2019新版考研高数模拟试题(含答案)

合集下载

2019新版考研高数模拟考试试题(含解析)

2019新版考研高数模拟考试试题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的.(2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<,故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ; 解:23121,0y y x x '''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x .解:2arctan 1x y x x '=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.2.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值? 解:因211lim ()lim 1(1)x x f x x f --→→=== 11lim ()lim()x x f x ax b a b ++→→=+=+ 要使()f x 在1x =处连续,则有1,a b +=又211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 111(1)lim lim ,11x x ax b ax a f a x x +++→→+--'===-- 要使()f x 在1x =处可导,则必须(1)(1)f f -+''=,即 2.a =故当2,1a b ==-时,()f x 在1x =处连续且可导.3.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x == 解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续. 又00()(0)sin (0)lim lim 1,0x x f x f x f x x---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x+++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导. (2) 21sin ,0, 0;0,0,x x y x x x ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin 0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)lim lim 00x x x f x f x y x x →→-'===-,故函数在0x =处可导.(3) ,1, 1.2,1,x x y x x x ≤⎧==⎨->⎩解:因为1111lim ()lim(2)1lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 11lim ()lim ()(1)1x x f x f x f +-→→===,故函数在x =1处连续. 又11()(1)1(1)lim lim 111x x f x f x f x x ---→→--'===-- 11()(1)21(1)lim lim 111x x f x f x f x x +++→→---'===--- (1)(1)f f -+''≠,故函数在x=1处不可导.4.试求过点(3,8)且与曲线2y x =相切的直线方程.解:曲线上任意一点(,)x y 处的切线斜率为2k x =.因此过(3,8)且与曲线相切的直线方程为:82(3)y x x -=-,且与曲线的交点可由方程组解得282(3)y x x y x -=-⎧⎨=⎩ 为(2,4),(4,16)即为切点.。

2019最新版考研高数模拟测试试题(含解析)

2019最新版考研高数模拟测试试题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.利用被积函数奇偶性计算下列积分值(其中a 为正常数)(1) sin d;||aa x x x -⎰ 解:因sin ||x x 为[-a , a ]上的奇函数,故 sin d 0.||a a x x x -=⎰(2)ln(aa x x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰; 解:因为2sin tan 3cos3x x x+为奇函数,故 原式=111222111222d 0ln(1)d ln(1)1x x x x x x x ---++-=--⎰⎰ ()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+- π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰. 解:因为3ln3x x +-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2.求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-= 解得 121,2r r ==-故原方程通解为 212e e .x x y c c -=+(2)0y y ''+=;解:特征方程为 210r += 解得 1,2r i =±故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x x x t t-+=; 解:特征方程为 2420250r r -+= 解得 1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为 212e (cos sin )x y c x c x =+.(5)440y y y '''++=;解:特征方程为 2440r r ++= 解得 122r r ==-故原方程通解为 212e ()x y c c x -=+(6)320y y y '''-+=.解:特征方程为 2320r r -+= 解得 1,2r r ==故原方程通解为 212e e x x y c c =+.3.利用夹逼定理求下列数列的极限:(1)lim[(1)],01;k k n n n k →∞+-<<(2)n 其中11,,,m a a a 为给定的正常数; 1(3)lim(123);(4)nn n n n →∞++。

2019新考研高等数学模拟测试题目(含参考答案)

2019新考研高等数学模拟测试题目(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰. 解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰ 11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444fx f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰2.利用微分求下列各数的近似值:⑴⑵ ln 0.99;⑶ arctan1.02.解:⑴ 113x ≈+,有 112(1) 2.0083380==≈⋅+⨯=. ⑵ 利用近似公式ln(1)x x +≈,有ln 0.99ln(10.01)0.0100.=-≈-⑶ 取()arctan f x x =,令01,0.02x x ==,而21()1f x x'=+,则 21arctan1.02arctan10.0211=0.7954.≈+⨯+ 3.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x→∞-+解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →, 2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=4.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解: d d d e e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=5.计算抛物线y =4x -x 2在它的顶点处的曲率.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时, 0,2y y '''==- ,故 23/2 2.(1)y k y ''=='+6.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/2 1.(1)y k y ''=='+7.一飞机沿抛物线路径210000x y =( y 轴铅直向上,单位为m )做俯冲飞行,在坐标原点O 处飞机速度v =200 m ·s -1,飞行员体重G =70kg ,求飞机俯冲至最低点即原点O 处时,座椅对飞行员的反力.。

2019新考研高数模拟训练题目(含参考答案)

