或滑动
支座,并确定它们的位置。
2. 划分梁的跨数:根据实际情况,将梁划分为多个跨。
3. 确定每个跨的边界条件:对于每个跨,确定其边界条件,如支座反力、弯矩、剪力等。
4. 单独计算每个跨的内力:对于每个跨,使用适当的方法(如力法、位移法或弯矩法)计算其内力分布。
5. 跨间连续性条件的处理:对于相邻的两个跨,考虑它们之间的连续性条件,例如弯
矩连续性条件。
6. 解算未知反力:根据边界条件和连续性条件,解算出所有跨的未知反力。
7. 检验静定条件:检查所得到的反力是否符合静定条件,即受力平衡和变形平衡。
8. 计算梁的内力分布:根据已知的反力和边界条件,计算梁的内力分布,如弯矩、剪
力和轴力。
9. 校验计算结果:检查计算结果是否满足设计要求,如强度、刚度和稳定性等。
请注意,以上仅为一般情况下多跨静定梁计算的顺序,具体问题具体分析,可能需要
根据实际情况进行调整。
同时,如果你有特定的问题或需要更详细的计算步骤,请提
供更多信息,我将尽力提供帮助。
结构力学第3章静定梁与静定刚架(f)
§3-2 多跨静定梁
例3-4 试作图a所示多跨静定梁的内力图,并求出各支座反力。
解:不算反力 先作弯矩图
1)绘AB、GH段弯矩图,与悬臂梁相同; 2)GE间无外力,弯矩图为直线,MF=0,可绘出; 同理可绘出CE段; 3)BC段弯矩图用叠加法画。
§3-2 多跨静定梁
由弯矩与剪力的微分关系画剪力图
由若干根梁用铰相联,并用若干支座与基础相联而组成的静定结构。
分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将 支座C 的支反力求出后,进行附属部分的内力分析、画内力图, 然后将支座 C 的反力反向加在基本部分AC 的C 端作为荷载,再 进行基本部分的内力分析和画内力图,将两部分的弯矩图和剪力 图分别相连即得整个梁的弯矩图和剪力图 。
弯矩图为直线:其斜率为剪力。图形从基线顺时针转,
剪力为正,反之为负。 弯矩图为曲线:根据杆端平衡条件求剪力,如图c。
剪力图作出后即可求支座反力 取如图e的隔离体可求支座 c— 的反力 弯矩—剪力 支座反力
§3-3 静定平面刚架
常见静定刚架的型式
悬臂刚 架
简支刚 架
三铰刚 架
§3-3 静定平面刚架
R FSR F E SD 8kN
FSR F 12kN
FSR B 0
§3-1 单跨静定梁
用截面法计算 控制截面弯矩。
MC 0
M A 20kN 1m 20kN m
M D 20kN 2m 58kN 1m 18kN m M E 20kN 3m 58kN 2m 30kN 1m 26kN m M F 12kN 2m 16kN m 10kN m 18kN m
第三章静定结构受力分析
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
第三章 静定梁与静定刚架
§3-1 单跨静定梁1 反力的求解简支梁伸臂梁悬臂梁 三个支座反力,可由三个平衡方程求解2 截面法求内力轴力(N)—截面一侧所有外力沿杆轴方向投影的代数 和。
以拉为正,压为负。
N+N剪力(Q)—截面一侧所有外力沿垂直杆轴方向投影的 代数和。
使隔离体顺时针转为正,逆时针转为负。
Q+Q弯矩(M)—截面一侧所有外力对截面形心力矩的代数 和。
弯矩图画在杆件的受拉侧!!!截面法—将指定截面切开,取截面任一侧部 分为隔离体,利用平衡条件求得内力。
P1 A由∑X=0 得 HA 由∑MB=0 得 VAP2K由∑Y=0 得 VBBP1HA VA A K QM N步骤:先求反力,再求指定截面的内力。
隔离体与周围约束要全部截断,用相应的约束力代替。
约束力要符合约束力的性质: 链杆: 轴力受弯杆件:轴力、剪力、弯矩 只画隔离体本身所受的荷载与截断约束处的约束力。
未知力假设为正方向,已知外力按实际方向画出。
任 意 截 面{轴力=截面一侧所有轴线方向力的代数和 剪力=截面一侧所有垂直轴线方向力的代数和 弯矩=截面一侧所有力对截面取矩的代数和例:求M、 Q、 N值。
