热电偶基础知识介绍资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EA(t,t0)=UAt-UAt0
EA (t, t0 ) U At
U At0
k e
t
t0
1 N At
d (N At ,t) dT dt
考虑:如果同一导体各点温度相同,即t=t0,则回路总电
ห้องสมุดไป่ตู้
动势必为零?
2020/6/9
第四章 非电量的电测技术
7
(三)热电偶回路的热电势
热电偶回路中总的热电势应是接触电势与温差电势之
模拟图:在一个密闭的空间里,气体分子在高温时的运动 速度比低温时快!
2020/6/9
第四章 非电量的电测技术
6
定义:同一导体的两端因其温度不同而产生的一种热电 势——温差电动势
同一导体的两端温度不同时, 高温端的电子能量要比低温 端的电子能量大, 因而从高温端跑到低温端的电子数比从 低温端跑到高温端的要多, 结果高温端因失去电子而带正 电, 低温端因获得多余的电子而带负电, 形成一个静电场, 该静电场阻止电子继续向低温端迁移,最后达到动态平衡。 因此, 在导体两端便形成温差电势,公式:
➢ A表示热电偶正极;B表示负极 ➢ t表示测量端温度;t0表示冷端温度; ➢ 符号变化,位置规定的含义不变。 ➢ EAB(t,t0)=-EBA(t,t0)=-EAB(t0,t)
解释:当NA>NB,A为正极,B为负极。脚注AB的顺序表 示电动势的方向。当脚注顺序改变时,电动势前面的 符号(+、-)随之改变。
EAB(t, t0 ) f(t) - f(t 0 )
2. 对于已选定的热电偶, 当参考端温度t0恒定时, EAB(t0)为常数,则总的热电动势就只与温度t成单值 函数关系, 即 EAB(t,t0)=EAB(t)-C=φ(t)
2020/6/9
第四章 非电量的电测技术
9
(四)实际应用
我国从1991年开始采用国际计量委员会规定的 “1990年国际温标”(简称ITS-90)的新标准。 按此标准,制定了相应的分度表,并且有相应的线性 化集成电路与之对应。
和。
t EAB(t)
EA(, t,t0)
A(+)
t0 EAB(t0)
B(-)
EB(t,t0)
t>t0,NA>NB
EAB(t,t0)=EAB(t) +EB(t,t0) -EAB(t0)-EA(t,t0)
经实践证明,在热电偶中起主要作用的是接触电动势,温差
电动势只占极小部分。可以忽略不计:
EAB(t,t0)= EAB(t)-EAB(t0)
利用热电偶作为传感器来检测温度时,必须在热电偶回路中引入显示或记录仪表, 并用连接导线将它们连接起来,因此必须掌握下面的基本定律,以保证能够正确 的选择和使用热电偶。
2020/6/9
第四章 非电量的电测技术
11
1)热电势的大小仅与材料的性质及其两端点的温度 有关,而与热电偶的形状、大小无关。
A
+
T
自 由 B电 子
2020/6/9
eAB(T)
EAB (t)
kt e
ln
NAt NBt
k:波尔兹曼常数;
e:单位电荷电量;
NAT 、 NBT : 温 度 为 T 时 , 导 体 A 、 B 的自由电子密度。
第四章 非电量的电测技术
5
(二)温差电动势
温度的影响
温度标志着物质内 部大量分子无规则 运动的剧烈程度。 温度越高,表示物 体内部分子热运动 越剧烈。
目前热电偶统一规定在T0=0℃的条件下,给出测量 端温度与热电势的数值对照表,即分度表自由端(约 束条件:冷端温度必须为0 ℃ )。实际测温时,根 据测出的热电势可通过查对应的分度表,查得所测的 温度值。
本教材p366的附录列出了工业中常用的分度表
2020/6/9
第四章 非电量的电测技术
10
二、有关热电偶的几点结论 规定:EAB(t,t0)的含义,按位置顺序
热电偶传感器介绍
在工业生产过程中,温度是需要测量和控制的重要参 数之一。在温度测量中,热电偶的应用极为广泛,它 具有结构简单、制造方便、测量范围广、精度高、惯 性小和输出信号便于远传等许多优点,在温度测量中 占有重要的地位。其测温范围较宽,一般为-50~ 1600℃,最高的可达到3000℃。