2019新考研高数模拟训练题目(含参考答案)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和b a 为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和b a为端点的闭区间上, 而 22(0)0,b b y y a a ⎛⎫== ⎪⎝⎭, 故当a >0时,函数的最大值为22b b y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =; 当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎫= ⎪⎝⎭.2.计算下列向量场A 的散度与旋度:(1)()222222,,y z z x x y =+++A ;解:()0,2,,y z z x x y ---(2)()222,,x yz x y z x yz =A ;解:()()()()2222226,,,xy x z y y x z z y x ---(3),,y x z yz z x x y ⎛⎫= ⎪⎝⎭A . 解:111yz zx xy ++,2222221,,y y z z x x xyz z y x z y x ⎛⎫--- ⎪⎝⎭3.求下列函数的高阶导数:⑴ e sin ,x y x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y ; ⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x x x x x x y x x x x x y x x y x x x x x ''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()i x i i i y C x -==∑22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x xx x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i y C x x -==∑2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--4.已知()f x ''存在,求22d d y x: ⑴ 2()y f x =; ⑵ ln ()y f x =.解:⑴ 22()y xf x ''= 222222()22()2()4()y f x x xf x f x x f x '''''=+⋅'''=+ ⑵ ()()f x y f x ''= 22()()[()]()f x f x f x y f x '''-''=5.在括号内填入适当的函数,使等式成立:⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=;⑶ 1d( )d 1x x =+; ⑷ 2d( )e d x x -=; ⑸d( )x =; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x x x =; ⑻d( )x =. 解:⑴ (sint)cos t '=。

2019新考研高等数学模拟训练试题(含参考答案)

2019新考研高等数学模拟训练试题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1. 确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少.(2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x '=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =;解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加. (5) e (0,0)n x y x n x -=>≥;解: 函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+;解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈-- 1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈, 函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+.解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+-- 函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2.求下列函数在所示点的导数:(1)()sin cos t f t t ⎛⎫= ⎪⎝⎭,在点π4t =;。

2019年新考研高数模拟训练考题(含答案)

2019年新考研高数模拟训练考题(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上.解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.2.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x = a cos 3t ,y = a sin 3t ;(2)双纽线r 2 = a 2cos2θ;(3)圆x 2+y 2 = 2ax .解:(1)()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ (2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a =sin y a =从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22L A x y y x a a a θθθ--=⋅-===⎰⎰ (3)圆x 2+y 2=2ax 的参数方程为cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩ 故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin LA x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰3. 设212s gt =,求2d d t s t =. 解:d d s gt t =,故2d 2d t s g t ==.4.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x == 解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续. 又00()(0)sin (0)lim lim 1,0x x f x f x f x x ---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x +++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导. (2) 21sin ,0, 0;0,0,x x y x x x ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin 0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)lim lim 00x x x f x f x y x x →→-'===-,。

2019新版考研高数模拟测试考题(含解析)

2019新版考研高数模拟测试考题(含解析)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d y x=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d y x >,曲线是凹的, 当0<t <1或-1<t <0时,22d 0d y x<,曲线是凸的, 故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ.解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-,不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,32a a ⎛⎫ ⎪⎝⎭及3,32a a ⎛⎫- ⎪⎝⎭.2.求下列各微分方程满足已给初始条件的特解:ππ(1)sin 20,1,1x x y y x y y =='''++===;解:特征方程为 210r +=得 1,2r i =±对应齐次方程通解为 12cos sin y c x c x =+ 令*cos 2sin 2y A x B x =+代入原方程并整理得 3cos23sin 2sin 2A x B x x --=-得 10,3A B == 故通解为 121cos sin sin 23y c x c x x =++. 将初始条件代入上式得 11221121133c c c c -==-⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩故所求特解为 11cos sin sin 233y x x x =--+. 200633(2)109e ,,77x x x y y y y y ==''''-+===. 解: 21090r r -+=121,9r r ==对应齐次方程通解为 912e e x x y c c =+令*2e x y A =,代入原方程求得 17A =-则原方程通解为 29121e e e 7x x x y c c =-++ 由初始条件可求得 1211,22c c == 故所求特解为 9211(e e )e 27x x x y =+-.3.通过恒等变形求下列极限:2222214123(1)11(1)lim ; (2)lim ;1222168(3)lim ; (4)lim ;154n n n x x n n x x x x x x x →∞→∞→→++++-⎛⎫+++ ⎪⎝⎭-+-+--+。

2019新版考研高数模拟训练考题(含解析)

2019新版考研高数模拟训练考题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列不定积分,并用求导方法验证其结果正确否:d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x ⎰;解:原式=ln(ln(.x x x x x c -=-验证:ln(ln(x x x x c '⎡⎤=++⎣⎦ln(x =所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=++==所以,结论正确.(5)sin(ln)dx x⎰;解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;解:原式=1ln d d ln(.x x x cx=-=-++⎰验证:ln(x c'⎤-+⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x xx x++⎰;解:原式=2d cos d d tan ln(1cos )1cos 22cos 2xx xx x x x x -=-++⎰⎰⎰tan tan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan )tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sin dcos n n n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.2.求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点.解:()()()()54,2,8,2,10,6,10,6,10,3,,42-------3.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.4.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++5.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时.解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=6.利用四阶泰勒公式,求ln1.2的近似值,并估计误差.解:23455ln(1) (01)2345(1)x x x x x x x θθ+=--+-<<+ 234(0.2)(0.2)(0.2)ln1.2ln(10.2)0.20.18227234∴=+≈-++=5555(0.2)(0.2)(0.2)7105(10.2)5n R θ-=<≈⨯+7.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- .当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+8.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.9.验证:函数()lnsin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的ξ,使()0f ξ'=.证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()l n 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66ξ∈使()0f ξ'=.事实上,由cos ()cot 0sin x f x x x '===得ππ5π(,),266x =∈故取π2ξ=,可使()0f ξ'=.10.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.11.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明:11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b--<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>12.利用0sin lim1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx →→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x x bx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx 所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭ (5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xxx →→==.sinsin 22(6)lim 2sin lim lim .222n n n n n n n n nx xx x x x x x →∞→∞→∞=⋅==(7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx xx x x xx αβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e exx x x →→故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x xx x x x x x x x x x x x x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=13.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-, 不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y的拐点,且拐点为3,2a ⎫⎪⎭及3,2a ⎛⎫⎪⎝⎭.14.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦15.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-16.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰17.设星形线的参数方程为x =a cos 3t ,y =a sin 3t ,a >0求d) 星形线所围面积;e) 绕x 轴旋转所得旋转体的体积; f) 星形线的全长.解:(1)D =4⎠⎛0ay d x =4⎠⎜⎛π2a sin 3t d ()a cos 3t =12a 2⎠⎜⎛0π2sin 4t cos 2t d t=12a 2⎠⎜⎛0π2()sin 4t−sin 6t d t =38πa 2. (2)V x =2π⎠⎛0a y 2d x =2π⎠⎜⎛π2()a sin 3t 2d ()a cos 3t=6πa 3⎠⎜⎛0π2 sin 7t cos 2t d t=32105πa 3(3)x t ′=-3a cos 2t sin t y t ′=3a sin 2t cos t x t ′2+y t ′2=9a 2sin 2t cos 2t ,利用曲线的对称性,l =4⎠⎜⎛0π2x t ′2+ y t ′2d t =4⎠⎜⎛π2 3a sin 2t cos 2t d t=12a ⎠⎜⎛0π214sin 22t d t =6a ⎠⎜⎛0π2 sin2t d t =[]3a ()-cos2t π2=6a .18.求下列函数在[-a ,a ]上的平均值:(1)()f x=解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰19.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑20.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度大小为z ρ=. 22221:():22xy z x y D x y ∑=++≤221d d ()d 2xy D M s z s x y x y ∑∑ρ===+⎰⎰⎰⎰⎰⎰12π222122225322220d (1)d 2π1)(1)(1)2π2π221)(1)(1)21553r r r r r r d r r r θ=+=+-++⎡==+-+⎢⎥⎣⎦⎰21.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

2019新版考研高数模拟考试题库(含答案)

2019新版考研高数模拟考试题库(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.计算下列导数:2d (1)d xt x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰2.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0d cos d sin cos d sin 2d 1cos 4d 216xyz z t t t t t t t t t t ttΓ===-==⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233y z x z x y x y zt t t t t t t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰3.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++ 证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++4.求由下列方程所确定的隐函数y 的二阶导数22d d yx:⑴ 222222b x a y a b +=; ⑵ 1e yy x =+; ⑶ tan()y x y =+; ⑷ 242ln y y x +=. 解:⑴ 两边对x 求导,得22220b x a yy '+=22422223b x b y xy b y y a y a y a y'-'''⇒=-⇒=-⋅=-.⑵ 两边对x 求导,得e e y y y x y ''=+223e e (2)e ()e (3)2(2)(2)y y y y y y y y y y y y y ''----'''⇒=⇒==---. ⑶ 两边对x 求导,得2sec ()(1)y x y y ''=++2321cot ()2cot()cot()csc()(1)2cot ()csc ().y x y y x y x y x y y y x y x y '⇒=--+'''⇒=+⋅+⋅+⋅+''⇒=-+⋅+ ⑷ 两边对x 求导,得3224yy y x y''+⋅= 32322322222422321(223)(1)22(1)2[3(1)2(1)].(1)yx y y y x y x y yx yy y y x y y x y y '⇒=+''+⋅+-⋅''⇒=+++-=+5.利用麦克劳林公式,按x 乘幂展开函数23()(31)f x x x =-+. 解:因为()f x 是x 的6次多项式,所以(4)(5)(6)23456(0)(0)(0)(0)(0)()(0)(0).2!3!4!5!6!f f f f f f x f f x x x x x x ''''''=++++++计算出:(0)1,(0)9,(0)60,(0)270f f f f ''''''==-==-,(4)(5)(6)(0)720,(0)1080,(0)720.f f f ==-=故23456()193045309.f x x x x x x x =-+-+-+6.求函数e e 2x xy -+=的2n 阶麦克劳林展开式.解:2221222122212211e e [e e ][11]222!(2)!(21)!2!(2)!(21)!1e e [222]22!(2)!(21)!12!(2)n n x n n x x x n x x n n x x x x x x y x x n n n n x x x n n x x n θθθθ++---+=+=++++++-+++-++-=+⋅++++=+++21e e (01).!2(21)!x x n x n θθθ-+-+<<+60. 设()f x 在0x 的某区间上,存在有界的二阶导函数.证明:当x 在0x 处的增量h 很小时,用增量比近似一阶导数0()f x '的近似公式000()()()f x h f x f x h+-'≈,其绝对误差的量级为()O h ,即不超过h 的常数倍. 证明:0()f x h +在0x 处泰勒展开式为20000()()()() (01)2f x h f x h f x f x h h θθ''+'+=++<<,则0000()()()()2f x h f x f x h f x h h θ''+-+'-=, 又知 0()f x h M θ''+≤,故 0()22f x h Mh h θ''+≤,即000()()()f x h f x f x h+-'≈的绝对误差为()O h .7.计算0.2e 的近似值,使误差不超过310-.解:234e e 1 (01)2624x xx x x x θθ=++++<< 230.2(0.2)(0.2)e10.2 1.2213 1.22126≈+++=≈0.2444e 31(0.2)(0.2)(0.2)0.20.00020.00124248R θ⨯=⨯<⨯=⨯≈<8.一点沿对数螺线ea r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率.解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=9.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t ty y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=10.某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h -1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度. 解:设t 小时后,人与船相距s 公里,则d d s s t ===且120d 8.16d t st ==≈ (km ·h -1)11.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+12.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热;解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热.解:()2Q T a bT ν'==+.13.对函数()sin f x x =及()cos g x x x =+在[0,]2π上验证柯西定理的正确性.验证:()f x ,()g x 在[0,]2π上连续,在(0,)2π内可导,且()1sin 0g x x '=-≠,满足柯西定理的条件.由 π()(0)()2π()()(0)2f f f g g g ξξ-'='-,得 2cos πcot()π21sin 42ξξξ==---, 故ππ2π2arctan (0,)222ξ-=-∈满足柯西定理的结论.14.求下列函数的导数:(1) y =解:y '=(2) y =解:5323y x -'=-(3) y =解:2512326y x x +-==561.6y x -'=15.计算下列积分:4(1)x ⎰;333211221313d .36222t t t t ⎛⎫⎛⎫==++ ⎪ ⎪⎝⎭⎝⎭2e 1(2)⎰解:原式=221e211).(1ln )d(1ln )x x -=++=⎰1(3)解:原式=211112⎛⎫+ ⎪-== π40sin (4)d 1sin xx x+⎰;解:原式=πππ244422000sin(1sin )sin d d tan d cos cos x x x x x x x x-=-⎰⎰⎰π40π1 2.tan 4cos x x x ⎛⎫==+-+ ⎪⎝⎭ ln3ln 2d (5)e ex xx--⎰; 解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰π(6)x ⎰;解:原式=πππ2π02d cos d cos d cos x x x x x x x ==-⎰⎰ππ2π02xx==(7)x ⎰;解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-= 231(8)ln d x x x ⎰;解:原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰π220(9)e cos d x x x ⎰;解:ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d x xx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.120ln(1)(10)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰322d (11)2xx x +-⎰; 解:原式=3322111111d ln ln 2ln5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰1(12)x ⎰; 解:原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+ππ3π(13)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰;解:原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭212(14)e d t t t -⎰;解:原式=2212122ed e 12t t t --⎛⎫-=-=- ⎪⎝⎭⎰π22π6(15)cos d u u ⎰.解:原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰16.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年17.某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱? 解:设每年以均匀流方式存入x 万元,则 5=10(10)0.050e d t x t -⎰即 5=20x (e 0.5-1)0.514(e1)x =-≈0.385386万元=3853.86元.习题六18.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2)1cos 2nn nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.19.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn+++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.20.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+ 11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+21.证明,若21n n U ∞=∑收敛,则1nn U n ∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n∞=∑绝对收敛.22.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1) f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)23.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)24.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰25.设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元) (2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.26.计算下列对面积的曲面积分: (1)4d 23s z x y ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第I 卦限中的部分; (2)()2d 22s xy xx z ∑--+⎰⎰,其中∑为平面2x +2y +z =6在第I 卦限中的部分;(3)()d s x y z ∑++⎰⎰,其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;(4)()d s xy yz zx ∑++⎰⎰,其中∑为锥面z =被柱面x 2+y 2=2ax 所截得的有限部分; (5)()222d s Rx y ∑--⎰⎰,其中∑为上半球面z =解:(1)4:423z x y ∑=--(如图10-69所示)图10-69d d d s x y x y ==故4d 4d d d d 23331232xy xy D D s x y x y z x y ∑⎛⎫=⋅=++ ⎪⎝⎭=⨯⨯=⎰⎰⎰⎰⎰⎰(2)∑:z =6-2x -2y (如图10-70所示)。

2019考研高数模拟考试试题(含答案解析)

2019考研高数模拟考试试题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.对函数()sin f x x =及()cos g x x x =+在[0,]2π上验证柯西定理的正确性.验证:()f x ,()g x 在[0,]2π上连续,在(0,)2π内可导,且()1sin 0g x x '=-≠,满足柯西定理的条件.由 π()(0)()2π()()(0)2f f f g g g ξξ-'='-,得 2cos πcot()π21sin 42ξξξ==---, 故ππ2π2arctan (0,)222ξ-=-∈满足柯西定理的结论.2.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧;(4)()()22d d Lx y x x y y x y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧;(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d Lx y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d Lx xy x y xy y -+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故 ()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t aa t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415Lx xy x y xy yx x x x x x x xx x x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰3.求下列函数的导数:⑴ 3e xy =; ⑵ 2arctan y x =; ⑶y =; ⑷2(1)ln(y x x =+⋅;⑸ 221sin y x x=⋅; ⑹ 23cos y ax =(a 为常数); ⑺ 1arccosy x =; ⑻ 2(arcsin )2xy =; ⑼y =; ⑽ sin cos ny x nx =⋅; ⑾y =⑿arcsin y =;⒀ ln cosarctan(sinh )y x =;⒁2arcsin (02a x y a a=>为常数). 解:⑴ 33e xy '=; ⑵ 421xy x '=+; ⑶2y '==;⑷22ln((1)(1y x x x '=⋅++++2ln(x x =;⑸ 22231122sincos ()y x x x x x '=+⋅- 221212sincosx x x x =-; ⑹ 3322cos (sin )3y ax ax ax '=⋅-⋅233sin 2ax ax =-; ⑺21()y x '=-=⑻12arcsin22x y '=2arcsinx=⑼12ln y x x '=⋅=; ⑽ 11sin cos cos sin (sin )sin cos(1)n n n y n x x nx x nx n n x n x --'=⋅+-⋅=⋅+;⑾y '==⑿2(1)(1)(1)x x y x -+--'==+⒀ 211[sin arctan(sinh )]cosh tanh cos arctan(sinh )1(sinh )y x x x x x '=⋅-⋅⋅=-+; ⒁21(2)2x y x a '=-=.4.求下列函数在指定点的高阶导数: ⑴()f x =求(0)f '';⑵ 21()e,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .解: ⑴322()(1)f x x -'==-5223()(1)22f x x x -''=--⋅故(0)0f ''=.⑵ 21()2ex f x -'=2121()4e ()8ex x f x f x --''='''=故4(0)e f ''=,8(0)ef '''=. ⑶ 5()6(10)f x x '=+43(4)2(5)(6)()30(10)()120(10)()360(10)()720(10)()720f x x f x x f x x f x x f x ''=+'''=+=+=+= 故(5)(0)720107200f=⨯=,(6)(0)720f =5.利用一阶微分形式的不变性,求下列函数的微分,其中f 和ϕ均为可微函数: ⑴ 34(())y f x x ϕ=+; ⑵ (12)3sin ()y f x f x =-+. 解:⑴ 3434d [()]d[()]y f x x x x ϕϕ'=++34234=[()][34()]d f x x x x x x ϕϕ''++⑵ d d (12)3dsin ()y f x f x =-+=(12)d(12)3cos ()d ()(12)(2)d 3cos ()()d [2(12)3cos ()()]d .f x x f x f x f x x f x f x x f x f x f x x '--+''=--+''=--+6.求函数e e 2x xy -+=的2n 阶麦克劳林展开式.解:2221222122212211e e [e e ][11]222!(2)!(21)!2!(2)!(21)!1e e [222]22!(2)!(21)!12!(2)n n x n n x x x n x x n n x x x x x x y x x n n n n x x x n n x x n θθθθ++---+=+=++++++-+++-++-=+⋅++++=+++21e e (01).!2(21)!x x n x n θθθ-+-+<<+60. 设()f x 在0x 的某区间上,存在有界的二阶导函数.证明:当x 在0x 处的增量h 很小时,用增量比近似一阶导数0()f x '的近似公式000()()()f x h f x f x h+-'≈,其绝对误差的量级为()O h ,即不超过h 的常数倍. 证明:0()f x h +在0x 处泰勒展开式为20000()()()() (01)2f x h f x h f x f x h h θθ''+'+=++<<,则0000()()()()2f x h f x f x h f x h h θ''+-+'-=, 又知 0()f x h M θ''+≤,故 0()22f x h Mh h θ''+≤,即000()()()f x h f x f x h+-'≈的绝对误差为()O h .7.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t ty y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=8.求曲线y =ln(sec x )在点(x ,y )处的曲率及曲率半径. 解:2tan ,sec y x y x '''==故 223/223/2sec cos (1)(1tan )y x k x y x ''==='++ 1sec R x k==.9.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少? 解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三10.验证:函数()lnsin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的ξ,使()0f ξ'=.证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()l n 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66ξ∈使()0f ξ'=.事实上,由cos ()cot 0sin x f x x x '===得ππ5π(,),266x =∈故取π2ξ=,可使()0f ξ'=.11.如果()f x '在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x '''≥>证明:()()f b f a >.证明:因为()f x '在[a , b ]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b ξ∃∈<<,使得()()()0f x f a f x aξ''-''=>-,于是()()0f x f a ''>≥,故有()()f b f a >12.如果()f x 为偶函数,且(0)f '存在,证明:(0)0.f '= 证明:000()(0)()(0)(0)limlim()(0)lim (0),x x x f x f f x f f x xf x f f x∆→∆→∆→∆--∆-'==∆∆-∆-'=-=--∆故(0)0.f '=13.证明恒等式:222arctan arcsinπ (1).1xx x x+=≥+ 证明:令22()2arctan arcsin 1xf x x x =++, 22222222(1)22()1(1)22011x x xf x xx x x +-⋅'=++=-=++ 故()f x C ≡,又因(1)πf =,所以()πf x =,即222arctan arcsinπ.1xx x+=+14.下列各题中均假定0()f x '存在,按照导数定义观察下列极限,指出A 表示什么.(1) 000()()lim;x f x x f x A x∆→-∆-=∆解:0000000()()()()lim lim ()x x f x x f x f x x f x f x x x ∆→∆→-∆--∆-'=-=-∆-∆故0()A f x '=-(2) 000()()0,lim ;x x f x f x A x x→==- 解:00000()()limlim ()x x x x f x f x f x x x x x →→'=-=---故0()A f x '=- (3) 000()()lim.h f x h f x h A h→+--=解:00000000000000000()()()()()()limlim ()()()()lim lim()()2()h h h h f x h f x h f x h f x f x h f x h h h f x h f x f x h f x h h f x f x f x →→→→+--+---⎡⎤=-⎢⎥⎣⎦+---=+-'''=+= 故02().A f x '=15.设21lim51x x mx nx →++=-,求常数m , n 的值. 解:要使21lim51x x mx nx →++=-成立,则21lim()0x x mx n →++=,即10m n ++= 又2112limlim 2511x x x mx n x mm x →→+++==+=- 得3,4m n ==-16.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-,不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,32a a ⎛⎫ ⎪⎝⎭及3,32a a ⎛⎫- ⎪⎝⎭.17.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .18.证明:(1)120lim 0;nn x →∞=⎰证明:当12x ≤≤时,0,n n x ≤≤ 于是111220110d (),12n n x x n +≤≤=⋅+⎰⎰而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2)π4lim sin d 0.n n x x →∞=⎰证明:由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰19.用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x =-+⎰⎰322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又 32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+20.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为V =⎠⎛-R RA ()x d x =⎠⎛-R R3()R 2-x 2d x =433R 3.21. 求对数螺线a r e θ=相应θ=0到θ=φ的一段弧长. 解:l =⎠⎛0φr 2+r ′2d θ=⎠⎛0φe 2a θ+a 2e 2a θd θ=1+a 2a ()e a φ-1.22.求下列级数的和: (1) ()()()1111n x n x n x n ∞=+-+++∑;(2) 1n ∞=∑;(3)23111555+++;解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n Sx x x x x x xx x n xn x n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x +(2)因为n U =-从而(11n S n =-+-+-++-+==所以lim 1n n S →∞=1(3)因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14.23.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n ∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛, 因而1nn U n ∞=∑绝对收敛.24.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x(4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx x n x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]25.设()()()f a f c f b ==,且a c b <<,()f x ''在[a ,b ]内存在,证明:在(a ,b )内至少有一点ξ,使()0f ξ''=.证明:()f x ''在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c ξ∃∈,使得1()0f ξ'=,2(,)c b ξ∃∈,使得2()0f ξ'=,又()f x '在12[,]ξξ上连续,在12(,)ξξ内可导,由罗尔定理知,12(,)ξξξ∃∈,使()0f ξ''=,即在(a ,b )内至少有一点ξ,使()0f ξ''=.26.求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。

2019新版考研高数模拟训练考题(含答案解析)

2019新版考研高数模拟训练考题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x +'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.2.设()y f x =是由方程组2323,e sin 1,y x t t y t ⎧=++⎪⎨=+⎪⎩ 所确定的隐函数,求202d d t y x =.解:分别对已知方程组的两边关于x 求导,得:d d 162,d d d d de sin e cos ,d d d y yt t t x x y y tt t x x x ⎧=⋅+⎪⎪⎨⎪=+⎪⎩再对x 求一次导,得2222222222d dd 06()62,d d d d d dyd d d (e )sin 2e cos e sin ()e cos ,d d d d d d y y y y x t t tt x x x y y tt tt t t t x x x x x x ⎧=++⎪⎪⎨⎪'=+⋅⋅-+⋅⎪⎩ 将00,1t t y ===代入上述各式,得002022202d 1d e, ,d 2d 2d 3, d 4d e 3e.d 24t t t t tyx x t x y x =======-=-3.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且lim(),x a f x A +→'=试证:()f a A +'=. 证明:()()()lim x a f x f a f a x a ++→-'=-()lim lim ()1x a x a f x f x A ++→→''===.4.求由下列方程确定的隐函数()y y x =的微分d y : ⑴ 1e y y x =+; ⑵ 22221x y a b +=;⑶ 1sin 2y x y =+; ⑷ 2arccos y x y -=.解:⑴ 对等式两端微分,得d e d d(e )y y y x x =+即d e d e d y y y x x y =+ 于是e d d .1e yy y x x =-⑵ 对等式两端微分,得22112d 2d 0x x y y a b ⋅+⋅= 得22d d .b xy x a y =-⑶ 对等式两端微分,得。

2019新版考研高数模拟考试考题(含答案解析)

