习题1.1参考答案
苑尚尊电工与电子技术基础第2版习题参考答案第1章
第1章 直流电路及其分析方法习题解答习 题 一1.1 题1.1图所示电路由4个元件组成,电压电流的参考方向如图中所示。
已知U 1= –5V ,U 2=15V ,I 1=2A ,I 2=3A ,I 3= –1A 。
试计算各元件的电功率,并说明哪些元件是电源?哪些元件是负载?题1.1图解:1元件:102)5(111−=×−==I U P (W )是电源。
2元件:40315222=×==I U P (W )是负载。
3元件:15)1(15323−=−×==I U P (W )是电源。
4元件:202)155(14−=×+−−=−=UI P (W )是电源。
1.2 求题1.2图所示各元件的端电压或通过的电流。
题1.2图解:(a)10101−=×−=−=IR U (V)(b)155−=−==R U I (A) (c)1010)1(−=×−==IR U (V)1.3 电路如图1.3所示,已知U =12V ,E =6V ,R 0=2Ω,试根据电流、电压和电动势的正方向,分别计算图1.3中各电流I 。
题1.3图第1章 直流电路及其分析方法习题解答2 解:(a) 0U E IR =− 03 (A)E UI R −==− (b) 0U E IR =+ 0 3 (A)U EI R −== ©0U E IR =−− 09 (A)E UI R −−==− (d) 0U E IR =−+ 09 (A)E UI R +==1.4 已知电路如题1.4图(a )和(b )所示,试计算a 、b 两端的电阻。
解:(a)由图可知,电阻的串并联关系可等效为下图所示:则710//10210//]6)12//6[(2=+=++=ab R (Ω) (b)由图可知,电阻的串并联关系可等效为下图所示:则4.54.236//46//6=+=+=ab R (Ω) 1.5 在题1.5图中,R 1=R 2=R 3=R 4=300Ω,R 5=600Ω,试求开关S 断开和闭合时a 、b 之间的等效电阻。
计算机教材课后习题参考答案
《大学计算机基础与计算思维》课后习题参考答案目录第1章计算、计算机与计算思维 (1)第2章数据的计算基础 (3)第3章计算机硬件系统 (5)第4章操作系统基础 (9)第5章算法与数据结构 (11)第6章程序设计及软件工程基础 (14)第7章数据库技术 (16)第8章计算机网络 (19)第9章信息安全与职业道德 (21)第10章计算软件 (24)第11章办公软件Office 2010 (25)算机科学与技术学院计算机基础教学部2015年9月第1章计算、计算机与计算思维1.1 举例说明可计算性和计算复杂性的概念。
答:对于给定的一个输入,如果计算机器能在有限的步骤内给出答案,这个问题就是可计算的。
数值计算、能够转化为数值计算的非数值问题(如语音、图形、图像等)都是可计算的。
计算复杂性从数学上提出计算问题难度大小的模型,判断哪些问题的计算是简单的,哪些是困难的,研究计算过程中时间和空间等资源的耗费情况,从而寻求更为优越的求解复杂问题的有效规则,例如著名的汉诺塔问题。
1.2 列举3种电子计算机出现之前的计算工具,并简述其主要特点。
答:(1)算盘通过算法口诀化,加快了计算速度。
(2)帕斯卡加法器通过齿轮旋转解决了自动进位的问题。
(3)机电式计算机Z-1,全部采用继电器,第一次实现了浮点记数法、二进制运算、带存储地址的指令等设计思想。
1.3 简述电子计算机的发展历程及各时代的主要特征。
答:第一代——电子管计算机(1946—1954年)。
这个时期的计算机主要采用电子管作为运算和逻辑元件。
主存储器采用汞延迟线、磁鼓、磁芯,外存储器采用磁带。
在软件方面,用机器语言和汇编语言编写程序。
程序的编写与修改都非常繁琐。
计算机主要用于科学和工程计算。
第二代——晶体管计算机(1954—1964年)。
计算机逻辑元件逐步由电子管改为晶体管,体积与功耗都有所降低。
主存储器采用铁淦氧磁芯器,外存储器采用先进的磁盘,计算机的速度和可靠性有所提高。
专升本 高等数学 2012年专升本高等数学(二)参考答案
第一部分 极限和连续同步练习题1.1参考答案一、选择题1.C2.A3. A 二、填空题4. [4,2][2,4]-- 。
5. π。
6.3cos x 。
三、解答题7.2,1,tan ,12y u u v v w z z x ==+==-。
8.222112111()1()2()1()()21xf x f x x x x x x =++=++→=++。
同步练习题1.2参考答案一、选择题1.D2.C3.D4. C5.B6.C7.C 二、填空题8.2,3 9. 1 10. 0 11. 2-三、解答题12 (1)2121230113lim lim 230332433nn n n n n n n ++→∞→∞⎛⎫+ ⎪++⎝⎭===++⎛⎫+ ⎪⎝⎭。
(2) 221...111lim lim 1...111n n n n n n a a a a b b b b b a b a →∞→∞++++---=⨯=++++---。
(3)111lim ...1335(21)(21)111111111lim 1...lim 12335(21)(21)2(21)2n n n n n n n n →∞→∞→∞⎡⎤++⎢⎥⨯⨯-+⎣⎦⎡⎤⎡⎤=-+-+-=-=⎢⎥⎢⎥-++⎣⎦⎣⎦(4)1lim[ln(1)ln]lim ln(1)ln1xx xx x x ex→+∞→+∞+-=+==。
(5)1114x xx→→→===(6)16x x→→==。
(7)22lim2x xx x→→==--(8)0001(1)11lim lim lim()112x x x x x xx x xe e e e e ex x x x---→→→------==+=+=-。
13.100lim(1)lim[(1)]nmn mnx mxx xmx mx e→→+=+=。
14. ()lim(1)lim[(1)]txt x xt tf x et tπππππ→∞→∞=+=+=,(ln3)3fπ=。
(完整版)结构化学习题参考答案-周公度-第5版
【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。
解:811412.99810m s 4.46910s 670.8m cνλ--⨯⋅===⨯ 41711 1.49110cm670.810cm νλ--===⨯⨯3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν--==⨯⋅⨯⨯⨯⨯=⋅【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kgυ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥ ⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg,运动速度为0.01m ·s -1的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。
解:根据关系式:(1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅ 34-11 (2) 9.40310mh p λ-====⨯3411(3) 7.0810mh p λ--====⨯【1.6】对一个运动速度c υ(光速)的自由粒子,有人进行了如下推导:1v vv v 2h h E m p m νλ=====①②③④⑤结果得出12m m υυ=的结论。
概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案
(3)由定义条件 2,知 A1 ,A2 , L , An ∈ F ,根据(2)小题结论,可得 U Ai ∈ F ,
i =1
n
再由定义条件 2,知 U Ai ∈ F ,即 I Ai ∈ F ;
i =1 i =1
n
n
(4)由定义条件 2,知 A1 , A2 , L , An , L ∈ F ,根据定义条件 3,可得 U Ai ∈ F ,
n n −1 n (3)由二项式展开定理 ( x + y ) n = ⎜ ⎜0⎟ ⎟x + ⎜ ⎜1⎟ ⎟x y + L + ⎜ ⎜n⎟ ⎟ y ,令 x = y = 1,得 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛n⎞ ⎛n⎞ ⎛n⎞ n ⎜ ⎜0⎟ ⎟+⎜ ⎜1⎟ ⎟ +L+ ⎜ ⎜n⎟ ⎟=2 ; ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ n − 1⎞ ⎛ n − 1⎞ ⎛n⎞ (n − 1)! (n − 1)! (n − 1)! n! ⎟ ⎟ ⎟ [ r + (n − r )] = +⎜ = + = =⎜ ⎟ ⎜ ⎟ ⎟; r!(n − r )! ⎜ ⎝ r − 1⎠ ⎝ r ⎠ (r − 1)!(n − r )! r!(n − 1 − r )! r!( n − r )! ⎝r⎠ ⎛n⎞ ⎛ n⎞ ⎛n⎞