A FP1=10kN C2m 2m FP2=5kNB解:1) 求支反力FxA FP1=10kN FP2=5kN FyBFyA∑Fx=0 ∑MA=0 ∑Fy=0FxA=-5kN ( ) FyB =5kN ( ) FyA =5kN ( )2)取隔离体,求C左截面内力左部分为隔离体 MCL LA5kN 5kNCNCLQC∑ FX = 0 ∑ FY = 0 ∑MX = 0L N C = 5 KN L Q C = 5 KN L M C = 10 KN ⋅ m3)取隔离体,求C右截面内力 右部分为隔离体 NCRMCRCRB5kNQC∑ FX = 0 ∑ FY = 04)画内力图 M图10kN⋅ mR NC = 0 R Q C = −5 KN R M C = 10 KN ⋅ m∑MX=0Q N5kN5kNAaPb lBPb lPab lPa lq AlBql 2ql 82ql 2a m lm Aa l bBm lb m lm l内力图-表示结构上各 截面内力数值的图形 P 横坐标--截面的位置 A 纵坐标--内力的数值a l bPbB弯矩图—必须绘在 杆件受拉的一侧, 不须标正负号。
3静定梁
qa/2
qa/2
qa/2
-3qa/4
9qa/4
qa
q
↓↓↓↓↓↓↓↓↓↓↓
qa
a
a
2qa
qa
+
a 3qa/4 qa qa/4
2a
a 9qa/4 qa/2
4m
2m 310kN 120
30
190
160 280
Q图(kN)
340
M图(kN· m)
不相切
1、求支反力: VA=18KN VB=6KN
2、求控制截面的 内力
3、联线
4、求最大弯矩值
例题:
q=20kN/m A P=40kN B
解:1/求支反力
C
4m 2m 2m 40kN
∑MA=0 ∑MB=0
ql qx2 M c 0, M c x 2 2
与等跨简支梁(M0、Q0、N0) 相比
M M
0
ql qx2 M x (0 x l ) 2 2
Q Q 0 cos
N Q 0 sin
Q( ql qx) cos 0 x l 2
N (
ql qx) sin (0 x l ) 2
FP
a
FP a b B
A ql2 2
l
q A l
B
F
A Fab l a b B
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
m l
m l
4kN· m
4kN
8kN· m
2kN/m
3m
3m
3m
3m
2m
(1)集中荷载作用下
结构力学——3静定结构的内力分析
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)
李廉锟结构力学3
【例3-1】 1.反力 2.控制截面 C-A-(D)-EF-GL-GR-B 3.FS-连线 4.M-连线 直线 曲线
(极值)
滚小球作Q图 力推小球同向走,力尽小球平行走 集中力偶中间铰,方向不变无影响 反推小球回到零,上正下负剪力图
斜梁 基本方法 ——截面法 斜杆内力 ——FS、FN随截面方向倾斜 1.支座反力 2.内力: M FS、FN:投影方向 3.内力图 4.斜长分布→水平分布
§3—2 多跨静定梁
1. 几何组成 基本部分——独立地维持其几何不变的部分 附属部分——依靠基本部分才能维持其几何不变 的部分 层叠图——层次关系
2.受力分析——特点 基本部分——荷载作用其上,附属部分不受力 附属部分——荷载作用其上,基本部分受力 3.内力分析步骤 未知反力数 = 独立平衡方程数 计算——按几何组成的相反次序求解 (避免解联立方程) 反力、内力计算,内力图绘制——同单跨梁
【例3-5】
1.简支
-反力 2.M图 3.FS图 4.FN图 5.校核
【例3-6】 1、反力* 2、M图 3、FS图 AD、BE *DC、CE: -M→FS 4、FN图 AD、BE DC、EC (结点)
【例3-7】组成分析——基本、附属部分 按组成相反次序,分别按基本形式计算
§3-4 快速绘制 M 图
任意直杆段——适用 叠加法作M图 (1)求控制截面值 外力不连续点 (F,M作用点, q的起点,终点等) (考虑全部荷载) (2)分段画弯矩图 控制截面间无荷载 ——连直线 控制截面间有荷载(q、F) ——连虚线, ——再叠加标准M0图
5.绘制内力图的一般步骤 (1)求反力(悬臂梁可不求) (2)分段 ——外力不连续点:q端点,F、M作用点 (3)定点 ——求控制截面内力值(全部荷载) (4)连线 ——按微分关系 连直线 曲线:连虚线,叠加简支梁M0图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次梁或附属部分
相对性
2、构造次序
先固定基本部分, 后固定附属部分
3、力的传递
基本部分上所受到的 荷载对附属部分没有 影响,附属部分上作 用的外荷载必然传递 到基本部分。
层次图
三、多跨静定梁的计算
1、思路 ①计算次序与构造次序相反
②计算方法:分层法。 (对结构进行几何组成分析,分清基本部分和附属部 分;先计算附属部分的反力和内力,再计算基本部分的反力和内力。)
