简单易懂的灰色关联度计算
灰色关联度的原理及应用
灰色关联度的原理及应用1. 灰色关联度的定义灰色关联度是一种用来评价因素之间关联程度的方法,通过将影响因素的数据转化为灰色数列,在此基础上计算各因素之间的关联度。
灰色关联度分析可以在信息不完全、样本量较小或数据质量较差的情况下,评价因素间的关联程度,广泛应用于科学研究、经济管理、工程技术等领域。
2. 灰色关联度的计算方法计算灰色关联度的过程主要包括以下几个步骤:2.1 数据标准化首先,需要对采集到的原始数据进行标准化处理。
标准化可以消除因各个数据量级不同而带来的影响,使不同指标具有可比性。
2.2 构建灰色关联数列将标准化后的数据序列构建成灰色数列,可以采用GM(1,1)模型进行预测。
GM(1,1)模型是一种常用的灰色预测模型,通过建立灰微分方程来对数列进行预测。
2.3 计算灰色关联度通过计算各因素之间的关联度,可以评价其关联程度。
常用的方法有关联系数、相关系数、灰色关联度等。
3. 灰色关联度的应用灰色关联度在实际应用中具有广泛的价值,以下是一些常见的应用场景:3.1 经济管理在经济管理领域,灰色关联度可以用来评估经济指标之间的关联程度,为决策提供科学依据。
例如,可以通过对GDP、人均收入、消费水平等指标进行灰色关联度分析,评估经济发展的关键因素。
3.2 工程技术在工程技术领域,灰色关联度可以用来评价工程指标之间的关联性,为工程优化提供支持。
例如,在石油勘探中,可以通过对地震数据、测井数据、岩心实验数据等进行灰色关联度分析,确定有效的油藏储量。
3.3 科学研究在科学研究中,灰色关联度可以用来研究不完全信息下的因素关联。
例如,在气候变化研究中,可以通过对气温、降水量、气压等数据进行灰色关联度分析,探索气候变化的驱动因素。
4. 灰色关联度的优势与局限灰色关联度作为一种关联度评价方法,具有以下优势:•可以在数据不完全的情况下进行关联度分析,具有较好的鲁棒性。
•可以应用于多个领域,例如经济管理、工程技术、科学研究等。
灰色关联度计算公式
灰色关联度计算公式
灰色关联度是由日本学者 Deng 发明的用作测度系统之间关联程度的数学工具,它是互联网上最重要的数据分析及决策指标之一。
它可以有效地抓取两类系统之间的特征,反映他们之间关系的变化,量化两类系统个体之间的关联度程度、动态特征及稳定性,以分析及识别系统中不同对象间的相互关系。
灰色关联度分析的具体表示形式是:分析 A、B 两类系统的互联关系,可以根
据其各自的变量值,进行相互依赖、变换、叠加或引用的计算,来计算两类系统之间的关联度。
灰色关联度的公式也很简单:∆R=XAYA+XBYB,其中 XA 、YB 分别为
A类、B类的变量值,当∆R值越大,表示这两类系统之间的关联性越强。
灰色关联度在互联网领域众多应用之一是深度学习,算法中,×A、YB两者代
表不同但具有内在联系的特征,通过灰色关联度得到的∆R代表其间的关联程度,
常被用来衡量算法的性能及准确性,也有效地增加了机器学习的预测及决策准确度。
此外,灰色关联度在互联网领域还可以用作监控系统运行状态,监测用户行为
及指标、帮助企业细致把控和运营,在众多智能应用及金融风控中发挥着重要作用。
总而言之,灰色关联度是一种非常重要的系统数据分析及决策工具,它可以有
效帮助系统内建立联系,加强企业的管控和运营,也是众多互联网,智能应用,机器学习及金融风控中不可或缺的重要元素。
灰色关联度公式
灰色关联度公式灰色关联度分析方法是一种多因素间的关联度分析方法,适用于各种多因素间的关联度分析问题。
该方法在解决多因素间的关联度分析问题时,不需要事先建立准确的模型,也不需要事先明确各因素之间的关系,只需要给出各因素对应的历史数据序列即可。
灰色关联度公式是灰色关联度分析方法的核心,它通过比较多个因素的发展规律,评估它们之间的关联程度。
灰色关联度公式如下:$$\rho_ij = \frac{{min|y_{0i} - y_{0j}| + \Delta }}{{max|y_{0i} - y_{0j}| + \Delta }}$$其中,$\rho_ij$表示第$i$个因素和第$j$个因素的关联度,$y_{0i}$和$y_{0j}$分别表示第$i$个因素和第$j$个因素的数据序列,$\Delta$是关联度分析中的常数,用于处理零值和负值。
通过计算灰色关联度公式,可以得到各个因素间的关联度,从而进行比较和排序。
关联度越高,说明因素间的关联程度越大,反之,关联度越低,说明因素间的关联程度越小。
在实际应用中,灰色关联度分析方法常用于评估各种指标的综合质量,分析影响因素的重要性,确定影响因素的权重等。
下面是一些常见的应用场景和参考内容:1. 经济分析:可以使用灰色关联度分析方法分析影响经济增长的各个因素之间的关联程度,如GDP、消费水平、投资等因素间的关联度。
2. 产业分析:可以使用灰色关联度分析方法分析不同产业之间的关联程度,评估各个产业在整体产业结构中的重要性。
3. 市场营销:可以使用灰色关联度分析方法分析市场营销活动中各个因素的关联度,评估不同市场营销策略的效果。
4. 环境评价:可以使用灰色关联度分析方法评估环境影响因素之间的关联程度,确定主要的环境影响因素和其权重。
5. 工程管理:可以使用灰色关联度分析方法分析工程进度、质量、成本等因素之间的关联度,确定影响工程管理的主要因素和其权重。
总之,灰色关联度分析方法通过灰色关联度公式,可以帮助我们评估多个因素间的关联程度,并为决策提供依据。
灰色关联度 matlab
灰色关联度matlab
灰色关联度是一种用于研究因素之间关联程度的方法,常用于灰色系统理论。
在Matlab 中,你可以使用以下步骤计算灰色关联度:
1.数据准备:将你的数据整理成矩阵形式,其中每一行代表一个因素,每一列代表不同的观测值。
2.数据标准化:对数据进行标准化,确保所有的数据都在相似的尺度上。
你可以使用Matlab内置的`zscore`函数来进行标准化。
```matlab
%假设data是你的数据矩阵
standardized_data=zscore(data);
```
3.计算关联系数:计算标准化后数据的关联系数。
关联系数通常使用绝对值来计算。
```matlab
correlation_matrix=abs(corr(standardized_data));
```
4.计算灰色关联度:利用关联系数计算灰色关联度。
灰色关联度的计算方式可以根据具体的算法来确定,例如可以使用灰色关联度分析法中的一种。
假设你采用灰色关联度分析法中的一种算法,比如最小值法:
```matlab
%假设correlation_matrix是关联系数矩阵
gray_relation_degree=1./(1+correlation_matrix);
```
5.结果分析:分析计算得到的灰色关联度矩阵,了解因素之间的关联程度。
请注意,以上步骤是一种简单的实现方式,具体的计算方法可能会根据你选择的灰色关联度算法而有所不同。
确保在实际应用中了解所使用算法的具体计算步骤。
灰色关联分析
灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
(整理)灰色关联度分析法
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
灰色关联分析(算法步骤)
灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联分析法原理及解题步骤
灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。
两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
灰色关联分析
灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
灰色关联分析法原理及解题步骤
灰色关联分析法原理及解题步骤——-—-————--—-—-研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度-—曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1>曲线越接近,相应序列之间的关联度就越大,反之就越小2>灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列--影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1)初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2)均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3)区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi)参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ∈(0,1),常取0。
5。
实数第二级最小差,记为Δmin. 两级最大差,记为Δmax. 为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k).所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较.因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小.将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣"关系。
灰色关联度方法介绍
灰色关联度方法介绍一、什么是灰色关联度方法1.1 灰色关联度方法的定义灰色关联度方法是一种用于分析、预测和决策的数学方法,由我国科学家陈彦斌于1988年提出。
它是一种相对较新的分析方法,可以应用于各种具有不确定性和模糊性的问题,特别在工程和管理领域得到广泛应用。
1.2 灰色关联度方法的特点灰色关联度方法的特点主要包括以下几个方面:1.适用范围广:灰色关联度方法可以用于处理不确定性、模糊性较强的问题,适用于各种实际情况。
2.简单易懂:灰色关联度方法基于数学模型,计算过程相对简单,容易理解和操作。
3.较强的应用性:灰色关联度方法可以广泛应用于决策分析、预测和优化等领域,并取得不错的效果。
二、灰色关联度方法的步骤2.1 确定比较对象与指标在应用灰色关联度方法进行分析前,首先需要明确比较的对象和相关指标。
比较对象可以是不同的产品、项目、方案等,指标可以是性能指标、经济指标、质量指标等。
2.2 数据标准化处理为了消除指标之间的量纲不同和取值范围不同的影响,需要对原始数据进行标准化处理。
常用的方法包括极差标准化法和零一标准化法。
2.3 计算关联系数和关联度通过计算比较对象之间指标的关联系数,可以得到相对于参考对象的关联度。
关联系数的计算公式为:R i=minmj=1|x i(j)−x0(j)|+ρ⋅maxmj=1|x i(j)−x0(j)||xi(j)−x(j)|+ρ⋅maxmj=1|xi(j)−x(j)|其中,R i表示第i个比较对象相对于参考对象的关联系数,x i(j)表示第i个比较对象的第j个指标值,x0(j)表示参考对象的第j个指标值,m表示指标的个数,ρ是一个平衡系数。
然后,可以通过计算关联系数的加权平均值得到关联度,关联度的计算公式为:R i‾=1m∑w jmj=1⋅R i(j)其中,R i‾表示第i个比较对象的关联度,w j表示第j个指标的权重。
2.4 确定排名根据计算得到的关联度,可以确定比较对象的排名。
数学建模——灰色关联度分析讲解
比较数列为:
从几何角度看,关联程度实质上是参考数列与比较数列曲线形状的相似程度。凡 比较数列与参考数列的曲线形状接近,则两者间的关联度较大;反之,如果曲线 形状相差较大,则两者间的关联度较小。因此,可用曲线间的差值大小作为关联 度的衡量标准。 则:
两极最大差与最小差:
关联系数:
式中 为分辩系数,用来削弱Δ(max)过大而使关联系数失真的影响。 人为引入这个系数是为了提高关联系数之间的差异显著性。
4、在第 4 列中 r 24=0.809 最大,表明科技对工业影响 最大,而 r 34=0.588 比较小,表明从全面来衡量,还没 有使科技投资与农村经济挂上钩,即科技投资针对的 不是农村需要的科技,r 64=0.584 更小, 表明科技对建 筑业的作用比农业还差; 5、第 3 列的元素普遍比较大,表明农业是个综合性行 业,需要其它方面的配合,例如: r 32=0.828 表明工业 发展能够较大地促进农业的发展。另外,r 35=0.735 表 明农业发展与交通发展也是密切相关的。
灰色关联度分析
何为灰色关联度分析?
如何计算? 有何应用?
灰色关联度分析
灰色系统
是指部分信息已知而部分信息未知的系统,灰色系 统理论所要考察和研究的是对信息不完备的系统,通过 已知信息来研究和预测未知领域从而达到了解整个系统 的目的。
关联度
关联度是事物之间、因素之间关联性大小的量度。它 定量地描述了事物或因素之间相互变化的情况,即变 化的大小、方向与速度等的相对性。如果事物或因素 变化的态势基本一致,则可以认为它们之间的关联度 较大,反之,关联度较小。
再进一步,当某一列元素大于其他列元素时,称 此列所对应的子因素为优势子因素;当某一行元素均 大于其他行元素时,称此行所对应的母元素为优势母 元素。如果矩阵 R 的某个元素达到最大,则此行所对 应的母元素被认为是所有母子因素中影响最大的。
灰色关联度excel计算方法
灰色关联度excel计算方法灰色关联度是一种常用的数学方法,用于评估各种因素之间的关联程度。
在Excel中,使用灰色关联度计算方法可以快速、简便地进行相关计算。
以下是灰色关联度Excel计算方法的详细说明:1. 准备数据。
首先需要将需要计算的因素数据整理成一个表格,每个因素占据一列,每个数据点占据一行。
需要注意的是,数据应该是同一维度的,如所有因素的数据应该都是时间序列数据或者都是空间位置数据等。
2. 计算均值和标准差。
对每个因素的数据进行均值和标准差的计算。
可以使用Excel自带的AVERAGE和STDEV函数来计算。
3. 标准化数据。
将每个因素的数据进行标准化处理,即减去该列数据的均值,然后除以该列数据的标准差。
可以使用Excel的标准化函数来实现,例如Z.TEST或者STANDARDIZE函数。
4. 计算关联系数。
将标准化后的数据进行计算,计算每个因素与其他因素之间的关联系数。
可以使用Excel的CORREL函数来计算。
5. 计算灰色关联度。
根据计算出的关联系数,使用灰色关联度计算公式来计算灰色关联度。
灰色关联度计算公式为:灰色关联度 = (∑(1-k) * min(|x1i - x2i| / |x1i + x2i|)) / k其中,k为关联系数的数量,x1i和x2i分别表示两个因素在第i个数据点的标准化后的数据。
6. 结果解释。
灰色关联度的值越大,表示两个因素之间的关联度越高。
灰色关联度的值在0到1之间,一般认为超过0.6的关联度比较显著。
使用以上方法,可以在Excel中方便地计算灰色关联度,从而评估各个因素之间的关联程度。
两因素三水平用灰色关联法
两因素三水平用灰色关联法灰色关联法是一种解决多因素综合评价问题的数学模型。
它基于对因素间相关性的度量,通过灰色关联度的计算,将各因素的信息综合起来,从而得出结果。
本文将探讨灰色关联法在两因素三水平问题中的应用。
首先,我们来了解一下两因素三水平问题。
两因素三水平问题是指研究者有两个自变量,每个自变量有三个水平。
在研究中,我们希望确定自变量对于因变量的影响程度,以及各个水平之间的关系。
在应用灰色关联法解决两因素三水平问题时,首先需要确定两个自变量的水平以及因变量的观测值。
然后,利用灰色关联度的计算公式,计算出各个水平之间的关联度,从而确定对因变量的影响程度。
灰色关联度的计算公式如下:灰色关联度 = (Ci - Cmin) / (Cmax - Cmin)其中,Ci表示第i个水平的观测值,Cmin和Cmax分别表示所有水平中的最小值和最大值。
通过计算灰色关联度,我们可以得到各个水平对于因变量的影响程度。
对于两个自变量三个水平的问题,我们可以得到两个自变量各个水平之间的关联度矩阵。
通过比较关联度矩阵中的数值,我们可以得到对因变量影响最大的水平和自变量组合。
在应用灰色关联法解决两因素三水平问题时,需要注意以下几点:1. 确定合适的因变量和自变量。
因变量应该是我们想要研究的目标,而自变量则是影响因变量的因素。
2. 筛选出合适的水平。
水平的选择应该能够覆盖到所有可能的情况,并能够提供足够的观测值。
3. 计算关联度矩阵时,确保数据的可靠性和准确性。
数据的质量对于计算结果的准确性有着重要的影响。
总结起来,灰色关联法是一种解决两因素三水平问题的有效工具。
通过计算灰色关联度,我们可以综合考虑各个水平的因素对于因变量的影响程度,并得出最优的自变量组合。
在应用灰色关联法时,需要选择合适的因变量和自变量,以及合适的水平,并保证数据的质量。
通过灰色关联法,我们可以更深入地分析两因素三水平问题,并得出可靠的结论。
简单易懂的灰色关联度计算
个人收集整理-ZQ灰色关联度,指地是两个系统或两个因素之间关联性大小地量度.目地,是在于寻求系统中各因素之间地主要关系,找出影响目标值地重要因素,从而掌握事物地主要特征,促进和引导系统迅速有效地发展.——这是比较“官方”地解释.我再来一个“野路子”地解释:用两种试验方法,得出两组数据和;用理论方法,得到理论解答.那么,现在来比较试验方法好还是好?自然是看其结果,哪一个与最吻合,哪个就最好呗,灰关联就是用来解决“谁和谁地关联程度更高”这样地问题地.灰色关联地重要步骤步骤不多,核心地,首先是数据地归一化处理,这是因为有时一个试验结果矩阵中地每个元素会有不同地量纲;接下来是计算灰色关联矩阵,这个过程涉及到地公式很吓人,我第一眼看地时候竟然没搞明白是什么意思,囧;最后是计算关联度,这也就是得到了最终结果.文档来自于网络搜索下面来看看那个复杂地公式:(为关联度矩阵中地元素)计算方法关于关联矩阵中各个元素地计算,我起初被严重误导,认为用是无法完成地,结果还绕了一段弯路,很是丢人当然,有高手通过计算地经验,而且还给出了实例,有兴趣地可以参考“”里地内容.但我最终还是根据年出版地一本老书《》中地一个简单实例,用最简单地方法搞定了计算问题.鉴于我不知道如何把公式按照步骤,类似那样摆出来,那就把那个例子与大家分享,说说计算原理步骤吧.文档来自于网络搜索首先看下面四数列[][][][]文档来自于网络搜索以为目标,检验、、与地关联度.步骤.归一化,将数列中地每个元素,除以相同地一个数值,比如地归一化过程为[, , ]或者更常用地均值化处理,都可以搞定.只需要这几个数列用同一种方法归一即可了.文档来自于网络搜索步骤.求差序列.经过归一化地、、、,用分别减去;即; ;步骤.求两级最大和最小差值.这是一个容易让人糊涂地地方,但实际操作很简单:设中最大值为,最小值为,其余类推;这样一共就有六个数,分别是;;;;和.从这六个数中,再选出一个最大值和一个最小值,假设为和——而这就是上述公式当中双重最值地部分啦.文档来自于网络搜索步骤.带入公式,得到三组关联系数(单行)矩阵.步骤.计算关联度,实际上就是步骤中,每组矩阵各个元素求和除以元素个数(求均值).步骤.通过比较关联度数值,最大地那个,其对应地数列与目标数列地关联度最高..1 / 1。
灰色关联分析算法步骤
灰色关联分析算法步骤 Revised by BLUE on the afternoon of December 12,2020.灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
是由着名学者教授首创的一种系统科学理论(GreyTheory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k)|k=1,2,Λ,n};比较数列(又称子序列)X i={X i(k)|k=1,2,Λ,n},i=1,2,Λ,m。
灰色关联度公式
灰色关联度公式灰色关联度公式是一种常用的灰色系统分析方法,用于评估和分析各种因素之间的关联程度。
其基本思想是通过比较序列数据的相关性,确定各个因素对最终结果的影响程度。
下面将详细介绍灰色关联度公式的相关参考内容。
1. 灰色关联度的定义:灰色关联度可以用来衡量两个因素之间的相关性。
它在一定时间内采集的数据序列上进行分析,通过建立灰色关联度序列来确定因素之间的相关程度。
2. 灰色关联度计算公式:灰色关联度的计算公式是关联度分析的基础,可以通过以下步骤进行计算:- 标准化:将各个因素的原始数据标准化为区间 [0,1] 内的数值,以消除数据的量纲差异。
- 构造级比序列:根据因素的前后关系构造级比序列,用于分析因素之间的关联。
- 灰色关联度的计算:通过计算级比序列的相关性,得到灰色关联度值。
3. 灰色关联度的意义:灰色关联度可以帮助我们评估各个因素对最终结果的影响程度,并找出影响因素中的主导因素。
它提供了一种直观而有效的方法,用于分析和预测因素之间的关联,并为决策提供参考。
4. 灰色关联度的应用领域:灰色关联度广泛应用于各个领域,如经济、环境、管理等。
在经济领域中,可以利用灰色关联度分析方法对各个经济因素之间的关联性进行评估,从而预测未来的经济发展趋势。
在环境领域中,可以通过灰色关联度分析方法评估各个环境因素对生态系统的影响程度,进而采取相应的环境保护措施。
在管理领域中,灰色关联度分析方法可以用于评估各个管理因素之间的关联程度,并指导管理决策的制定。
5. 灰色关联度的改进方法:随着研究的深入,人们对灰色关联度分析方法进行了不断改进和扩展。
其中一些改进方法包括:级比关联度法、加权灰色关联度法等。
这些方法在原有的灰色关联度公式的基础上,引入了不同的权重和关联度计算方式,进一步提高了模型的精度和准确性。
总之,灰色关联度公式是一种有效的灰色系统分析方法,可以用于评估和分析各种因素之间的关联程度。
通过标准化、构造级比序列和计算灰色关联度,可以得到因素之间的相关性,为决策提供参考。
灰色关联分析算法步骤
灰色关联分析算法步骤文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
是由着名学者教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联度
灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个被评价对象第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈ik C 。
i k k k i k ik j j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k i C C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色关联有什么用
灰色关联度,指的是两个系统或两个因素之间关联性大小的量度。
目的,是在于寻求系统中各因素之间的主要关系,找出影响目标值的重要因素,从而掌握事物的主要特征,促进和引导系统迅速有效地发展。
——这是比较“官方”的解释。
我再来一个“野路子”的解释:用两种试验方法,得出两组数据A和B;用理论方法,得到理论解答C。
那么,现在来比较试验方法A好还是B好?自然是看其结果,哪一个与C最吻合,哪个就最好呗,灰关联就是用来解决“谁和谁的关联程度更高”这样的问题的。
灰色关联的重要步骤
步骤不多,核心的,首先是数据的归一化处理,这是因为有时一个试验结果矩阵中的每个元素会有不同的量纲;接下来是计算灰色关联矩阵,这个过程涉及到的公式很吓人,我第一眼看的时候竟然没搞明白是什么意思,囧;最后是计算关联度,这也就是得到了最终结果。
下面来看看那个复杂的公式:(Pi为关联度矩阵中的元素)
计算方法
关于关联矩阵中各个元素的计算,我起初被严重误导,认为用Excel是无法完成的,结果还绕了一段弯路,很是丢人~当然,有高手通过Matlab计算的经验,而且还给出了实例,有兴趣的可以参考“仿真百科”里的内容。
但我最终还是根据1992年出版的一本老书《灰色理论与方法——提要·题解·程序·应用》中的一个简单实例,用最简单的方法搞定了计算问题。
鉴于我不知道如何把Excel
公式按照步骤,类似APDL那样摆出来,那就把那个例子与大家分享,说说计算原理步骤吧。
首先看下面四数列
A=[2,3,4,3.7]
B=[60,73,84,58]
C=[1204,801,1228,1270]
D=[303,298,247,251]
以A为目标,检验B、C、D与A的关联度。
步骤1.归一化,将数列中的每个元素,除以相同的一个数值,比如A的归一化过程为[2/2, 3/2 ,4/2, 3.7/2]或者更常用的均值化处理,都可以搞定。
只需要这几个数列用同一种方法归一即可了。
步骤2.求差序列.经过归一化的A、B、C、D,用A分别减去B/C/D;即
E=A-B; F=A-C; G=A-D
步骤3.求两级最大和最小差值。
这是一个容易让人糊涂的地方,但实际操作很简单:
设E中最大值为Emax,最小值为Emin,其余类推;这样一共就有六个数,分别是Emax;Emin;Fmax;Fmin;Gmax和Gmin。
从这六个数中,再选出一个最大值和一个最小值,假设为M和N——而这就是上述公式当中双重最值的部分啦。
步骤4.带入公式,得到三组关联系数(单行)矩阵。
步骤5.计算关联度,实际上就是步骤4中,每组矩阵各个元素求和除以元素个数(求均值)。
步骤6.通过比较关联度数值,最大的那个,其对应的数列与目标数列的关联度最高。
Over.。