2
Ω A
B C (A − B )∪C
Ω
证: (1) AB U AB = A( B U B ) = AΩ = A ; (2) A U A B = ( A U A )( A U B ) = Ω( A U B ) = A U B . 11.设 F 为一事件域,若 An ∈F ,n = 1, 2, …,试证: (1)∅ ∈F ; (2)有限并 U Ai ∈ F ,n ≥ 1;
概率论与数理统计课后习题参考问题详解高等教育出版社
概率论与数理统计课后习题参考答案高等教育习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
12财政学习题参考答案
财政学习题武汉大学经济系赵伟习题1.1:市场失灵n1.你认为下列哪个市场会产生效率结果?为什么?(4)n(1)海滨住房的防潮险;n(2)医疗;n(3)股票市场;n(4)个人计算机。
n2.下列属于市场失灵现象的有(1、2、3、4)。
n(1)电信服务价格居高不下;n(2)传染性疾病流行;n(3)私人企业没有能力从事国防科技研究;n(4)政府提供医疗保险,但医疗费用飞速上升,无法控制。
n3.市场失灵是如何产生的,根源有哪些?习题1.1:公共产品基本概念私人产品竞争性排他性非排他性混合产品公共资源公共地的悲剧免费搭车问题准公共产品思考与练习1.你认为下列哪些属于公共产品,哪些属于私人产品?为什么?1、2、4属于公共产品,3属于私人产品(1)道路;(2)公共电视节目;(3)闭路电视节目;(4)提供航班时刻表的网站。
习题1.1:政府失灵n 1.假如有5 个选民:甲、乙、丙、丁、戊,他们对A、B、C、D 四个项目的排序如下。
(1)依照图3-2,画出各选民的效用曲线。
(2)按照简单多数规则,能否选出项目?如果能,是哪一个?如果不能,请说明为什么。
2.在世界各国广泛实行间接民主制和多数票规则下,公共决策的结果能否充分有效地反映纳税人的意愿?为什么?3.根据公共选择理论,说明政府失灵的主要原因及其矫正方法。
偏好形态图ABCD甲乙丙丁戊1234D wins in every pairwise vote?although multi-peaked preferences may lead to voting inconsistencies, this is not necessarily the case. 两两投票表决中D 方案胜出。
投票悖论出现一定是存在多峰偏好。
2.假如王某和李某对焰火的需求曲线分别为:P A=10-0.5Q,P B=20-Q;焰火的边际成本曲线为MC=2/3·Q (1)如果焰火是私人产品,请求出其均衡价格和数量以及王某和李某各自对焰火的需求量;(2)如果焰火具有非排他性,王某和李某的需求量以及他们的意愿支付价格分别是多少?(3)如果王某选择搭便车,焰火的均衡数量是多少?(4)请问如何解决搭便车问题?(详见后)3.公共产品的有效供给和私人产品的有效供给有何区别?为什么存在这样的区别?试分析之。
《装配式混凝土建筑概论》课后习题参考答案
第1章习题参考答案1.1 什么是建筑产业化?建筑产业化的主要特点有哪些?参考答案:(1)建筑产业化是指运用现代化管理模式,通过标准化的建筑设计以及模数化、工厂化的部品生产,实现建筑构部件的通用化和现场施工的装配化、机械化。
(2)建筑产业化的主要特点如下:1)主要构件在工厂或现场预制,采用机械化吊装,可以与现场各专业施工同步进行,具有施工速度快、有效缩短工程建设周期、有利于冬期施工的特点。
2)构件预制采用定型模板平面施工作业,代替现浇结构立体交叉作业,具有生产效率高、产品质量好、安全环保、有效降低成本的特点。
3)在预制构件生产环节可以采用反打一次成型工艺或立模工艺等将保温、装饰、门窗附件等特殊要求的功能高度集成,可以减少物料损耗和施工工序。
4)对从业人员的技术管理能力和工程实践经验要求较高,装配式建筑的设计、施工应做好前期策划,具体包括工期进度计划、构件标准化深化设计及资源优化配置方案等。
1.2 如何理解PC结构?PC结构的主要特点有哪些?参考答案:(1)PC结构是预制装配式混凝土结构的简称,PC是Prefabricated Concrete Structure 的缩写,是以预制混凝土构件为主要构件,经装配、连接部分现浇而形成的混凝土结构。
PC 构件是以构件加工单位工厂化制作而成的成品混凝土构件。
(2)PC结构的主要特点有:①产业化流水预制构件工业化程度高。
②成型模具和生产设备一次性投入后可重复使用,耗材少,节约资源和费用。
③现场装配、连接可避免或减轻施工对周边环境的影响。
④预制装配工艺的运用可使劳动力资源投入相对减少。
⑤机械化程度有明显提高,操作人员劳动强度得到有效降低。
⑥预制构件外装饰工厂化制作,直接浇捣于混凝土中,建筑物外墙无湿作业,不采用外脚手架,不产生落地灰,扬尘得到抑制。
⑦预制构件的装配化使得工程施工周期缩短。
⑧工厂化预制混凝土构件不采用湿作业和减少现浇混凝土浇捣,避免了垃圾源的产生,搅拌车、固定泵以及湿作业的操作工具洗清,大量废水和废浆污染源得到抑制。
计量经济学精要习题参考答案(第四版)
计量经济学(第四版)习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2 NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
2.3 原假设 120:0=μH备择假设 120:1≠μH2检验统计量()10/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即此样本不是取自一个均值为120元、标准差为10元的正态总体。
结构化学习题参考答案-周公度-第5版
【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。
解:811412.99810m s 4.46910s 670.8m cνλ--⨯⋅===⨯ 41711 1.49110cm670.810cm νλ--===⨯⨯3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν--==⨯⋅⨯⨯⨯⨯=⋅【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kgυ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥ ⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg,运动速度为0.01m ·s -1的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。
解:根据关系式:(1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅ 34-11 (2) 9.40310mh p λ-====⨯3411(3) 7.0810mh p λ--====⨯【1.6】对一个运动速度c υ(光速)的自由粒子,有人进行了如下推导:1v vv v 2h h E m p m νλ=====①②③④⑤结果得出12m m υυ=的结论。
微机原理与接口技术李珍香版课后习题1-10章参考答案
习题一1.1微型计算机系统主要由哪些部分组成?参考答案:微型计算机系统由硬件和软件两大部分组成。
1.2微型计算机中的CPU由哪些部件组成?各部件的功能是什么?参考答案:微型计算机中的CPU由运算器、控制器、寄存器组等部件组成。
其中运算器也称算术逻辑单元(ALU),主要用来完成对数据的运算(包括算术运算和逻辑运算);控制器是控制部件,它能自动、逐条地从内存储器中取指令,将指令翻译成控制信号,并按时间顺序和节拍发往其它部件,指挥各部件有条不紊地协同工作。
微机的数据输入/输出、打印、运算处理等一切操作都必须在控制器的控制下才能进行。
寄存器组是微处理器内部的一组暂时存储单元,主要起到数据准备、调度和缓冲的作用,寄存器的访问速度要比存储器快得多。
1.3微型计算机硬件结构由哪些部分组成?各部分的主要功能是什么?参考答案:微型计算机的硬件结构主要由微处理器、内存储器、输入/输出接口电路、输入/输出设备及系统总线组成。
其中微处理器是微型计算机的核心部件,其主要功能是负责统一协调、管理和控制系统中的各个部件有机地工作;内存储器的主要功能是用来存储微机工作过程中需要操作的数据、程序,运算的中间结果和最后结果,具有存数和取数的功能;输入/输出(I/O)接口电路的功能是完成主机与外部设备之间的信息交换;I/O设备是用户与微机进行通信联系的主要装置,其中输入设备是把程序、数据、命令转换成微机所能识别接收的信息,然后输入给微机;输出设备是把CPU计算和处理的结果转换成人们易于理解和阅读的形式,然后输出到外部。
微机的系统总线实现将CPU、存储器和外部设备进行连接,共有数据总线、地址总线和控制总线三种,其中数据总线主要用来实现在CPU与内存储器或I/O接口之间传送数据;地址总线是由CPU输出用来指定其要访问的存储单元或输入/输出接口的地址的;控制总线;控制总线用于传送控制信号、时序信号和状态信息,实现CPU的工作与外部电路的工作同步。
有机化学课后习题参考答案
第一章 绪论1.1 扼要归纳典型的以离子键形成的化合物与以共价键形成的化合物的物理性质。
1.2是否相同?如将CH 4 及CCl 4各1mol 混在一起,与CHCl 3及CH 3Cl 各1mol 的混合物是否相同?为什么?答案: NaCl 与KBr 各1mol 与NaBr 及KCl 各1mol 溶于水中所得溶液相同。
因为两者溶液中均为Na + , K + , Br -, Cl -离子各1mol 。
由于CH 4 与CCl 4及CHCl 3与CH 3Cl 在水中是以分子状态存在,所以是两组不同的混合物。
1.3 碳原子核外及氢原子核外各有几个电子?它们是怎样分布的?画出它们的轨道形状。
当四个氢原子与一个碳原子结合成甲烷(CH 4)时,碳原子核外有几个电子是用来与氢成键的?画出它们的轨道形状及甲烷分子的形状。
答案:C+624HCCH 4中C 中有4个电子与氢成键为SP 3杂化轨道,正四面体结构CH 4SP 3杂化2p y2p z2p x2sH1.4 写出下列化合物的Lewis 电子式。
a. C 2H 4b. CH 3Clc. NH 3d. H 2Se. HNO 3f. HCHOg. H 3PO 4h. C 2H 6i. C 2H 2 j. H 2SO 4 答案:a.C C H H H HCC HH HH或 b.H C H H c.H N HHd.H S He.H O NO f.O C H Hg.O P O O H H Hh.H C C HHH H HO P O O H HH或i.H C C Hj.O S O HH OH H或1.5 下列各化合物哪个有偶极矩?画出其方向。
a. I 2b. CH 2Cl 2c. HBrd. CHCl 3e. CH 3OHf. CH 3OCH 3 答案:b.ClClc.HBrd.HCe.H 3COHH 3COCH 3f.1.6 根据S 与O 的电负性差别,H 2O 与H 2S 相比,哪个有较强的偶极-偶极作用力或氢键?答案:电负性 O > S , H 2O 与H 2S 相比,H 2O 有较强的偶极作用及氢键。
虚拟仪器应用习题答案
参考答案:
如温度监控项目一样,在程序设计中设置比较环节,结合条件结构,可以实现限速功能实现。
思考题
10.1是否有其他方法做自动门的仿真界面? 比如可试试用3D控件。
参考答案:
可采用3D控件来实现。
参考答案:程序框图,保存路径可以自由选择,保存格式可以是二进制。
思考
5.3本节中介绍了10个最常用的DAQmx函数,在实际应用中,它们在数据流中所放置的先后顺序有没有一定的规律?本节中所介绍的实例大都是单一输入或者单一输出的情况,如果需要同时输入和输出,应该如何处理?
参考答案:
通常的规律是创建通道,设置采样时钟,配置触发等设置,(配置输出波形),开始任务,(获取采集波形),清除任务。
2)当连续8秒质量都为0g后,自动停止,可以在用条件结构来实现,见下图,在度数据的分支,把当前g与0比较,为真,执行真分支。该分支用来判断是否保持8s。由于该DAQ过程设置了没0.5s进行一次读写操作,这里计16个数就是8s。
8.2用状态机实容器液位监控。要求:初始水位100ms,水位上限200ms,下限50ms,越限要有报警指示。用一个进水阀和一个进水量调节控件来控制进水情况;一个出水阀和一个出水量调节控件来控制出水量。可以单独进水或出水,也可以同时进、出水。点击“结束”按钮,退出程序。
思考题1
1.1参考例题1创建一个VI,实现将华氏温度转换为摄氏温度的功能,并在前面板显示摄氏温度和华氏温度。
参考答案:
1.2创建一个VI实现两个输入数据的加、减、乘运算,并显示数据的和、差与乘积。
参考答案:
思考题2
2.1用0-100的随机数代替摄氏温度,将每500ms采集的温度的变化波形表示出来,并设定上限85,下限45,温度高于上限或者低于下限分别点亮对应的指示灯。并将其上下限也一并在波形中表示出来。
密码学答案
《密码学原理与实践(第三版)》课后习题参考答案(由华中科技大学信安09级提供)第一章1.1(李怡)(a)51 (b)30 (c)81 (d)74221.2(贾同彬)证明:令t1= (-a)mod m ,t2=m-(a mod m),则t1≡t2(mod m).又 0<t1<m,0<t2<m, (最小非负剩余系中每个剩余类只有一个代表元)所以t1=t2.1.3 (张天翼) 证明充分性:若(mod )a b m ≡,则可得a b km =+,设b jm r =+,0r m ≤<,j N ∈,则有()a k j m r =++,故有mod a m r =,由假设得mod b m r =,故mod mod a m b m =证明必要性:若mod mod a m b m =,则可设mod mod a m b m r ==,则有a km r =+,b jm r =+,其中,j k N ∈,因此()a b k j m -=-,即m a b -,故(mod )a b m ≡ 综上,问题得证1.4 (李怡),0,mod ,.,-0,1,a km r r m r a ma r a km k m a r a a a k m r k k m m m m =+≤<=⎢⎥=-=⎢⎥⎣⎦-⎢⎥=-<≤-<≤=⎢⎥⎣⎦令则而所以只需证明因为所以即1.5 (李志远)穷举密钥法来破解移位密码即将这个字符串每个字母移位1,2,3…26次,然后判断这26个字符串哪个符合英语规则。
故我编写 如下的C++来实现如此功能 #include<iostream> using namespace std; char change(char word) {if(word=='Z')return 'A'; else return word+1; }int main(){cout<<"please input the string"<<endl;char string1[43];cin>>string1;int n;for(n=1;n<=26;n++){int num;for(num=0;num<43;num++){string1[num]=change(string1[num]);}cout<<string1<<endl<<"for turn "<<n<<endl;}}解释:1.代码专为本题编写,故输入字符数不能多于43个,且输入范围仅限大写英语字母2.将题中的42个字母BEEAKFYDJXUQYHYJIQRYHTYJIQFBQFBQDUYJIIKFUHC输入并回车3.得到的结果CFFBLGZEKYVRZIZKJRSZIUZKJRGCREVZKJJLGVIDREfor turn 1DGGCMHAFLZWSAJALKSTAJVALKSHDSFWALKKMHWJESFfor turn 2EHHDNIBGMAXTBKBMLTUBKWBMLTIETGXBMLLNIXKFTGfor turn 3FIIEOJCHNBYUCLCNMUVCLXCNMUJFUHYCNMMOJYLGUHfor turn 4GJJFPKDIOCZVDMDONVWDMYDONVKGVIZDONNPKZMHVIfor turn 5HKKGQLEJPDAWENEPOWXENZEPOWLHWJAEPOOQLANIWJfor turn 6ILLHRMFKQEBXFOFQPXYFOAFQPXMIXKBFQPPRMBOJXKfor turn 7JMMISNGLRFCYGPGRQYZGPBGRQYNJYLCGRQQSNCPKYLfor turn 8KNNJTOHMSGDZHQHSRZAHQCHSRZOKZMDHSRRTODQLZMfor turn 9LOOKUPINTHEAIRITSABIRDITSAPLANEITSSUPERMANfor turn 10MPPLVQJOUIFBJSJUTBCJSEJUTBQMBOFJUTTVQFSNBOfor turn 11NQQMWRKPVJGCKTKVUCDKTFKVUCRNCPGKVUUWRGTOCPfor turn 12ORRNXSLQWKHDLULWVDELUGLWVDSODQHLWVVXSHUPDQfor turn 13PSSOYTMRXLIEMVMXWEFMVHMXWETPERIMXWWYTIVQERfor turn 14 QTTPZUNSYMJFNWNYXFGNWINYXFUQFSJNYXXZUJWRFSfor turn 15 RUUQAVOTZNKGOXOZYGHOXJOZYGVRGTKOZYYAVKXSGTfor turn 16 SVVRBWPUAOLHPYPAZHIPYKPAZHWSHULPAZZBWLYTHUfor turn 17 TWWSCXQVBPMIQZQBAIJQZLQBAIXTIVMQBAACXMZUIVfor turn 18 UXXTDYRWCQNJRARCBJKRAMRCBJYUJWNRCBBDYNAVJWfor turn 19 VYYUEZSXDROKSBSDCKLSBNSDCKZVKXOSDCCEZOBWKXfor turn 20 WZZVFATYESPLTCTEDLMTCOTEDLAWLYPTEDDFAPCXLYfor turn 21 XAAWGBUZFTQMUDUFEMNUDPUFEMBXMZQUFEEGBQDYMZfor turn 22 YBBXHCVAGURNVEVGFNOVEQVGFNCYNARVGFFHCREZNAfor turn 23 ZCCYIDWBHVSOWFWHGOPWFRWHGODZOBSWHGGIDSFAOBfor turn 24 ADDZJEXCIWTPXGXIHPQXGSXIHPEAPCTXIHHJETGBPCfor turn 25 BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKFUHCQDfor turn 26经过英语分析,发现当移位密码密钥为17时,字符串有英文含义LOOK UP IN THE AIR ITS A BIRD ITS A PLANE ITS SUPERMAN (看天上,是一只鸟,是一架飞机,是一位超人)故移位密码密钥为171.6(司仲峰)对合密钥为 0和131.7(陈诗洋)(a) m=30=2*3*5φ(30)=30*(1-1/2)*(1-1/3)*(1-1/5)=8故密钥量是 8*30=240(b)m=100=22*52φ(100)=100*(1-1/2)*(1-1/5)=40故密钥量是 40*100=4000(c)m=1225=52*72φ(1225)=1225*(1-1/5)*(1-1/7)=840故密钥量是 840*1225=10290001.8(周玉坤)解:在中若元素有逆,则必有gcd(a,m)=1;若元素a存在逆使得a=1,利用广义欧几里得除法,找到整数s和t,使得: sa+tm=1,则=s(modm)是a的逆。
2020年最新版初一数学教材课后习题参考答案
习题1.1第2题答案(1)0.08m表示水面高于标准水位0.08m;-0.2m表示水面低于标准水位0.2m(2)水面低于标准水位0.1m,记作-0.1m;高于标准水位0.23m,记作+0.23m(或0.23m)习题1.1第3题答案不对O既不是正数,也不是负数习题1.1第4题答案表示向前移动5m,这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置习题1.1第5题答案这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m)以平均值为标准,七次测量的数据用正数、负数表示分别为:-0.6m,+0.6m,+0.8m,-0.9m,Om,-0.4m十0.5m习题1.1第6题答案氢原子中的原子核所带电荷可以用+1表示,氢原子中的电子所带电荷以用-1表示习题1.1第7题答案由题意得7-4-4=-1(℃)习题1.1第8题答案中国、意大利服务出口额增长了;美国、德国、英国、日本服务出日额减少了;意大利增长率最高;日本增长率最低习题1.2第1题答案正数:{15,0.15,22/5,+20,…)负数:{-3/8,-30,-12.8,-60,…}习题1.2第2题答案如下图所示:习题1.2第3题答案当沿数轴正方向移动4个单位长时,点B表示的数是1当沿数轴反方向移动4个单位长时,点B表示的数是-7习题1.2第4题答案各数的相反数分别为4,-2,1.5,0,-1/3,9/4在数轴上表示如下图所示:习题1.2第5题答案丨-125丨=125,丨+23丨=23,丨-3.5丨=3.5,丨0丨=0,丨2/3丨=2/3,丨-3/2丨=3/2,丨-0.05丨=0.05-125的绝对值最大,0的绝对值最小习题1.2第6题答案-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3习题1.2第7题答案各城市某年一月份的平均气温(℃)按从高到低的顺序排列为:13.1;3.8;2.4;-4.6;-19.4习题1.2第8题答案因为丨+5丨=5,丨-3.5丨=3.5,丨+0.7丨=0.7,丨-2.5丨=2.5,丨-0.6丨=0.6所以从左向右数,第五个排球的质量最接近标准习题1.2第9题答案-9.6%最小;增幅是负数说明人均水资源占有量在下降习题1.2第10题答案表示数1的点与表示-2和4的点的距离相等,都是3习题1.2第11题答案(1)有;如-0.1,-0.12,-0.57,…有;如-0.15,-0.42,-0.48,…(2)有,-2;-1,0,1(3)没有(4)如:-101,-102,-102.5习题1.2第12题答案不一定,x还可能是-2;x=0;x=0习题1.3第1题答案(1)-4(2)8(3)-12(4)-3(5)-3.6(6)-1/5(7)1/15(8)-41/3(1)3(2)0(3)1.9(4)-1/5习题1.3第3题答案(1)-16(2)0(3)16(4)0(5)-6(6)6(7)-31(8)102(9)-10.8(10)0.2(1)1(2)1/5(3)1/6(4)-5/6(5)-1/2(6)3/4(7)-8/3(8)-8习题1.3第5题答案(1)3.1(2)3/4(3)8(4)0.1(5)-63/4(6)0两处高度相差:8844.43-(-415)=9259.43(m)习题1.3第7题答案半夜的气温为:-7+11-9=-5(℃)习题1.3第8题答案解:132-12.5-10.5+127-87+136.5+98=383.5(元)答:一周总的盈亏情况是盈利383.5元习题1.3第9题答案解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg)答:这8筐白菜一共194.5kg习题1.3第10题答案解:各天的温差如下:星期一:10-2=8(℃)星期二:12-1=11(℃)星期三:11-0=11(℃)星期四:9-(-1)=10(℃)星期五:7-(-4)=11(℃)星期六:5-(-5)=10(℃)星期日:7-(-5)=12(℃)答:星期日的温差最大,星期一的温差最小习题1.3第11题答案(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)7习题1.3第12题答案解:(-2)+(-2)=-4(-2)+(-2)+(-2)=-6(-2)+(-2)+(-2)+(-2)=-8(-2)+(-2)+(-2)+(-2)+(-2)=-10(-2)×2=4,(-2)×3=-6(-2)×4=8,(-2)×5=-10法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积习题1.3第13题答案解:第一天:0.3-(-0.2)=0.5(元)第二天:0.2-(-0.1)=0.3(元)第三天:0-(-0.13)=0.13(元)平均值:(0.5+0.3+0.13)÷3=0.31(元)题1.4第1题答案(1)(-8)×(-7)=56(2)12×(-5)=-60(3)2.9×(-0.4)=-1.16(4)-30.5×0.2=-6.1(5)100×(-0.001)=-0.1(6)-4.8×(-1.25)=6习题1.4第2题答案(1)1/4×(-8/9)=-2/9(2)(-5/6)×(-3/10)=1/4(3)-34/15×25=-170/3(4)(-0.3)×(-10/7)=3/7习题1.4第3题答案(1)-1/15(2)-9/5(3)-4(4)100/17(5)4/17(6)-5/27习题1.4第4题答案(1)-91÷13=-7(2)-56÷(-14)=4(3)16÷(-3)=-16/3(4)(-48)÷(-16)=3(5)4/5÷(-1)=-4/5(6)-0.25÷3/8=-2/3习题1.4第5题答案-5,-1/5,-4,6,5,1/5,-6,4习题1.4第6题答案(1)(-21)/7=-3(2)3/(-36)=-1/12(3)(-54)/(-8)=27/4(4)(-6)/(-0.3)=20习题1.4第7题答案(1)-2×3×(-4)=2×3×4=24(2)-6×(-5)×(-7)=-6×5×7=-210(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5(4)0.1÷(-0.001)÷(-1)=1/10×1000×1=100(5)(-3/4)×(-11/2)÷(-21/4)=-3/4×3/2×4/9=-1/2(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28(7)(7)×(-56)×0÷(-13)=0(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11习题1.4第8题答案(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3(4)-丨-2/3丨-丨-1/2×2/3丨-丨1/3-1/4丨-丨-3丨=-2/3-1/3-1/12-3=-49/12习题1.4第9题答案(1)(-36)×128÷(-74)≈62.27(2)-6.23÷(-0.25)×940=23424.80(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49(4)180.65-(-32)×47.8÷(-15.5)≈81.97习题1.4第10题答案(1)7500(2)-140(3)200习题1.4第11题答案解:450+20×60-12×120=210(m)答:这时直升机所在高度是210m习题1.4第12题答案(1)<,<(2)<,<(3)>,>(4)=,=习题1.4第13题答案2,1,-2,-1一个非0有理数不一定小于它的2倍,因为一个负数比它的2倍大习题1.4第14题答案(-2+3)a习题1.4第15题答案(1)(2)均成立,从它们可以总结出:分子、分母以及分数这三者的符号,改变其中两个,分教的值不变复习题1第1题答案如下图所示:-3.5<-2<-1.6<-1/3<0<0.5<2<3.5复习题1第2题答案将整数x的值在数轴上表示如下图所示:复习题1第3题答案a=-2的绝对值、相反数和倒数分别为:2,2,-1/2b=-2/3的绝对值、相反数和倒数分别为:2/3,2/3,-3/2c=5.5的绝对值、相反数和倒数分别为:5.5、-5.5,2/11复习题1第4题答案互为相反数的两数的和是0;互为倒数的两数的积是1复习题1第5题答案(1)100(2)-38(3)-70(4)-11(5)96(6)-9(7)-1/2(8)75/2(9)(-0.02)×(-20)×(-5)×4.5=-0.02×4.5×20×5=-0.09×100=-9(10)(-6.5)×(-2)÷(-1/3)÷(-5)=6.5×2×3×1/5=7.8(11)6+(-1/5)-2-(-1.5)=6-0.2-2+1.5=5.3(12)-66×4-(-2.5)÷(-0.1)=-264-25=-289(13)(-2)2×5-(-2)3÷4=4×5-(-8)÷4=20-(-2)=22(14)-(3-5)+32×(1-3)=-(-2)+9×(-2)=2+(-18)=-16复习题1第6题答案(1)245.635≈245.6(2)175.65≈176(3)12.004≈12.00(4)6.5378≈6.54复习题1第7题答案(1)100000000=1×108(2)-4500000=-4.5×106(3)692400000000=6.924×1011复习题1第8题答案(1)-2-丨-3丨=-2-3=-5(2)丨-2-(-3)丨=丨-2+3丨=1复习题1第9题答案(82+83+78+66+95+75+56+93+82+81)÷10=791÷10=79.1复习题1第10题答案C复习题1第11题答案解:星期六的收入情况表示为:458-[-27.8+(-70.3)+200+138.1+(-8)+188]=458-420=38因为38>0所以星期六是盈余的,盈佘了38元复习题1第12题答案解:(60-15)×0.002=0.09(mm)(5-60)×0.002=-0.11(mm)0.09-0.11=-0.02(mm)答:金属丝的长度先伸长了0.09mm,又缩短了0.11mm,最后的长度比原长度伸长了-0.02mm复习题1第13题答案解:1.4960亿km=1.4960×108km答:1个天文单位是1.4960×108km复习题1第14题答案(1)当a=1/2时,a的平方为1/4,a的立方为1/8,所以a大于a的平方大于a的立方,即a>a2>a3(0<a<1)(2)当b=-1/2时,b的平方为1/4,b的立方为-1/8,所以b的平方大于b的立方大于b,即b2>b3>b(-1<b<o)复习题1第15题答案特例归纳略(1)错,如:0的相反数是0(2)对,因为任何互为相反数的两个数的同—偶数次方符号相同,绝对值相等(3)错,对于一个正数和一个负数来说,正数大于负数,正数的倒数仍大于这个负数的倒数,如2和-3,2>-3,1/2>-1/3复习题1第16题答案1;121;12321;1234321(1)它们有一个共同特点:积的结果各数位上的数字从左到右由1开始依次增大1,当增大到乘式中一个乘数中1的个数后,再依次减小1,直到1(2)12345678987654321习题2.1第2题答案(1)(t+5)℃(2)3(x-y)km或(3x-3y)km(3)(100-5x)(4)(πR2a-πr2a)cm3习题2.1第3题答案习题2.1第4题答案(1)年数每增加一年,树高增加5cm (2)(100+5n)cm习题2.1第5题答案第2排有(a+1)个座位第3排有(a+2)个座位第n排的座位数为(a+n-1)20+19-1=38(个)习题2.1第6题答案解:V=(1/2a2-πr2)h(cm3)当a=6cm,r=0.5cm,h=0.2cm时V≈(1/2×62-3×0.52)×0.2=3.45(cm3)习题2.1第7题答案(1)2n(2)2n+1或(2n-1)习题2.1第8题答案3个球队比赛,总的比赛场数是[3(3-1)]/2=34个球队比赛,总的比赛场数是[4(4-1)]/2=65个球队比赛,总的比赛场数是[5(5-1)]/2=10n个球队比赛,总的比赛场数是[n(n-1)]/2习题2.1第9题答案密码L dp d jlou,破译它的“钥匙”x-3密码的意思是“I am a girl”(注:此题答案不唯一,合理即可)习题2.2第1题答案(1)2x-10.3x=(2-10.3)x=-8.3x(2)3x-x-5x=(3-1-5)x=-3x(3)-b+0.6b-2.6b=(-1+0.6-2.6)b=-3b(4)m-n2+m-n2=(1+1)m+(-1-1)n2=2m-2n2习题2.2第2题答案(1)2(4x-0.5)=8x-1(2)-3(1-1/6x)=-3+1/2x(3)-x+(2x-2)-(3x+5)=-x+2x-2-3x-5=-2x-7(4)3a2+a2-(2a2-2a)+(3a-a2)=3a2+a2-2a2+2a+3a-a2=a2+5a 习题2.2第3题答案(1)原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)原式=8xy-x2+y2-x2+y2-8xy=-2x2+2y2(3)原式=2x2-1/2+3x-4x+4x2-2=6x2-x-5/2(4)原式=3x2-(7x-4x+3-2x2)=3x2-7x+4x-3+2x2=5x2-3x-3习题2.2第4题答案(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13(1)比a的5倍大4的数为5a+4,比a的2倍小3的数是2a-3(5a+4)+(2a-3)=5a+4+2a-3=7a+1(2)比x的7倍大3的数为7x+3,比x的6倍小5的数是6x-5(7x+3)-(6x-5)=7x+3-6x+5=x+8习题2.2第6题答案解:水稻种植面积为3ah m2,玉米种植面积为(a-5)h m23a-(a-5)=3a-a+5=(2a+5)(h m2)习题2.2第7题答案(1)πa2/2+4a2=(π+8)/2a2(cm2)(2)πa+2a×3=πa+6a=(π+6)a(cm)习题2.2第8题答案3(a+y)+1.5(a-y)=3a+3y+1.5a-1.5y=4.5a+1.5y17a,20a,…,(3n+2)a习题2.2第10题答案S=3+3(n-2)=3n-3当n=5时,S=3×5-3=12当n=7时,S=3×7-3=18当n=11时,S=3×11-3=30习题2.2第11题答案(1)10b+a(2)10(10b+a)(3)10b+a+10(10b+a)=11(10b+a)这个和是11的倍数,因为它含有11这个因数习题2.2第12题答案36a2;cm2复习题2第1题答案(1)(t+15)°C(2)nc元,(100-nc)元(3)0.8b元,(0.8b-10)元(4)a/30m,1500m,(a/30-1500)m 