D E F RE F
Y 0
对EF部分:
M RF FRD
FRD 0.75 FP
FRB
FRF
M E 0 M RF 0.25FP a FRF 0.25 FP Y 0
FP
A B C
0.5 FP
D E
FP
0.25 FP
F A B C D
0.25 FP a
E F
1.5FP
0.75 FP
0
-1
0.5 0.5 -0.25 -0.25
Step3:绘制内力图。
FP a
D A B C
0.25FP a
E F
0.5 FP
A B C D E F
0.5FP a
0.25 FP
M图
FP
FQ图
【例3.3 】
试求铰D的位置,使负弯矩峰值与正弯矩峰值相等
q
A
q
B C A D B
q
C
lx
D
x
l
解:
A
Step1:分层求支反力。
E
B C D
F
G
H
4 2 8
4
7.5
M图(KN.m)
2
4
4
4 8.5
Q图(KN)
2
③计算关键:基本部分和附属部分之间的相互连接力(作用力和反作用力), 求出这些连接力后,各部分当作单跨静定梁来计算。分段作内力图。然后拼 接。 2 、分析步骤 ①几何组成分析:分清主次部分 ②分层法:将附属部分的支座反力反向指其基本部分,就是加于基 本部分的荷载; ③内力图:各单跨梁的内力图连在一起
0.25 FP a 0.25 FP
1.5FP
0.75 FP
0.25 FP
Step2: 求控制截面的弯矩和剪力。
选A、BL、BR、 DL、DR 、F为控制截面,设弯矩下侧受拉为正
A点: M A 0 FQA FP C点: M C 0 FQC 0.5 FP
E点: M E 0 FQE 0.25 FP F点: M F 0.25 FP a FQF 0.25 FP
3、内力图:各 单跨梁的内力图 连在一起
例:欲使梁正负最大弯矩的绝对值相等,试确定铰B、E的位置。
1、几何组成分析: 2、内力分析:分 层法:将附属部分 的支座反力反向指 其基本部分,就是 加于基本部分的荷 载; 3 、内力图:各单跨梁的 内力图连在一起
M max M c M D qlx 2 q(l x) 2 MI 8
q
FRD
FRA
B
D
q
C
对AD部分:
FRB
FRC
M A 0 FRD 0.5q(l x) FRA 0.5q(l x) Y 0
Step2:设弯矩下侧受拉为正,求AD跨的正弯矩及B截面的 负弯矩。 q
A
0.5q(l x)
B
D
q
C
0.5q(l x)
FRB
FRC
q(l x) 2 q(l x) x qx 2 M 跨中 ,M B 8 2 2
得:
M 跨中 M B
q(l x) 2 q(l x) x qx 2 8 2 2
0.086ql 2
x 0.172l
M图
A
0.086ql
2
DB
C
0.086ql 2
课堂作业:作内力图
例:作内力图
1、几何组成分析:
2、分层法:将附 属部分的支座反力 反向指其基本部分, 就是加于基本部分 的荷载;
B点: M B FP a D点: M 0.5 F a D P L L FQB FP FQD 0.5 FP
R FQB 0.5 FP R FQD 0.25 FP
A 弯矩M
剪力FQ
BL -1
-1
BR -1
0.5
C 0
DL 0.5
DE 0.5Leabharlann E 0F -0.25
-0.25
【例3.2 】
试求图示梁 的内力图
FP
A B C D E F
a
2a
a
2a
a
解:
Step1:分层求支反力。
对ABC部分:
FP
A B C D E F
MB 0 Y 0
FRC 0.5FP FRB 1.5FP
FP
A B C
对CDE部分: M D 0 FRE 0.25FP
FRC
M max
x 0.1716 l
少求或不用求支座反力绘结构的内力图
例1:绘内力图,并求各支座反力。
1、根据内力图与荷载 的微分关系,直接绘出 A 结构的弯矩图; 2、根据已经绘出的弯 矩图,采用微分关系或 杆件的平衡条件绘出剪 力图; 3、根据结点的平衡 条件,可求出结点的 支座反力;各支座反 力值也可直接从剪力 图上竖标突变值得到。
§3-2 静定多跨梁
一、定义及常用形式
多跨静定梁:由若干根梁用铰连接而成、用来跨越几个相连跨度的静定梁。
无铰跨和两铰跨交替 出现
除第一跨外,其余各 跨皆有一铰
前两种方式组合
二、几何构造特点及受力特点
主梁或基本部分 1、几何组成 不依赖其它部分的存在,本身就 能独立地承受荷载并能维持平衡 的部分 需要依赖其它部分的支承才可以 承受荷载并保持平衡的部分