另外,由于热电偶是一种有源传感器,测量时不需外 加电源,使用十分方便,所以常被用作测量炉子、管 道内的气体或液体的温度及固体的表面温度。
2020/6/9
第四章 非电量的电测技术
3
通过以上演示得出结论——有关热电偶热电势的讨论
将两种不同的导体(或半导体)A、B组合成闭合回路。 若两结点处温度不同,则回路中将有电流流动,即回 路中有热电动势存在。
此电动势的大小除了与材料本身的性质有关以外,还 决定于结点处的温差,这种现象称为热电效应或塞贝 克效应。
k
t
ln
N At
dT
e t0 NBt
2020/6/9
第四章 非电量的电测技术
8
EAB(t,t0)= EAB(t)-EAB(t0) 综上所述,如下结论:
1. 热电偶回路中热电动势的大小,与组成热电偶的导 体材料和两接点的温度有关,而与热电偶的形状尺 寸无关。当热电偶两电极材料固定后,热电动势便 是两接点温度为t和t0时的函数差:
2020/6/9
第四章 非电量的电测技术
1
一、 热电偶的测温原理 先看一个实验——热电偶工作原理演示
热电极A
左端称为:
测量端(工
A
作端、热端)
热电势
B
热电极B
右端称为: 自由端 (参考端、 冷端)
结论:当两个结点温度不相同时,回路中将产生电动势。
2020/6/9
第四章 非电量的电测技术
2
从实验到理论:热电效应
1821年,德国物理学家赛贝克用两种不同金属组成闭 合回路,并用酒精灯加热其中一个接触点(称为结 点),发现放在回路中的指南针发生偏转(说明什 么?),如果用两盏酒精灯对两个结点同时加热,指 南针的偏转角反而减小(又说明什么?)。
显然,指南针的偏转说明回路中有电动势产生并有电 流在回路中流动,电流的强弱与两个结点的温差有关。
热电偶就是根据此原理设计制作的将温差转换为电势 量的热电式传感器。热电效应产生的热电势是由接触 电势和温差电势两部分组成的。
2020/6/9
第四章 非电量的电测技术
4
(一)接触电势
产生原因:两种不同的金属互相接触时,由于不同金 属内自由电子的密度不同,在两金属A和B的接触点处 会发生自由电子的扩散现象。自由电子将从密度大的 金属A扩散到密度小的金属B,使A失去电子带正电,B 得到电子带负电,从而产生接触电势:
EA (t, t0 ) U At
U At0
k e
t
t0
1 N At
d (N At ,t) dT dt
考虑:如果同一导体各点温度相同,即t=t0,则回路总电
ห้องสมุดไป่ตู้
动势必为零?
2020/6/9
第四章 非电量的电测技术
7
(三)热电偶回路的热电势
热电偶回路中总的热电势应是接触电势与温差电势之
模拟图:在一个密闭的空间里,气体分子在高温时的运动 速度比低温时快!
2020/6/9
第四章 非电量的电测技术
6
定义:同一导体的两端因其温度不同而产生的一种热电 势——温差电动势
同一导体的两端温度不同时, 高温端的电子能量要比低温 端的电子能量大, 因而从高温端跑到低温端的电子数比从 低温端跑到高温端的要多, 结果高温端因失去电子而带正 电, 低温端因获得多余的电子而带负电, 形成一个静电场, 该静电场阻止电子继续向低温端迁移,最后达到动态平衡。 因此, 在导体两端便形成温差电势,公式:
➢ A表示热电偶正极;B表示负极 ➢ t表示测量端温度;t0表示冷端温度; ➢ 符号变化,位置规定的含义不变。 ➢ EAB(t,t0)=-EBA(t,t0)=-EAB(t0,t)
解释:当NA>NB,A为正极,B为负极。脚注AB的顺序表 示电动势的方向。当脚注顺序改变时,电动势前面的 符号(+、-)随之改变。
EAB(t, t0 ) f(t) - f(t 0 )
2. 对于已选定的热电偶, 当参考端温度t0恒定时, EAB(t0)为常数,则总的热电动势就只与温度t成单值 函数关系, 即 EAB(t,t0)=EAB(t)-C=φ(t)
2020/6/9
第四章 非电量的电测技术
9
(四)实际应用
我国从1991年开始采用国际计量委员会规定的 “1990年国际温标”(简称ITS-90)的新标准。 按此标准,制定了相应的分度表,并且有相应的线性 化集成电路与之对应。
和。
t EAB(t)
EA(, t,t0)
A(+)
t0 EAB(t0)