复习题2第2题答案复习题2第3题答案(1)-2x2y(2)10.5y2(3)0(4)-1/12mn+7(5)8ab2+4(6)3x3-2x2复习题2第4题答案(1)原式=4a3b-10b3-3a2b2+10b3=4a3b-3a22b2(2)原式=4x2y-5xy2-3x2y+4xy2=x2y-xy2(3)原式=5a2-(a2+5a2-2a-2a2+6a)=5a2-a2-5a2+2a+2a2-6a=a2-4a(4)原式=15+3-3a-1+a+a2+1-a+a2-a3=18-3a+2a2-a3(5)原式=4a2b-3ab-5a2b+2ab=a2b-ab(6)原式=6m2-4m-3+2m2-4m+1=8m2-8m-2(7)原式=5a2+2a-1-12+32a-8a2=-3a2+34a-13(8)原式=3x2-(5x-1/2x+3+2x2)=3x2-5x+1/2x-3-2x2=x2-9/2x-3复习题2第5题答案解:原式=(5-3-2)x2+(-5+6)x-1=x-1当x=-3时原式=-3-1=-4复习题2第6题答案(1)5/2(2)(x+y)/10复习题2第7题答案(h+20)m(h-30)m(h+20)-(h-30)=h+20-h+30=50(m)复习题2第8题答案S长方形=2x×4=8x(cm2)S梯形=1/2(x+3x)×5=10x(cm2)S梯形>S长方形S梯形-S长方形=10x-8x-2x(cm2)复习题2第9题答案解:2πr×2-(2πr+2π×r/2+2π×r/6+2π×r/3)=0因此所需材料一样多复习题2第10题答案解:a×(1+22%)=1.22a(元)1.22a×85%=1.037a(元)1.037a-a=0.037a(元)答:按成本增加22%定出价格,每件售价1.22a元;按原价的85%出售,现售价1.037a元;每件还能盈利0.037a元复习题2第11题答案解:10a+b;10b+a;(10b+a)+(10a+b)=11(a+b)答:这个数能被11整除复习题2第12题答案(1)原式=(4+2-1)(0+6)=5(a+b)=5a+5b(2)原式=(3+8)(z+y)2+(-7+6)·(x+y)=11(x+y)2-(x+y)习题3.1第1题答案(1)a+5=8(2)1/3b=9(3)2x+10=18(4)1/3x-y=6(5)3a+5=4a(6)1/2b-7=a+b习题3.1第2题答案(1)a+b=b+a(2)a·b=b·a(3)a·(b+c)=a.b+a·c(4)(a+b)+c=a+(b+c)习题3.1第3题答案x=3是方程(3)3x-2=4+x的解x=0是方程(1)5x+7=7-2x的解x=-2是方程(2)6x-8=8x-4的解习题3.1第4题答案(1)x=33(2)x=8(3)x=1(4)x=1习题3.1第5题答案解:设七年级1班有男生x人,有女生(4/5x+3)人,则x+(4/5x+3)=48习题3.1第6题答案解:设获得一等奖的学生有x人,则200x+50(22-x)=1400习题3.1第7题答案解:设去年同期这项收入为x元,则x·(1+8.3%)=5109习题3.1第8题答案解:设x个月后这辆汽车将行驶20800km,则12000+800x=20800习题3.1第9题答案解:设内沿小圆的半径为x cm,则102π-πx2=200习题3.1第10题答案解:设每班有x人,则10x=428+2210x+1-(10+x)=18,x=3习题3.2第1题答案(1)x=2(2)x=3(3)y=-1(4)b=18/5习题3.2第2题答案例如:解方程5x+3=2x,把2x改变符号后移到方程左边,同时把3改变符号后移到方程右边,即5x-2x=-3,移项的根据是等式的性质1习题3.2第3题答案(1)合并同类项,得4x=-16.系数化为1,得x=-4(2)合并同类项,得6y=5.系数化为1,得y=5/6(3)移项,得3x-4x=1-5.合并同类项,得-x=-4.系数化为1,得x=4(4)移项,得-3y-5y=5-9.合并同类项,得-8y=-4.系数化为1,得y=1/2(1)根据题意,可列方程5x+2=3x-4.移项,得5x-3x=-4-2.合并同类项,得2x=-6.系数化为1,得x=-3(2)根据题意,可列方程-5y=y+5.移项,得-5y-y=5.合并同类项,得-6y=5.系数化为1,得y=-5/6习题3.2第5题答案解:设现在小新的年龄为x.根据题意,得:3x=28+x移项,得2x=28系数化为1,得x=14答:现在小新的年龄是14习题3.2第6题答案解:设计划生产I型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,计划生产Ⅲ型洗衣机14x台.根据题意得:x+2x+14x=25500合并同类项,得17x=25500系数化为1,得x=1500因此2x=3000,14x=21000答:这三种型号洗衣机计划分别生产1500台、3000台、21000台习题3.2第7题答案解:设宽为xm,则长为1.5xm根据题意,得2x+2×1.5x=60合并同类项,得5x=60系数化为1,得x=12所以1.5x=18答:长是18m,宽是12m习题3.2第8题答案(1)设第一块实验田用水xt,则第二块实验田用水25%xt,第三块实验田用水15%xt(2)根据(1),并由题意得:x+25%x+15%x=420合并同类项,得1.4x=420系数化为1,得x=300.所以25%x=75,15%x=45答:第一块实验田用水300t,第二块实验田用水75t,第三块实验田用水45t 习题3.2第9题答案解:设它前年10月生产再生纸xt,则去年10月生产再生纸(2x+150)t.根据题意得:2x+150=2050移项,合并同类项,得2x=1900系数化为1,得x=950答:它前年10月生产再生纸950t习题3.2第10题答案在距一端35cm处锯开习题3.2第11题答案解:设参与种树的人数是x.根据题意得:10x+6=12x-6移项,得10x-12x=-6-6合并同类项,得-2x=-12系数化为1,得x=6答:参与种树的人数是6习题3.2第12题答案解:设相邻三行里同一列的三个日期数分别为x-7,x,x+7根据题意,假设三个日期数之和能为30,则(x-7)+x+(x+7)=30去括号,合并同类项,得3x=30系数化为1,得x=10x=10符合题意,假设成立x-7=10-7=3,x+7=10+7=17所以相邻三行里同一列的三个日期数之和能为30.这三个数分别是3,10,17习题3.2第13题答案方法1:设这个两位数的个位上的数为x,则十位上的数为(3x+1),这个两位数为:10(3x+1)+x根据题意,得x+(3x+1)=9解这个方程,得x=23x+1=3×2+1=7这个两位数为10(3x+1)+x=10×7+2=72答:这个两位数是72方法2:设这个两位数的个位上的数为x,则十位上的数为(9-x),这个两位数为10(9-x)+x根据题意,得3x+1=9-x解这个方程,得x=2这个两位数为10(9-x)+x=10×(9-2)+2=72答:这个两位数是72习题3.3第1题答案(1)a=-2(2)b-1(3)x=2(4)y=-12习题3.3第2题答案(1)去括号,得2x+16=3x-3.移项、合并同类项,得-x=-19.系数化为1,得x=19(2)去括号,得8x=-2x-8.移项、合并同类项,得10x=-8.系数化为1,得x=-4/5(3)去括号,得2x-2/3x-2=-x+3.移项、合并同类项,得7/3x=5.系数化为1,得x=15/7(4)去括号,得20-y=-1.5y-2.移项、合并同类项,得0.5y=-22.系数化为1,得y=-44习题3.3第3题答案(1)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x=-17.系数化为1,得x=-17/5.(2)去分母,得-3(x-3)=3x+4.去括号,得-3x+9=3x+4.移项、合并同类项,得6x=5.系数化为1,得x=5/6.(3)去分母,得3(3y-1)-12=2(5y-7).去括号,得9y-3-12=10y-14.移项、合并同类项,得y=-1.(4)去分母,得4(5y+4)+3(y-1)=24-(5y-5).去括号,得20y+16+3y-3=24-5y+5.移项、合并同类项,得28y=16.系数化为1,得y=4/7习题3.3第4题答案(1)根据题意得:1.2(x+4)=3.6(x-14)去括号得:1.2x+4.8=3.6x-50.4移项,得1.2x-3.6x=-50.4-4.8合并同类项,得-2.4x=-55.2系数化为1,得x=23(2)根据题意得:1/2(3y+1.5)=1/4(y-1)去分母(方程两边乘4)得:2(3y+1.5)=y-1去括号,得6y+3=y-1移项,得6y-y=-1-3合并同类项,得5y=-4系数化为1,得y=-4/5习题3.3第5题答案解:设张华登山用了x min,则李明登山所用时间为(x-30)min 根据题意得:10x=15(x-30)解得x=90山高10x=10×90=900(m)答:这座山高为900m习题3.3第6题答案解:设乙车的速度为xkm/h,甲车的速度为(x+20)km/h根据题意得:1/2x+1/2(x+20)=84解得x=74x+20=74+20=94答:甲车的速度是94km/h,乙车的速度是74km/h习题3.3第7题答案(1)解:设无风时这架飞机在这一航线的平均航速为x km/h,则这架飞机顺风时的航速为(x+24)km/h,这架飞机逆风时的航速为(x-24)km/h根据题意,得2.8(x+24)=3(x-24)解这个方程,得x=696(2)两机场之间的航程为2.8(x+24)km或3(x-24)km所以3(x-24)=3×(696-24)=2016(km)答:无风时这架飞机在这一航线的平均航速为696km/h两机场之间的航程是2 016km习题3.3第8题答案蓝布料买了75m,黑布料买了63m习题3.3第9题答案解:设每个房间需要粉刷的墙面面积为x m2,则(8x-50)/3=(10x+40)/5+10,解得x=52答:每个房间需要刷粉的墙面面积为52m2习题3.3第10题答案解:从10时到12时王力、陈平两人共行驶36+36=72(km),用时2h,所以从8时到10时王力、陈平用时2h也行驶72km,设A,B两地间的路程为z km,则x-72=36,得x=108答:A,B两地间的路程为108km解:设两地间的路程为x km,上午10时,两人走的路程为(x-36)km,速度和为(x-36)/2km/h,中午12时,两人走的路程为(x+36)km,速度和为(x+36)/4km/h,根据速度和相等列方程,得(x-36)/2=(x+36)/4,得x=108答:A,B两地之间的路程为108km习题3.3第11题答案(1)设火车的长度为xm,从车头经过灯下到车尾经过灯下火车所走的路程为xm,这段时间内火车的平均速度为x/10m/s(2)设火车的长度为xm,从车头进入隧道到车尾离开隧道火车所走的路程为(300+x)m,这段时间内火车的平均速度为((300+x)/20)m/s(3)在这个问题中火车的平均速度没有发生变化(4)根据题意,可列x/10=(300+x)/20,解得x=300,所以这列火车的长度为300m 习题3.4第1题答案略习题3.4第2题答案解:设计划用x m3的木材制作桌面,(12-x)m3的木材制作桌腿,才能制作尽可能多的桌子根据题意得:4×20x=400(12-x)解得x=10,12–x=12-10=2答:计划用10m3的木材制作桌面,2m3的木材制作桌腿才能制作尽可能多的桌子习题3.4第3题答案解:设甲种零件应制作x天,乙种零件应削作(30-x)天根据题意得:500x=250(30-x)解得x=10,30-x=30-10=20答:甲种零件应制作10天,乙种零件应制作20天习题3.4第4题答案解:设共需要x h完成,则(1/7.5+1/5)+1/5(x-1)=1解得x=13/3,13/3h=4h20min答:如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需4h20min习题3.4第5题答案解:设先由x人做2h,则x/80×2+(x+5)/80×8=3/4解得x=2,x+5=7(人)答:先安排2人做2h,再由7人做8h,就可以完成这项工作的3/4习题3.4第6题答案解:设这件衣服值x枚银币,则(x+10)/12=(x+2)/7,解得x=9.2答:这件衣服值9.2枚银币习题3.4第7题答案解法1:设每台B型机器一天生产x个产品,则每台A型机器一天生产(x+1)个产品根据题意,得(5(x+1)-4)/8=(7x-1)/11,解得x=19,因此(7×19-1)/11=12(个)答:每箱装12个产品解法2:设每箱装x个产品,根据“每台A型机器一天生产的产品=每台B型机器一天生产的产品+1”根据题意列方程,得(8x+4)/5=(11x+1)/7+1.解得x=12答:每箱装12个产品习题3.4第8题答案(1)由题意知时间增加5min,温度升高15℃,所以每增加1min,温度升高3℃,则21min时的温度为10+21X3=73(℃)(2)设时间为x min,列方程3x+10=34,解得x=8习题3.4第9题答案解:设制作大月饼用x kg面粉,制作小月饼用(4500-x)kg面粉,才能生产最多的盒装月饼根据题意得:(x/0.05)/2=((4500-x)/0.02)/4化简,得8x=10(4500-x)解得x=25004500-x=4500-2500=2000答:制作大月饼应用2500kg面粉,制作小月饼用2000kg面粉,才能生产最的盒装月饼习题3.4第10题答案解:设相遇时小强行进的路程为x km,小刚行进的路程为(x+24)km,小强行进的速度为x/2km/h,小刚行进的速度为(x+24)/2km/h根据题意得:(x+24)/2×0.5=x解得x=8所以x/2=8/2=4,(x+24)/2=(8+24)/2=16相遇后小强到达A地所用的时间为:(x+24)/4=(8+24)/4=8答:小强行进的速度为4km/h.小刚行进的速度为16km/h.相遇后经过8h小强到达A地习题3.4第11题答案解:设销售量要比按原价销售时增加x%.根据题意得:(1-20%)(1+x%)=1解得x=25答:销售量要比按原价销售时增加25%习题3.4第12题答案(1)设此月人均定额是x件,则(4x+20)/4=(6x-20)/5,解得x=45答:此月人均定额是45件(2)设此月人均定额为y件,则(4y+20)/4=(6y-20)/5+2,解得y=35答:此月人均定额是35件(3)设此月人均定额为z件,则(4z+20)/4=(6z-20)/5-2,解得z=55.答:此月人均定额是55件习题3.4第13题答案(1)设丢番图的寿命为x岁,则1/6x+1/12x+1/7x+5+1/2x+4=x,解得x=84所以丢番图的寿命为84岁(2)1/6x+1/12x+1/7x+5=38(岁),所以丢番图开始当爸爸时的年龄为38岁(3)x-4=80,所以儿子死时丢番图的年龄为80岁复习题3第1题答案(1)t-2/3t=10(2)(n-110)/n×100%=45%或(1-45%)n=110(3)1.1a-10=210(4)60/5-x/5=2复习题3第2题答案(1)移项,得-8x+11/2x=3-4/3.合并同类项,-5/2x=5/3.系数化为1,得x=-2/3(2)移项,得0.5x+1.3x=6.5+0.7.合并同类项,得1.8x=7.2.系数化为1,得x=4(3)去括号,得1/2x-1=2/5x-3.移项,得1/2x-2/5x=-3+1.合并同类项,得1/10x=-2.系数化为1,得x=-20(4)去分母,得7(1-2x)=3(3x+1)-63.去括号,得7-14x=9x+3-63.移项、合并同类项,得-23x=-67.系数化为1,得x=67/23复习题3第3题答案(1)根据题意得:x-(x-1)/3=7+(x+3)/5去分母得:15x-5(x-1)=105-3(x+3)去括号得:15x-5x+5=105-3x-9移项、合并同类项,得13x=91系数化为1,得x=7∴当x=7时,x-(x-1)/3的值与7-(x+3)/5的值相等(2)根据题意得:2/5x+(-1)/2=(3(x-1))/2-8/5x,去分母(方程两边同乘10)得:4x+5(x-1)=15(x-1)-16x去括号得:4x+5x-5=15x-15-16x移项得:4x+5x-15x+16x=-15+5合并同类项,得10x=-10系数化为1,得x=-1复习题3第4题答案解:梯形面积公式s=1/2(n+6)h(1)当S=30,a=6,h=4时,30=1/2(6+b)×4去括号,得12十2b=30移项、合并同类项,得2b=18系数化为1,得b=9(2)当S=60,b=4,h=12时,60=1/2(a+4)×12,去括号,得6a+24=60移项、合并同类项,得6a=36系数化为1,得a=6(3)当S=50,a=6,b=5/3a时,b=5/3a=5/3×6=10.50=1/2(6+10)×h去括号,得8h=50系数化为1,得h=25/4复习题3第5题答案解:设快马x天可以追上慢马,根据题意得:240x=150(12+x),解得x=20.。