2019新版考研高数模拟考试考题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰. 解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰ 11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰2.设f (x ) = x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数.解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…) ()()()()ππ0022sin d 1sin d ππ111π2πn n b f x nx x x nx x n==+--+=⋅⎰⎰ 从而()()()1111π2sin πn n f x nx n∞=--+=∑ (0<x <π) 若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n x f x n ∞=-+=--∑ (0≤x ≤π)3.利用微分求下列各数的近似值:⑴⑵ln0.99;⑶arctan1.02.解:⑴113x≈+,有112(1) 2.0083380==≈⋅+⨯=.⑵利用近似公式ln(1)x x+≈,有ln0.99ln(10.01)0.0100.=-≈-⑶取()arctanf x x=,令1,0.02x x==,而21()1f xx'=+,则21arctan1.02arctan10.0211=0.7954.≈+⨯+4.球的半径以速率v改变,球的体积与表面积以怎样的速率改变?解:324dπ,π,.3drV r A r vt===2d d d4πd d dd d d8πd d dV V rr vt r tA A rr vt r t=⋅=⋅=⋅=⋅5.一点沿对数螺线e arϕ=运动,它的极径以角速度ω旋转,试求极径变化率.解:d d de e.d d da ar ra at tϕϕϕωωϕ=⋅=⋅⋅=6.设生产q件产品的总成本C(q)由下式给出:C(q)=0.01q3-0.6q2+13q.(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少?解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q=-+-=-+-'=-+-令()0L q'=,得231206000q q-+=即2402000q q-+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.如果()f x '在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x '''≥>证明:()()f b f a >. 证明:因为()f x '在[a , b ]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b ξ∃∈<<,使得()()()0f x f a f x aξ''-''=>-,于是()()0f x f a ''>≥,故有()()f b f a >2.证明本章关于梯度的基本性质(1)~(5). 证明:略3.写出下列数列的通项公式,并观察其变化趋势:1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →.1(2)cosπ2n n x n -=, 当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1.4.设()f x 在[0,1]上连续,且0()1f x ≤≤,证明:至少存在一点[0,1]ξ∈,使()f ξξ=.证:令()()F x f x x =-,则()F x 在[0,1]上连续,且(0)(0)0,(1)(1)10,F f F f =≥=-≤ 若(0)0f =,则0,ξ=若(1)1f =,则1ξ=,若(0)0,(1)1f f ><,则(0)(1)0F F ⋅<,由零点定理,至少存在一点(0,1)ξ∈,使()0F ξ=即()f ξξ=. 综上所述,至少存在一点[0,1]ξ∈,使()f ξξ=.5.讨论下列函数在指定点的连续性与可导性:(1) sin ,0;y x x ==解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续.又00()(0)sin (0)lim lim 1,0x x f x f xf x x---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x+++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导.(2) 21sin ,0, 0;0,0,x x y x xx ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)limlim 00x x x f x f x y x x→→-'===-,故函数在0x =处可导.(3) ,1, 1.2,1,x x y x x x ≤⎧==⎨->⎩解:因为1111lim ()lim(2)1lim ()lim 1x x x x f x x f x x ++--→→→→=-===11lim ()lim ()(1)1x x f x f x f +-→→===,故函数在x =1处连续. 又11()(1)1(1)lim lim 111x x f x f x f x x ---→→--'===-- 11()(1)21(1)lim lim 111x x f x f x f x x +++→→---'===---(1)(1)f f -+''≠,故函数在x=1处不可导.6.已知2()max{,3}f x x =,求()f x '.解:23, (), x f x x x ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=,当x >时,()2f x x '=,2(((0,x xxf xf-+'===-'==故(f'不存在.又20,(xx xff x-+'=='==+=故f'不存在.综上所述知0,()2,xf xx x⎧<⎪'=⎨>⎪⎩7.求下列函数的导数:⑴3e xy=; ⑵2arctany x=;⑶y=; ⑷2(1)ln(y x x=+⋅;⑸221siny xx=⋅;⑹23cosy ax=(a为常数);⑺1arccosyx=;⑻2(arcsin)2xy=;⑼y=; ⑽sin cosny x nx=⋅;⑾y=⑿arcsiny=;⒀ln cosarctan(sinh)y x=;⒁2arcsin (02a xy aa=>为常数).解:⑴33e xy'=;⑵421xyx'=+;⑶2y'==;⑷22ln((1)(1 y x x x'=⋅++++2ln(x x=;⑸ 22231122sincos ()y x x x x x '=+⋅- 221212sincosx x x x =-; ⑹ 3322cos (sin )3y ax ax ax '=⋅-⋅233sin 2ax ax =-; ⑺21()y x '=-=⑻12arcsin22x y '=2arcsinx=⑼12ln y x x '=⋅=; ⑽ 11sin cos cos sin (sin )sin cos(1)n n n y n x x nx x nx n n x n x --'=⋅+-⋅=⋅+;⑾y '==⑿2(1)(1)(1)x x y x -+--'==+⒀ 211[sin arctan(sinh )]cosh tanh cos arctan(sinh )1(sinh )y x x x x x '=⋅-⋅⋅=-+; ⒁21(2)2x y x a '=-=.8.若π1()1,(arccos )3f y f x '==,求2d d x y x=.解:22d 11(arccos )(()d d π11(d 344x y f x x xy f x='=⋅-'===9.求下列隐函数的导数:⑴ 3330x y axy +-=; ⑵ ln()x y xy =; ⑶ e e 10yxx y -=; ⑷ 22ln()2arctan y x y x+=; ⑸ ex y xy +=解:⑴ 两边求导,得:2233330x y y ay axy ''+⋅--=解得 22ay x y y ax-'=-.⑵ 两边求导,得:11ln()()y xy y y xy xy''=+⋅+ 解得 (ln ln 1)x yy x x y -'=++.⑶ 两边求导,得:e e e e 0y y x x x y y y ''+⋅++=解得 e e =e e y xy xy y x +'-+.⑷ 两边求导,得:222211(22)21()y x yx yy y x y x x'-'⋅+=⋅⋅++ 解得 =x yy x y+'-.⑸ 两边求导,得:e (1)x y y xy y +''+=+解得 e =e x y x yyy x ++-'-.10.设()f x 具有二阶连续导数,且(0)0f =,试证:(), 0,()(0), 0,f x xg x xf x ⎧≠⎪=⎨⎪'=⎩ 可导,且导函数连续.证明:因()f x 具有二阶连续导数,故0x ≠时,()g x 可导,又002000()(0)()(0)(0)lim lim 0()(0)()(0)lim lim2()(0)lim ,22x x x x x f x f g x g xg x xf x f x f x f x xf x f →→→→→'--'==-'''-⋅-==''''== 故 ()g x 是可导的,且导函数为 2()(), 0,()(0), 0, 2xf x f x x xg x f x '-⎧≠⎪⎪'=⎨''⎪=⎪⎩又因2()()lim ()limx x xf x f x g x x→→'-'= 000()()()lim2()(0)lim lim (0) 22x x x f x xf x f x xf x fg →→→''''+-='''''===故()g x 的导函数是连续的.11.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时. 解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=12.没1()1x f x x -=+,求1(0),(),().f f x f x- 解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++13.设某种商品的需求弹性为0.8,则当价格分别提高10%,20%时,需求量将如何变化? 解:因弹性的经济意义为:当自变量x 变动1%,则其函数值将变动%Ey Ex ⎛⎫⎪⎝⎭. 故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.14.下列函数是否相等,为什么?222(1)()();(2)sin (31),sin (31);1(3)(),() 1.1f xg x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.因为两函数的定义域相同,都是实数集R;x =知两函数的对应法则也相同;所以两函数相等. (2)相等.因为两函数的定义域相同,都是实数集R,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等.因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R,两函数的定义域不同,所以两函数不相等.15.判定下列曲线的凹凸性: (1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y x x '''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x . 解:2arctan 1xy x x '=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.16.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.17.利用换元法求下列积分:2(1)cos()d x x x ⎰;解:原式=22211cos d sin .22x x x c =+⎰(2)x ;解:原式=12333(sin cos )d(sin cos )(sin cos ).2x x x x x x c ---=-+⎰2d (3)21xx -⎰; 解:原式=1d 112x c =+-+⎰.c =+3(4)cos d x x ⎰;解:原式=231(1sin )dsin sin sin .3x x x x c -=-+⎰(5)cos cos d 2xx x ⎰;解:原式=1133d sin sin .cos cos 232222x x x x c x ⎛⎫=+++ ⎪⎝⎭⎰ (6)sin 2cos3d x x x ⎰;解:原式=111(sin 5sin )d cos cos5.2210x x x x x c -=-+⎰2arccos (7)xx ;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10x xx c -=-⋅+⎰21ln (8)d (ln )xx x x +⎰; 解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e 5x c --+.d (12)12xx-⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)x ⎰;解:原式=ln .c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰ 2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++.(20)⎰解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=--⎰arcsin .xa c a=⋅ d (23)e e x xx-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26)⎰;解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式23(2.3x c x-=+(27)d ln |1|ln(1.1tt t t c c t =-++=++(28);x 解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x === 故上式33arccosc x+. (29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t =所以sin t =,故上式c =.(30).解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② = t + c 1② - ① = ln |sin t +cos t | + c 2 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰18.计算下列积分:4(1)x ⎰;333211221313d.36222t t tt⎛⎫⎛⎫==++⎪ ⎪⎝⎭⎝⎭2e1(2)⎰解:原式=221e211).(1ln)d(1ln)x x-=++=⎰1(3)解:原式=211112⎛⎫+⎪-==π4sin(4)d1sinxxx+⎰;解:原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭ln3ln2d(5)e ex xx--⎰;解:原式=ln3ln32ln2ln2de113e1ln ln.(e)1222e1x xx x-==-+⎰π(6)x⎰;解:原式=πππ2π0002d cos d cos dcosx x x x x xx==-⎰⎰ππ2π02x x==(7)x⎰;解:原式=π33π222π002d sin d sin sin d sinx x x x xx=-⎰⎰⎰ππ55222π2422.sin sin555x x=-=231(8)ln dx x x⎰;解:原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰π220(9)e cos d x x x ⎰;解:ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d x xx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.120ln(1)(10)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333xx x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰322d (11)2xx x +-⎰;解:原式=3322111111d ln ln 2ln5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰21(12)x ⎰; 解:原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+ππ3π(13)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰;解:原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭212(14)e d t t t -⎰;解:原式=2212122ed e 12t t t --⎛⎫-=-=- ⎪⎝⎭⎰π22π6(15)cos d u u ⎰.解:原式=ππ22ππ661π11(1cos 2)d sin 226824u u u u ⎛⎫+==-+ ⎪⎝⎭⎰19.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰20. 求半径为R ,高为h 的球冠的表面积. 解:D =2π⎠⎛R -hR x 1+x ′2d y=2π⎠⎜⎜⎛arc sin R -hRπ2R cos θ()R cos θ′2+()R sin θ′2d θ=2π⎠⎜⎜⎛arc sin R -hR π2R 2cos θd θ=2πR 2[]sin θπ2arc sinR -h R=2πRh .21.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

相关文档
最新文档