B(-)
EB(t,t0)
t>t0,NA>NB
EAB(t,t0)=EAB(t) +EB(t,t0) -EAB(t0)-EA(t,t0)
经实践证明,在热电偶中起主要作用的是接触电动势,温差
电动势只占极小部分。可以忽略不计:
EAB(t,t0)= EAB(t)-EAB(t0)
利用热电偶作为传感器来检测温度时,必须在热电偶回路中引入显示或记录仪表, 并用连接导线将它们连接起来,因此必须掌握下面的基本定律,以保证能够正确 的选择和使用热电偶。
2020/6/9
第四章 非电量的电测技术
11
1)热电势的大小仅与材料的性质及其两端点的温度 有关,而与热电偶的形状、大小无关。
A
+
T
自 由 B电 子
2020/6/9
eAB(T)
EAB (t)
kt e
ln
NAt NBt
k:波尔兹曼常数;
e:单位电荷电量;
NAT 、 NBT : 温 度 为 T 时 , 导 体 A 、 B 的自由电子密度。
第四章 非电量的电测技术
5
(二)温差电动势
温度的影响
温度标志着物质内 部大量分子无规则 运动的剧烈程度。 温度越高,表示物 体内部分子热运动 越剧烈。
目前热电偶统一规定在T0=0℃的条件下,给出测量 端温度与热电势的数值对照表,即分度表自由端(约 束条件:冷端温度必须为0 ℃ )。实际测温时,根 据测出的热电势可通过查对应的分度表,查得所测的 温度值。
本教材p366的附录列出了工业中常用的分度表
2020/6/9
第四章 非电量的电测技术
10
二、有关热电偶的几点结论 规定:EAB(t,t0)的含义,按位置顺序
热电偶传感器介绍
在工业生产过程中,温度是需要测量和控制的重要参 数之一。在温度测量中,热电偶的应用极为广泛,它 具有结构简单、制造方便、测量范围广、精度高、惯 性小和输出信号便于远传等许多优点,在温度测量中 占有重要的地位。其测温范围较宽,一般为-50~ 1600℃,最高的可达到3000℃。
另外,由于热电偶是一种有源传感器,测量时不需外 加电源,使用十分方便,所以常被用作测量炉子、管 道内的气体或液体的温度及固体的表面温度。
2020/6/9
第四章 非电量的电测技术
3
通过以上演示得出结论——有关热电偶热电势的讨论
将两种不同的导体(或半导体)A、B组合成闭合回路。 若两结点处温度不同,则回路中将有电流流动,即回 路中有热电动势存在。
此电动势的大小除了与材料本身的性质有关以外,还 决定于结点处的温差,这种现象称为热电效应或塞贝 克效应。
k
t
ln
N At
dT
e t0 NBt
2020/6/9
第四章 非电量的电测技术
8
EAB(t,t0)= EAB(t)-EAB(t0) 综上所述,如下结论:
1. 热电偶回路中热电动势的大小,与组成热电偶的导 体材料和两接点的温度有关,而与热电偶的形状尺 寸无关。当热电偶两电极材料固定后,热电动势便 是两接点温度为t和t0时的函数差:
2020/6/9
第四章 非电量的电测技术
1
一、 热电偶的测温原理 先看一个实验——热电偶工作原理演示
热电极A
左端称为:
测量端(工
A
作端、热端)
热电势
B
热电极B
右端称为: 自由端 (参考端、 冷端)
结论:当两个结点温度不相同时,回路中将产生电动势。
2020/6/9
第四章 非电量的电测技术
2
从实验到理论:热电效应
1821年,德国物理学家赛贝克用两种不同金属组成闭 合回路,并用酒精灯加热其中一个接触点(称为结 点),发现放在回路中的指南针发生偏转(说明什 么?),如果用两盏酒精灯对两个结点同时加热,指 南针的偏转角反而减小(又说明什么?)。
显然,指南针的偏转说明回路中有电动势产生并有电 流在回路中流动,电流的强弱与两个结点的温差有关。
热电偶就是根据此原理设计制作的将温差转换为电势 量的热电式传感器。热电效应产生的热电势是由接触 电势和温差电势两部分组成的。
2020/6/9
第四章 非电量的电测技术
4
(一)接触电势
产生原因:两种不同的金属互相接触时,由于不同金 属内自由电子的密度不同,在两金属A和B的接触点处 会发生自由电子的扩散现象。自由电子将从密度大的 金属A扩散到密度小的金属B,使A失去电子带正电,B 得到电子带负电,从而产生接触电势: