列管式换热器工艺流程

合集下载

列管式换热器设计说明书

列管式换热器设计说明书

摘要:列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。

参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。

再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。

关键词:列管式换热器,乙醇,水,温度,固定管板式。

Abstract:The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .⨯41510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchangeis9BEM400 2.530 225Ⅰ----, and the diameter of the receiver is400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.目录1前言 (3)2设计条件 (3)3设计方案的确定 (3)3.1设计原则 (3)3.2结构初选 (4)4列管式换热器的设计计算 (10)4.1列管式换热器型号的初选 (10)4.2核算总传热系数: (13)5列管式换热器的初步计算及选型 (15)5.1试算并初选换热器规格 (15)5.2设计校核 (19)6设备尺寸的确定及强度校核 (22)6.1计算圆筒厚度 (22)6.2封头设计 (23)6.3拉杆定距管尺寸 (24)6.4管板 (25)6.5容器法兰 (26)6.6接管与接管补强 (27)6.7管箱的计算 (33)6.8折流挡板 (33)6.9焊接方式 (34)6.10支座 (34)6.11辅助设备 (38)7设计结果概要 (39)8课程设计心得 (40)9参考文献 (42)1前言艰辛知人生,实践长才干。

列管式换热器生产工艺流程说明

列管式换热器生产工艺流程说明

列管式换热器生产工艺流程说明下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!列管式换热器是一种常见的换热设备,主要用于在两种不同介质之间进行热量交换。

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -----------------------------班级: -------------学号: ----------- 姓名: ---- 日期: ---------------指导教师: ----------设计成绩:日期:换热器设计任务书目录1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1.设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

(1)固定管板式换热器这类换热器如图1-1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

安装列管换热器的使用说明书1

安装列管换热器的使用说明书1

列管换热器一、概述列管换热器是一种高效换热器。

它主要由传热板、定距柱、连接管、头盖及衬垫等部件组成。

两块厚约2.5~6mm的金属板卷成一对同心圆的螺旋形流道,流道始于中心,终于边缘。

中心处用隔板将两边流体隔开,甲、乙两流体在金属板两边的流道内逆流流动而实现了热交换。

本公司目前生产全逆流式结构的列管换热器。

二、列管换热器的工作特点和应用列管换热器的性能类似于板式换热器。

但也有其独特之处,其主要优点为:1、传热效率高。

列管换热器内介质螺旋型流动的离心力能增强湍流。

据实验,当Re=1400~1800时就能形成湍流,且因流阻较管壳式小而使流速可以提高,结果使传热系数K可提高至2.5倍。

此外,全逆流列管换热器的传热平均温差最大,这有助于提高传热效率。

2、结构紧凑,不用管材。

由于板型传热面的面积大,单位体积传热面可达44-100m2/m3,约为管壳式换热器的2~3倍,加之传热系数和平均温差都大,这就必然导致结构的紧凑和轻巧。

3、不易污塞。

由于单流道、高流速、污垢不易沉积,一旦有所沉积使流道截面减小随即导致流速增高,从而加强了对污塞物的冲刷作用。

这种“自洁”作用,管壳式换热器是没有的。

据统计显示,列管污塞的速率只及管壳式的十分之一。

4、能有效利用低温热源,精密控制温度。

由开双螺旋流道能较完全地形成逆流传热且流道较长,有助于降低换热器设计所允许的(两种介质之间)有利于连续均匀地换热或升降温度。

这就为利用一些低温热源(如地下热源)或精密控制介质温度提供了有利条件,从经验数据知道,板式和列管换热器的介质温差是最低的。

5、流阻较小。

试验表明,与同样条件的管壳式换热器相比,列管换热器的流阻较小。

列管换热器相对于列管式换热器,也有其自身的不足之处。

在设计、制造和安装使用过程中需要注意掌握的有以下几个方面:承压能力受限。

这一点在安装使用当中,要求用户按铭牌上的设计参数使用,不可超压和超温工作;以保证其安全使用。

容量受限。

由于单流道流通能力较小。

列管式换热器设计步骤

列管式换热器设计步骤

(Φ219×6mm,长200mm)
2020/11/8
第32页
山东轻工业学院
3、冷凝水排出口
➢选用水煤气管 1 1 "

