单相半波整流可控电路(纯电阻,阻感,续流二极管)
单相半波桥式整流电路
-
u
2
电阻负载的特点:电压与电流成正比, b)
0
wt 1
p
2pLeabharlann wt两者波形相同。
u
g
c)
★ 两个重要的基本概念:
0
wt
u
d
触发延迟角:从晶闸管开始承受正向 d)
0a
q
wt
阳极电压起到施加触发脉冲止的电角
u
VT
度,用a表示,也称触发角或控制角。 e)
0
wt
导通角:晶闸管在一个电源周期中处
于通态的电角度,用θ 表示 。
2)带阻感负载的工作情况
电感性负载更为多见,如电机
及励磁绕组等。 阻感负载的特点:电感对电流 变化有抗拒作用,使得流过电 感的电流不发生突变。
u2
b)
0
wt1
p
ug
c) 0
ud
d) 0a id
e) 0
u VT
+ q
f) 0
2p
wt
wt +
wt
wt
wt
图2-2 带阻感负载的 单相半波电路及其波形
5
单相半波可控整流电路
p
2p
wt
变但瞬时值变化的脉动直流,其
u
g
波形只在u2正半周出现,故称 c) 0
wt
“半波”整流。
u
d
基本数量关系
d)
0a
q
wt
Ud
1
2p
p a
2U2 sin wtd (wt)
u
VT
e) 0
wt
0.45U
2
1
cos 2
单相半波可控整流电路
单相半波可控整流电路仿真1.纯电阻负载仿真模型:电路参数:触发角:0°输出电压波形:谐波分析触发角:30°输出电压波形:谐波分析触发角:60°输出电压波形:谐波分析2.阻感负载仿真模型:触发角:0°(1)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(2)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(3)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析触发角:60°(4)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(5)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(6)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析3.带续流二极管的阻感负载仿真模型:触发角:0°:(7)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(8)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(9)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析触发角:60°:(10)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(11)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(12)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析分析:随着触发角的增大,晶闸管在一个周期内的导通时间变短,输出电压为正值的时间相应变短,因此输出电压平均值减小(三种模型都是这样)。
纯电阻负载模型中,当触发角为0°,输出电压波形为规则的正弦半波,所以高次谐波中几乎没有奇次谐波,只含有少量的偶次谐波,随着触发角增大的,波形畸变程度越大,高次谐波含量增加,因此波形畸变率增大,而因为晶闸管导通角变小,输出电流脉动程度相应减小。
阻感负载模型中,随电感增大,输出电压中高次谐波含量降低,波形畸变率从而减小,同时由于续流能力更强,输出电压为负值的时间增大,因此输出电压平均值减小,因其阻碍电流变化的能力变强,电流脉动程度减小;电阻越大,在续流过程中电流衰减越快,输出电压波形畸变程度越大,因此波形畸变率增大,输出电压平均值增大,而电阻越大,输出电流幅值越小,脉动程度相应减小在有续流二极管的阻感负载模型中,由于电感和电阻大小不再影响输出电压波形,故输出电压与电感和电阻大小无关。
单相半波可控整流电路实验报告
一、实验目的1. 理解单相半波可控整流电路的工作原理。
2. 掌握单结晶体管触发电路的调试方法。
3. 研究单相半波可控整流电路在不同负载条件下的工作特性。
4. 计算整流电压和整流电流的平均值及电流的有效值。
二、实验原理单相半波可控整流电路主要由变压器、晶闸管、负载电阻和触发电路组成。
晶闸管在触发电路的控制下导通,实现交流电到直流电的转换。