微积分(刘迎东编)上1.1参考答案
第一章 函数1.1 集合与函数 习题1。
11. 求下列函数的自然定义域: (1)23+=x y由023≥+x ,得定义域为32-≥x 。
(2)211xy -=由012≠-x ,得定义域为1±≠x 。
(3)241xy -=由042>-x ,得定义域为()2,2-。
(4)()1tan +=x y 由Z k k x ∈+≠+,21ππ得定义域为.,12Z k k x ∈-+≠ππ(5)()3arcsin -=x y由[]1,13-∈-x ,得定义域为[]4,2∈x 。
(6)()1ln +=x y 2由01>+x ,得定义域为1->x 。
(7)xx y πsin 1+=由⎩⎨⎧∈≠≥+Z k k x x ,,01ππ,得定义域为1->x 且Z x ∉。
2. 求下列函数的值域: (1)[]0,10,2-∈=x x y由010≤≤-x ,得.10002≤≤x(2)(]10,0,lg ∈=x x y 由,100≤<x 得1lg ≤x 。
(3)[]1,0,2∈-=x x x y由10≤≤x ,得4102≤-≤x x ,所以2102≤-≤x x 。
(4)()1,0,11∈-=x xy 由10<<x ,得110<-<x ,所以.111>-x3. 把半径为R 的一圆形铁皮,自中心处剪去中心角为α的一扇形后围成一无底圆锥。
试将这圆锥的体积表示为α的函数。
解:圆锥的底圆周长为铁皮被剪后所剩扇形的弧长,即()απ-2R ,所以圆锥的底圆半径为()παπ22-R ,圆锥的母线长显然为R ,所以圆锥的高为()παπαπαπ244222222-=--R R R ,由此得圆锥体积为:()()222322222442244231παπααππαπαπαππ--=--=R R R V ,其中πα20<<。
4. 下列各题中,函数()x f 和()x g 是否相同?为什么? (1)()();lg 2,lg 2x x g x x f ==()x f 的定义域为0≠x ,而()x g 的定义域为0>x ,所以两函数不同。
信息传输原理 习题部分参考答案
第一章 习题题(1.1)英文字母中e 的出现概率为0.105,c 的出现概率为0.023,o 的出现概率为0.001,试分别计算它们的自信息量(以比特为单位)。
解:由题意可得Ie= -log0.105=3.25bit Io= -log0.001=9.97bit Ic= -log0.023=5.44bit∴字母e 的自信息量是3.25bit ,字母c 的自信息量是5.44bit ,字母o 的自信息量是9.97bit 。
题(1.2)某个消息由字符A,B,C,D 组成,已知它们的出现概率为83)(=A P ,41)(=B P ,41)(=C P ,81)(=D P ,试求由60个字符所构成的消息,其平均自信息量是多少比特。
解:由题意可得 H (x )= -(38log 38+14*2*log 14+18log 18)=1.906bit ∴由60个字符构成的消息的平均自信息量是1.906*60=114.36bit题(1.3)在二进制信道中信源消息集为}1,0{=X ,且已知出现概率)1()0(P P =。
信宿消息集为}1,0{=Y ,信道传输概率为41)0|1(=P 和81)1|0(=P 。
试求该信道所能提供的平均互信息量),(Y X I 等于多少?解: ∵ P Y/X =13,4471,88⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,P X =11,22⎡⎤⎢⎥⎣⎦∴P Y = P X *P Y/X =11,22⎡⎤⎢⎥⎣⎦*13,4471,88⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=97,1616⎡⎤⎢⎥⎣⎦∴H (Y )=-(916log 916+716log 716)=0.989bit H (Y/X )=12H (14,34)+12H (78,18)=0.678bit∴I (X ,Y )=H (Y )-H (Y/X )=0.989-0.678=0.311bit题(1.4)在二进制对称信道中传输消息}1,0{=X ,接收到的消息为}1,0{=Y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题 1.1
1.写出下列随机试验的样本空间:
(1)掷两颗骰子,观察两颗骰子出现的点数.
(2)从正整数中任取一个数,观察取出数的个位数.
(3)连续抛一枚硬币,直到出现正面时为止.
(4)对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或
检查四个产品就停止检查,记录检查的结果.
(5)在单位圆内任意取一点,记录它的坐标.
解:(1){(,)|1,2,,6,1,2,,6}
;
i j i j
Ω===
(2){|0,1,,9}
Ω== ;
i i
(3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), …};
(4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};
(5)22
x y x R y R x y
Ω=∈∈+≤.
{(,)|,,1}
2.在掷两颗骰子的试验中写出下列事件的集合表示:
(1) A=”出现的点数之和为偶数”.
(2) B=”出现的点数之和为奇数, 但没有骰子出现1点”.
(3) C=”至少掷出一个2点”.
(4) D=”两颗骰子出现的点数相同”.
解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),
A=
2),(6,4),(6,6)}
=;
{(4,2),(4,4),(4,6),(5,1),(5,3),(5,5)
(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}
B=;
(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}
C=; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}
D=.
3.设,,
A B C来表示下列事件:
A B C是三个事件,试用,,
(1)事件“,,
A B C中至少有一个事件发生”.
(2) 事件“,,A B C 中至少有两个事件不发生”.
(3) 事件“,,A B C 中至多有一个事件不发生”.
(4) 事件“,,A B C 中至少有一个事件不发生”.
(5) 事件“,A B 至少有一个发生,而C 不发生”.
解:(1)A B C ; (2)()()()A B A C B C 或 ()()()()A B C A B C A B C A B C ;
(3)()()()()ABC A BC A B C AB C 或()()()AB AC BC ; (4)A B C ;
(5)()A B C 或()()()AB C A B C AB C .
4. 指出下列命题哪些成立,哪些不成立? (1) ()A B A B B = . (2) ()A B A AB = .
(3) ()()A AB A B = . (4) ()A B C A B C = . (5) A B A B = . (6) ()()AB A B =∅ .
(7) A B ⊂等价于A B B = 或AB A =或B A ⊂.
(8) 若A B =∅,则A B ⊂.
解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.
5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件
B 表示被选学生是三年级学生, 事件
C 表示被选学生是运动员.
(1) 叙述ABC 的意义.
(2) 在什么条件下A B C A =成立?
(3) 什么时候A C =成立?
解: (1)被选学生是三年级男运动员;
(2)因为A B C A =等价于A B C ⊂,即数学系的女生全部都是三年级运动员;
(3)数学系的男生全部都是运动员,且运动员全部都是男生.
6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容? 解: 不能.
7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试
求: ,,,A B AB B A A B - .
解:{}17A B x x =≤≤ ;{}25AB x x =≤≤;{}12B A x x -=≤<; [0,2)(5,10]A B A B == .。