2

原 理
Φ42.25×3.25mm,长100mm



2020/11/8
第33页
山东轻工业学院
七、校核流体压力降
➢ 管程总压力降
ห้องสมุดไป่ตู้

➢ 壳程压力降
工 原
壳程是饱和水蒸汽冷凝,
理 教
d 4V
u

研 室
➢选用无缝热轧钢管(YB231-64) (Φ150×4.5mm,长200mm)
2020/11/8
第31页
2、水蒸汽进口管径
山东轻工业学院
➢ 蒸汽用量
GQ10.03 —富裕量3%
r
➢蒸汽体积流量 V=Gν
化 工
➢取蒸汽流速u’=20 m/s

理 教 研
D1
4V
u '
室 ➢选用无缝热轧钢管(YB231-64)
2020/11/8
第22页
山东轻工业学院
(1)管内对流传热系数α2
20.02d3R0.e8P0.r4 被加热
化 工 原 理
Re du

研 室
Pr CP
2020/11/8
第23页
山东轻工业学院
(2)管外对流传热系数α1
1 0.725
r2g3
2
0.25
n3d0 t


➢n为水平管束垂直列上的管数
第16页
山东轻工业学院
(4)管间距及排列方式

列管式换热器的典型制造工艺

列管式换热器的典型制造工艺

的圆度 线 度 Dmax-Dmin

线
DN
• 要求更<
表 2- 23。
<4.5mm
1格000)。L 且对壳•体的内<
<6mm
差 00 )L 同 一断面上的直径差列于
表2 - 2 3
壳体同一断面上的直径差
壳体内径过大或圆度误差会引起壳程介质短路而降低换热效率 。壳体的直线 度误差会影响管束的抽装 ,对其要求列于表 2-24。
表 2-24 壳体的直线度要求
2. 管板
管板的作用是固定管子的。一般采用 Q235、20等碳素钢和16Mn、15MnV 等低合 金钢制作;可以用锻件或热轧厚钢板作坯料 ,当管板的厚度较大时 ,原则上使用锻 件 , 因为钢板愈厚 ,其轧压比愈小 ,钢板内部缺陷存在的可能性愈大 。 管板是典型的群孔结构 ,单孔质量会影响管板的整体质量 ,所以孔加工方法的选择 至为重要 。群孔加工有下列方法:
2-26。
3. 折流板
下图为最常用的 20%DN 圆缺高度的弓形折流板,为保证加工精度和效率, 常将圆板 坯以 8~10 块为一叠进行钻孔和切削加工外圆 ,折流板孔的允许 偏差列于表 2-26。
4. 管子
换热器的管表面就是传热面积。常用管子外径 10~57 (mm);其长度一 般用 2000 、 3000 、6000(mm)等 。管子应作下列试验: 以管子数的 5% ,且 不少于 2 根作 力 、硬度 和扩口等抽样检验;进行水压试验(试验压力为 设计压力的(1.5 2)倍 ,合格者才可使用。
列管式换热器的典型制造工艺
制作人:Leo
1
目录
一、列管式换热器简介 1、壳体 2 、管板 3 、折流板 4 、管子
二、列管式换热器组装工艺 三、列管式换热器工艺流程

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器化工原理课程设计是化学工程学科的重要环节,其设计的目的是让学生在理论基础知识的基础上,能够熟练掌握工业化学反应装置和过程的设计方法,并能灵活运用各种装置和工艺条件来实现设备的最优化。

其中列管式换热器是常用于化工生产过程中的一种重要装置,本文将对其进行详细介绍。

一、列管式换热器的结构与原理列管式换热器是通过管壳型构造,由许多纵向的管子构成,管子两侧通过流体工质进行换热。

其主要结构包括壳体、管板、管束、进出口法兰等部分。

换热原理是将热量从高温的流体传给低温的流体,实现两种流体之间的热量交换。

二、列管式换热器的特点和应用列管式换热器具有结构简单、换热效率高、应用范围广、容易清洗维修等特点。

其在化工生产中广泛应用于热回收、冷却、加热等方面,如在石油、化工、冶金、食品、制药、造纸等行业的反应过程中都有重要的应用。

三、列管式换热器的设计方法在设计列管式换热器时,主要需考虑的参数有流体介质、流量、温度、压力等等,其中最核心的是确定热量传递系数与压降。

常用的设计方法有总热传系数法、等效径法、NTU法等。

其中总热传系数法是最常用的方法,其计算的公式为:1/U = 1/hi + Δx/k + Δy/ho其中U为总热传系数,hi、ho分别为热传分界面内的内、外热传系数,k为扩散系数(介质传热系数),Δx、Δy为介质的平均厚度与壁层厚度。