通过调节触发电路,可以改变晶闸管导通的时刻,从而改变输出电压的平均值。
三、实验仪器与设备1. 单相半波可控整流电路实验板2. 直流电压表3. 直流电流表4. 交流电压表5. 单结晶体管触发电路6. 电源7. 负载电阻四、实验步骤1. 搭建实验电路:根据实验板上的接线图,连接变压器、晶闸管、负载电阻和触发电路。
2. 调试触发电路:调整触发电路的参数,确保晶闸管在适当的时刻导通。
3. 观察波形:使用示波器观察晶闸管各点电压波形,记录波形特征。
4. 测试不同负载:更换不同阻值的负载电阻,观察输出电压和电流的变化。
5. 计算平均值和有效值:根据实验数据,计算整流电压和整流电流的平均值及电流的有效值。
五、实验结果与分析1. 电阻性负载:当负载为电阻时,输出电压和电流的平均值与晶闸管导通角度成正比。
随着控制角增大,输出电压降低,输出电流增大。
2. 电感性负载:当负载为电感性时,输出电压和电流的平均值与晶闸管导通角度成反比。
随着控制角增大,输出电压升高,输出电流降低。
3. 续流二极管:在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
六、实验结论1. 单相半波可控整流电路可以实现交流电到直流电的转换,输出电压和电流的平均值与晶闸管导通角度有关。
2. 在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
3. 实验结果与理论分析基本一致。
七、实验心得1. 通过本次实验,加深了对单相半波可控整流电路工作原理的理解。
2. 掌握了单结晶体管触发电路的调试方法,提高了动手能力。
单相半波可控整流电路
1
u
2
u
d
R
触发延迟角:从晶闸管 开始承受正向阳极电压 起到施加触发脉冲止的 电角度,用 a 表示,也称触 发角或控制角。
u b)
2
0 u c) 0 u d) 0 u VT e) 0
d g
wt
1
p
2p
wt
wt
a
q
wt
wt
导通角:晶闸管在一个电源周 期中处于通态的电角度,用θ表 示。
2-3
基本数量关系
41.77 Display
Voltage Measurement1 Mean Value
脉冲发生器设定:周期0.02s, 宽度10%,相位滞后 90/360*0.02s,幅值10
输出电压平均值 (直流电压)
2-17
单相半波可控整流阻感负载a=90度电流断续的仿真波形
输出电压
输出电流
2-18
3.1.2 单相桥式全控整流电路
a)
u1
u2
阻感负载的特点:电流不能 发生突变 电力电子电路的一种基本分 b) 析方法 通过器件的理想化,将电路 c) 简化为分段线性电路,分段进 行分析计算 对单相半波电路的分析可基 d) 于上述方法进行:当VT处于 断态时,相当于电路在VT处 e) 断开,id=0。当VT处于通态时, 相当于VT短路 f)
ห้องสมุดไป่ตู้wt
f) O uV T O
wt
I VDR rms
1 2p
p
2p a
p a g) I d (wt ) Id 2p
2 d
wt
2-13
单相半波可控整流电路的特点
a)
T u1
VT uV T u2
单相半波可控整流电路阻感性负载加续流二极管
晶闸管和续流二极管承受的最大正反向电压均为电 源电压的峰值。
U TM 2U 2
单相半波可控整流器的优点是电路简单,调整方 便,容易实现。但整流电压脉动大,每周期脉动 一次。变压器二次侧流过单方向的电流,存在直 流磁化、利用率低的问题,为使变压器不饱和, 必须增大铁心截面,这样就导致设备容量增大。
2.1.3 单相半波可控整流电路 (阻感性负载加续流二极管) 1、电路结构
电感性负载加 续流二极管的 电路如图所示。
图2-5
2、工作原理
1)在电源电压正半波,电压u2>0,晶闸管uAK>0。在 ωt=α处触发晶闸管,使其导通,形成负载电流id,负载上 有输出电压和电流,此间续流二极管VD承受反向阳极电 压而关断。 2)在电源电压负半波,电感感应电压使续流二极管VD导 通续流,此时电压u2 <0, u2通过续流二极管VD使晶闸 管承受反向电压而关断,负载两端的输出电压为续流二极 管的管压降,如果电感足够大,续流二极管一直导通到下 一周期晶闸管导通,使id连续,且id波形近似为一条直线。
4、基本数量关系
1)输出电压平均值Ud
1 Ud 2π
2U 2 sin tdt
2U 2 1 cos 1 cos 0.45U 2 π 2 2
2)输出电流平均值Id
Ud U 2 1 cos Id 0.45 R R 2
3)晶闸管的电流平均值IdT
I dT π - I 2π d
3、波形
30
0
图2-6
600
1200
900
图2-6
1500
电感性负载加续流二极管后,输出电压波形与电 阻性负载波形相同,续流二极管可起到提高输出 电压的作用。在大电感负载时负载电流波形连续 且近似一条直线,流过晶闸管的电流波形和流过 续流二极管的电流波形是矩形波。 对于电感性负载加续流二极管的单相半波可控整 流器移相范围与单相半波可控整流器电阻性负载 相同,为0~180º ,且有α+θ=180º 。
第2章单相可控整流电路
带续流二极管的工作情况
a)
u1
u2
b) O ud
c) O id
d) O
iV T
e) O
iV D R f)
O uV T
g) O
T
VT
u2
uV T ud
t1
Id -
Id +
id
iV D R
L
VD R R
t t t t t
工作过程和特点:
(1)在U2的正半周,VDR 承受反向电压,不导通,不 影响电路的正常工作;
实际上很少应用此种电路; 分析该电路的主要目的在于利用其简单易
学的特点,建立起整流电路的基本概念。
二、单相桥式全控整流电路
带电阻负载的工作情况
晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。 在实际的电路中,一般都采用这种标注方法,即上面为1、3, 下面为2、4。
VT1和VT3组成共阴极组,加触发脉冲后,阳极电位高者导通。 VT2和VT4组成共阳极组,加触发脉冲后,阴极电位低者导通。 触发脉冲每隔180°发一次,分别触发VT1、VT4、VT2、VT3。
T
i2
a
u1
u2
T
b
V
1
T
V
3
id
L ud
R
4
2
V
V
u2
a)
O
t
ud
O id
i
V
T
1
O
,4
iV
T
2
O
,3
O i2
O u V T1 ,4
O
Id Id
Id Id
t Id
t t t t
单相半波可控整流电路实验_2
一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。
(3)了解续流二极管的作用。
二、实验所需挂件及附件5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、实验线路及原理单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。
将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
图3-6单相半波可控整流电路四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。
单向半波可控整流电流MATLAB仿真实验报告
单向半波可控整流电流MATLAB仿真实验报告单向半波可控整流电流MATLAB仿真一、单相半波可控整流电路(电阻性负载)1. 电路的结构与工作原理(1) 电路结构图1-1是单向半波可控整流电路原理图,晶闸管作为开关元件,变压器T起变换电压和隔离的作用。
uTidTuGu1u2 Rud图1-1 单向半波可控整流电路(电阻性负载)(2) 工作原理1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
直到电源电压u2的下一周期的正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2. 建模(1) 元器件及功能简介1) 晶闸管:晶闸管是一种能够通过控制信号控制其导通,但不能控制其关断的半控型器件。
其导通时刻可控,满足了调压要求。
它具有体积小、重量轻、效率高、动作迅速、维护简单、操作方便和寿命长等特点,获得了广泛的应用。
晶闸管也有许多派生器件,如快速晶闸管(FST)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)和光控晶闸管(LATT)等。
晶闸管导通必须同时具备两个条件:一、晶闸管主电路加正向电压。
二、晶闸管控制电路加合适的正向电压。
图1-2 单相半波可控整流电路(电阻性)3. 仿真结果分析1) 延迟角α=30 º,负载R=1Ω,L=0H,peakamplitude=10V,phase=0deg,frequency=50HZ;图1-3 α=30º单相半波可控整流仿真结果(电阻性负载时)2) 延迟角α=60 º,负载R=1Ω;L=0H,peakamplitude=10V,phase=0deg,frequency=50HZ;图1-4 α=60º单相半波可控整流仿真结果(电阻性负载时)3) 延迟角α=90 º负载R=1Ω;L=0H;peakamplitude=10V;phase=0deg;frequency=50HZ;图1-5 α=90º单相半波可控整流仿真结果(电阻性负载时)4. 小结可以看出,仿真波形与理论分析波形、实验波形结果非常相符,通过改变触发脉冲控制角α的大小,直流输出电压ud的波形发生变化,负载上的输出平均值发生变化。
单相相控整流电路
31
单相桥式半控整流电路 ——阻感性负载 假设负载中电感很大, L R 且电路已工作于稳态。 注意: 若没有续流二极管的情况: 1输出电压不出现负值 2 容易失控
32
b)
2
O ud
t t
Id Id
O id i VTO i VD1
4
t
Id Id
i VTO i VD 2
3
输出在0.9 U2~0之间连续可调; 控制角移相范围0 ~ π。 ②输出电流平均值 U
U 2 1 cos Id 0.9 . R R 2
d
22
单相桥式全控整流电路
③晶闸管电流平均值
I dVT
Id U 2 1 cos 0.45 . 2 R 2
④变压器二次侧电流有效值I2 , 输出电流的有效值I
1
2U 2sin td t
2U 2
cos 0.9U 2cos
输出在0.9U 2 ~ 0之间连续可调; 控制角移相范围0 ~π/2。 直流平均电流Id
Ud Id R
26
单相桥式全控整流电路
晶闸管电流平均值:
I dVT
Id U2 0.45 .cos 2 R
1 2
2U 2sinωt 2 U2 1 ( ) d(ωt ) sin2 R 2 R 2
单相半波可控整流电路 ——基本数量关系 ⑤变压器二次侧电流有效值I 2,输出电流的有效值I
I 2 I I VT U2 1 sin2 2R 2
1,4
t t t t t
O
2,3
O i2 u O
单相半波可控整流电路的特点
c
ost
a
2U 2
2
1
cosa
0.45U 2
1
cosa
2
Ud 0.45 1 cosa
U2
2
输出电流平均值Id:
Id
Ud R
0.45 U2 R
1 cosa
2
(2) 输出电压有效值U与输出电流有效值I
在计算选择变压器容量、晶闸管额定 电流、熔断器以及负载电阻的有功功率 等时,均须按有效值计算。
〖例〗 如图所示单相半波可控整流器,电阻性 负载,电源电压u2为220V,要求的直流输出 电压为50 V,直流输出平均电流为20A
试计算:
(1) 晶闸管的控制角。
(2) 输出电流有效值。
(3) 电路功率因数。
(4) 晶闸管的额定电压和额定电流。
ud
解 (1) 则α=90º
cosa 2Ud 1 2 50 1 0
S U2I 2π
π
显然功率因数与α相关,α=0º cosφ =1。
2. 大电感负载
(1). 工作原理 电压正半波,ωt=α处晶闸管VT1、VT4导
通 , ud=u2 。 晶 闸 管 VT2 、 VT3 关 断 状 态 。 当ωt=π 时,电源电压自然过零,电感感
应电势使晶闸管继续导通。
单相半波可控整流器图和工作波形(电感性负载)
u2
ug ud uT id id
u1
u2
uT
ud
在ωt=0到α期间,晶闸管阳极和阴极之间的 电压uT大于零,但晶闸管门极没有触发信 号,晶闸管处于正向关断状态,输出电压、 电流都等于零。
在ωt=α时,门极有触发信号,晶闸管被触 发导通,负载电压ud= u2。
单相半波可控整流电路
2、加续流二极管时
(1)工作原理
u2>0时,uT>0,在ωt=α处触发晶闸管导 通,负载上有输出电压和电流,续流二极 管VD承受反向电压而处于断态。
u2<0时,通过续流二极管VD使VT承受 反向电压而关断。电感的感应电压使VD 承受正向电压导通续流,ud仅为续流二 极管的管压降(理想情况下为零)。 如果电感足够大,续流二极管一直导通 到下一周期晶闸管导通,使id连续。
答案
答案
α=89°
180 89 91 1.59rad
S U2 I 4840V A
PF P UI sin 2 0.499 S U2 I 2 4
UTn (2 ~ 3)UTm (2 ~ 3) 311 622 ~ 933V
图2.2.1 单相半波可控整流
2、工作原理 在电源正半周 0<ωt<α期间,T正向阻断,负载上电压ud为零。 ωt =α 时刻,T被触发导通,负载上电压ud等于电 压电压u2 ωt=π 时刻,u2电压过零,T关断。 在的负半周 T承受反压,一直处于反相阻断状态,全部加在T两 端。 直到下一个周期的触发脉冲到来后,T又被触发导通, 电路工作情况又重复上述过程。
(3) 续流二极管的电流平均值IdD与续流二极 管的电流有效值ID
I dD π Id 2π
1 ID 2
0
I d (t ) Id 2
2 d
小结:单相半波可控整流电路特点
优点: 线路简单,调整方便; 缺点: (1)输出电压脉动大,负载电流脉动大。 (2)整流变压器次级绕组中存在直流电流分量, 使铁芯磁化。若不用变压器,则交流回路有直流 电流,使电网波形畸变引起额外损耗。 应用: 单相半波可控整流电路只适于小容量、波形要 求不高的场合。
单相半波可控整流电路
Um 2U2 2 220 311V
考虑(2~3)倍安全裕量,晶闸管的额定电压为
UTN (2 ~ 3)U m (2 ~ 3)311 622 ~ 933 V
选取晶闸管型号为 KP100-7F晶闸管。
3.1 单相半波可控整流电路
T
VT
id
二、电感性负载
a) u1
uVT u2
L ud
UTM 2U 2
3.1 单相半波可控整流电路
〖例3-1〗 如图所示单相半波可控整流器,电阻性负
载,电源电压U2为220V,要求的直流输出最高平
均电压为50 V,直流输出平均电流为20A 。 试计算: (1) 晶闸管的控制角; (2) 输出电流有效值; (3) 电路功率因数; (4) 晶闸管的额定电压和额定电流。
断状态,负载电流为零,负载上没有输出电压,直到电源
电压u2的下一周期,直流输出电压ud和负载电流id的波形相
位相同。
通过改变触发角α的大小,直流输出电压ud的波形发生变化, 负载上的输出电压平均值发生变化,显然α=180º时,Ud=0。 由于晶闸管只在电源电压正半波内导通,输出电压ud为极
性不变但瞬时值变化的脉动直流,故称“半波”整流。
3.1 单相半波可控整流电路
首先,引入两个重要的基本概念:
• 触发角α :从晶闸管开始承受正向阳极电压起到施加 发脉冲止的电角度,用α表示,也称触发角或控制角。 • 导通角θ :晶闸管在一个电源周期中处于通态的电角度 称为导通角,用θ表示 。
在单相半波可控整流电阻性负载电路中,
移相角α的控制范围为:0~π, 对应的导通角θ的可变范围是π~0, 两者关系为 α+θ=π。
图3-1 单相半波可控整流电路 (电阻性负载)及波形
单相半波可控整流电路(阻感性负载加续流二极管)
03 续流二极管
续流二极管的作用
防止反向电流
在晶闸管关断期间,如果没有续流二极管,阻感性负载中的电流会反向流动, 可能导致设备损坏。续流二分反向电压,从而降低加在晶闸管上的反向电压,保护 晶闸管不受过电压的损坏。
续流二极管的选择与使用
测试设备
万用表、示波器、电源等。
测试结果分析
观察整流电路的输出电压和电流波形,分析其性能指标,并与理论 值进行比较。
THANKS FOR WATCHING
感谢您的观看
耐压要求
选择续流二极管时,应考虑其反向击 穿电压是否满足电路需求。
电流容量
根据阻感性负载的电流大小选择合适 的电流容量的续流二极管,以确保其 能够承受较大的电流。
开关频率
在高频开关状态下使用的二极管应具 有良好的开关性能和较小的反向恢复 时间。
安装方式
续流二极管应安装在散热良好的地方, 并确保其连接牢固可靠。
详细描述
在整流器导通期间,输入电压施加到阻感负载上,产生正向的电压波形。当整流 器截止时,续流二极管导通,将负载电流继续传递,此时电压波形为零。
电流波形分析
总结词
在单相半波可控整流电路中,电流波形在整流器导通期间呈 现矩形波形状,而在整流器截止期间呈现零电流。
详细描述
在整流器导通期间,电流从输入电源流向阻感负载,形成矩 形波形状。当整流器截止时,续流二极管导通,负载电流通 过二极管继续流动,此时电流波形为零。
乎没有无功损耗。
感性负载
02
主要特点是电流滞后于电压,功率因素较低,会产生较大的无
功损耗。
阻感性负载
03
同时具有电阻性和感性负载的特点,电流和电压之间有一定的
相位差,功率因素较低。
单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)
电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。
1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
2. 建模................................................................................................. 错误!未定义书签。
3. 仿真结果与分析............................................................................. 错误!未定义书签。
4. 小结................................................................................................. 错误!未定义书签。
三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
单相半波整流可控电路(纯电阻,阻感,续流二极管)
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
单相半波可控整流电路建模仿真实训
对于电感性负载加续流二极管的单相半波可控整流器移相范围与单相半波可控整流器电阻性负载相同,为0~180º,且有α+θ=180º。
图3-3
图3-4
图3-5
图3-6
图3-7
(
在电源电压正半波,电压u2>0,晶闸管uAK>0。在ωt=α处触发晶闸管,使其导通,形成负载电流id,负载上有输出电压和电流,此间续流二极管VD承受反向阳极电压而关断。
在电源电压负半波,电感感应电压使续流二极管VD导通续流,此时电压u2<0,u2通过续流二极管VD使晶闸管承受反向电压而关断,负载两端的输出电压为续流二极管的管压降,如果电感足够大,续流二极管一直导通到下一周期晶闸管导通,使id连续,且id波形近似为一条直线。
图1-2
仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间0.05s,如图1-3。
图1-3
脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(1/50)x(n/360)s,如图1-4
图1-4
电源参数,频率50hz,电压220v,如图1-5
脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(1/50)x(n/360)s,如图1-4
电源参数,频率50hz,电压220v,如图1-5
晶闸管参数,如图1-6
电感参数设置如2-3。
(3)
设置触发脉冲α分别为0°、30°60°、90°、120°。与其产生的相应波形分别如图3-3、图3-4、图3-5、图3-6、图3-7。在波形图中第一列波为脉冲波形,第二列波为负载电流波形,第三列波为晶闸管电压波形,第四列波为负载压波形,第五列波为电源电压波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结:............................................................................................... 错误!未定义书签。
四. 总结:………………………………………………………………………………….错误!未定义书签。
图 1 单相半波可控整流电路(纯电阻负载)的电路原理图 (1)图 2 单相半波可控整流电路(纯电阻负载)的MATLAB仿真模型.. 错误!未定义书签。
图 3 α=30°单相半波可控整流电路仿真结果(纯电阻负载) .... 错误!未定义书签。
图 4 α=45°单相半波可控整流电路仿真结果(纯电阻负载) .... 错误!未定义书签。
图 5 α=90°单相半波可控整流电路仿真结果(纯电阻负载) .... 错误!未定义书签。
图 6 α=120°单相半波可控整流电路仿真结果(纯电阻负载) ... 错误!未定义书签。
图 7 α=180°单相半波可控整流电路仿真结果(纯电阻负载). . . . . . . . . . . . . . . . . 错误!未定义书签。
图 8 单相半波可控整流电路(阻-感性负载)的电路原理图....... 错误!未定义书签。
图9 单相半波可控整流电路(阻-感性负载)的MATLAB仿真模型 .. 错误!未定义书签。
图10 α=30°单相半波可控整流电路仿真结果(阻-感性负载) .. 错误!未定义书签。
图 11 α=60°单相半波可控整流电路仿真结果(阻-感性负载) .. 错误!未定义书签。
图 12 α=90°单相半波可控整流电路仿真结果(阻-感性负载) .. 错误!未定义书签。
图 13 α=120°单相半波可控整流电路仿真结果(阻-感性负载). . . . . . . . . . . . . . .错误!未定义书签。
图 14 单相半波可控整流电路(阻-感性负载加续流二极管)的电路原理图错误!未定义书签。
图 15 单相半波可控整流电路(阻-感性负载加续流二极管)的MATLAB仿真模型错误!未定义书签。
图 16 α=30°单相半波可控整流电路仿真结果(阻-感性负载加续流二极管)错误!未定义书签。
图 17 α=60°单相半波可控整流电路仿真结果(阻-感性负载加续流二极管)错误!未定义书签。
图 18 α=90°单相半波可控整流电路仿真结果(阻-感性负载加续流二极管)错误!未定义书签。
图 19 α=120°单相半波可控整流电路仿真结果(阻-感性负载加续流二极管) 错误!未定义书签。
单相半波可控整流电路仿真建模分析一、单相半波可控整流电路(电阻性负载)1.电路的结构与工作原理1.1电路结构若用晶闸管T替代单相半波整流电路中的二极管D,就可以得到单相半波可控整流电路的主电路,如图1-1电路图所示。
设图中变压器副边电压u2为50HZ正弦波,负载R L为电阻性负载。
图1 单相半波可控整流电路(纯电阻负载)的电路原理图1.2 工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
1.3基本数量关系a.直流输出电压平均值2cos 145.02cos 12)(sin 221222απωωπαπα+=+==⎰U U t d t U U d b.输出电流平均值2cos 1.45.02a R U R U I d d +== c.负载电压有效值πππ242sin .2a a U U -+= d.负载电流有效值πππ242sin 2a a R U I -+= e.晶闸管电流平均值2cos 1.45.02a R U R U I d dT +== 2. 单相半波可控整流电路建模2.1模型参数设置a.晶闸管模型参数设置建立一个新的模型窗口,打开电力电子模块组,复制一个晶闸管到模型窗口中;打开晶闸管参数设置对话框,设置Ron=0.001Ω,Lon=0H,Uf=0.8V;Ic=0A,Rs=10Ω,Cs=4.7e-6F。
如图所示。
b.打开电源模块组,复制一个电压源模块到模型窗口中,打开参数设置对话框,设置为:幅值5V,初相位0,频率是50HZ的正弦交流电。
如图所示。
c. 打开元件模块组,复制一个串联RLC元件模块到模型窗口中,打开参数设置对话框,把RLC里的电感设置为0,电容设置为inf,电阻设置为1.2Ω。
如图所示。
d.打开测量模块组,复制一个电压测量装置以测量负载电压Ud波形。
e.打开测量模块组,复制一个电流测量装置以测量负载电流Id波形。
f.打开测量模块组,复制一个电压测量装置以测量变压器副边电压U2波形g.打开测量模块组,复制一个电压测量装置以测量晶闸管两端电压Ut波形。
h.把脉冲发生器的输出口接到示波器上以测量脉冲波形。
i.打开Sinks模块组,复制一个示波器装置以显示电路中各物理量的变化关系,并按要求设置输入端口的个数。
如图所示。
示波器参数设置5个输入端j.建立给晶闸管提供触发信号的同步脉冲发生器(Pulse Generater)模型。
参数设置为:脉冲幅值为4V,周期为0.02s,脉宽占整个周期的10%,相位延迟(1/50)*(30/360)s=1/600s(即α=30°)或者(1/50)*(45/360)s=1/400s(即α=45°)。
或者(1/50)*(90/360)s=1/200s(即α=90°)。
’或者(1/50)*(120/360)s=2/300s(即α=120°)。
如图所示。
脉冲发生器参数设置2.2 全部模块完美连接后,可以得到仿真电路。
如图所示。
图2单相半波可控整流电路(纯电阻负载)的MATLAB仿真模型3 仿真结果与分析下列所示波形图中,从上到下分别代表变压器副边U2上的电压波形、脉冲的波形、电阻上的电压波形、电阻上的电流波形、晶闸管VT上的电压波形。
下列波形分别是延迟角α为30°、45°、90°、120°, 180°时的波形变化。
a.当延迟角α=30°时,波形图如图所示:图3 α=30°单相半波可控整流电路仿真结果(纯电阻负载) 当延迟角α=45°时,波形图如图所示:图4 α=45°单相半波可控整流电路仿真结果(纯电阻负载) c. 当延迟角α=90°时,波形图如图所示图5 α=90°单相半波可控整流电路仿真结果(纯电阻负载) d. 当延迟角α=120°时,波形图如图所示:图6 α=120°单相半波可控整流电路仿真结果(纯电阻负载) e. 当延迟角α=180°时,波形图如图所示:图7 α=180°单相半波可控整流电路仿真结果(纯电阻负载)4小结在此试验中,我们可以看出通过改变触发角α的大小,直流输出电压,负载上的输出电U=0 由于晶闸管只在电源电压正半波压波形都发生变化,显然α=180°时,平均电压dU为极性不变但瞬时值变化的脉动直流,故称半波整流。
单(0~ )区间导通,输出电压d相半波可控整流电路中的输出电压与电流的波形相同,由于是电阻负载,电阻对电流没有阻碍作用,没有续流的作用,不会产生反向电流,晶闸管的电压没有负值。
电力电子变流技术的理论计算比较繁琐且很难得到准确的计算结果,从上述系统仿真结果波形可以看出,利用仿真软件进行仿真,波形准确、直观,利用该方法还能对非常复杂的电路、电力电子变流系统进行建模仿真。