在设计时应根据具体情况选用合适的计算方法。

四、列管式换热器的操作和维护在使用列管式换热器时,应注意清洗维护工作。

由于该装置的结构特殊,应定期进行化学清洗,以避免沉积物和腐蚀物堵塞换热器内壁。

同时还应注意防止介质的过于浓缩,以免产生结晶、沉积、腐蚀等情况。

综上所述,列管式换热器是化工生产中不可缺少的一种装置,其结构特殊、应用范围广泛、换热效率高,并且容易维护操作,是值得研究和推广的一种装置。

在化工原理的课程设计中,学生能够通过对列管式换热器的深入理解和设计方案的完善,培养出创新思维和实际操作能力,为将来化工行业的发展奠定坚实的基础。

列管式换热器课程设计

列管式换热器课程设计
管板加工:将管板切割、钻孔、焊接等加工成所需的形状 和尺寸
组装:将管子和管板组装成换热器
焊接:将换热器焊接成一体
检验:对换热器进行压力试验、泄漏试验等检验,确保其 质量和性能符合要求
焊接工艺和要求
焊接方法:采用电弧焊、气焊或激光焊等方法
焊接材料:选用耐腐蚀、耐高温、高强度的合金材料
焊接工艺参数:控制焊接电流、电压、速度等参数,保证焊接质量 焊接检验:进行无损检测,如X射线、超声波等,确保焊接质量符合要 求
Part Four
列管式换热器的传 热计算
传热系数的计算
传热系数的影响因素:包括 流体的性质、流速、温度、 压力等
传热系数的定义:表示单位 时间内单位面积上的传热量
传热系数的计算方法:包括 实验法、理论法和数值法
传热系数的应用:用于计算 换热器的传热量、传热面积
等参数
传热面积的计算
传热面积的定 义:换热器中 流体与壁面接
触的面积
计算公式: A=πD*L,其 中A为传热面 积,D为管径,
L为管长
影响因素:流 体的种类、温 度、流速、压
力等
计算方法:根 据流体的种类、 温度、流速、 压力等参数, 选择合适的计 算公式进行计

流体阻力的计算
流体阻力的定义:流体在流动 过程中产生的阻力
流体阻力的计算公式: f=1/2*ρ*v^2*A
检验和试验要求
压力试验:进行压力试验, 检查换热器是否泄漏
尺寸检查:检查换热器尺寸 是否符合设计要求
外观检查:检查换热器外观 是否完好,有无破损、变形 等
热工性能试验:进行热工性 能试验,检查换热器传热效
率是否符合设计要求
耐腐蚀试验:进行耐腐蚀试 验,检查换热器是否耐腐蚀

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -—----———-——---—————-—-—---—-班级:—--——-——-—-—-学号: —--——-----—姓名: -—--日期:——-—-—-———-——--指导教师: —---—-----设计成绩: 日期:换热器设计任务书1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1。

设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

(1)固定管板式换热器这类换热器如图1—1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力.U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右.(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

甲苯式列管换热器设计流程

甲苯式列管换热器设计流程

甲苯式列管换热器设计流程换热器是进行热交换操作的通用工艺设备,广泛应用于化工、石油、石油化工、动力、冶金等工业部门,特别是在石油炼制和化学加工装置中,占有重要地位。

换热器的操作技术培训在整个操作培训中尤为重要。

本单元设计采用列管式换热器。

将来自界外的冷物流由泵送至换热器的壳程被流经管程的热物流加热至指定温度。

冷物流流量由自动控制阀控制。

来自另一设备的高温物流经泵送至换热器与经冷物流进行热交换,热物流出口温度由自动控制阀,控制在指定温度。

某厂用循环冷却水甲苯从80°冷却到50°C,甲苯年处理能力为18000t/a,压力为6.5MPa,循环冷却水的入口温度为25°C,出口温度为35°C,要求冷凝器允许压降不大于500000Pa,试设计一台管壳式卧式换热器完成该生产任务。

每年按330天计算,每天按24小时连续运行。

设计要求(1)换热器工艺设计计算(2)换热器工艺流程图(3)换热器设备结构图(4)设计说明目录一、标题页 (3)二、方案设计 (4)三、确定设计方案 (4)四、确定物性数据 (4)五、计算总传热系数 (4)六、计算传热面积 (5)七、工艺结构尺寸计算 (5)八、换热器核算 (7)九换热器主要结构参数和设计结果一览表 (10)十、对本设计的评价 (11)十一、自设计使用该换热器的工艺流程图 (12)12 ·························································十二、参考文献·.二、方案设计某厂在生产过程中,需将甲苯从80℃冷却到50℃。

列管式换热器的设计和选用的计算步骤

列管式换热器的设计和选用的计算步骤

表4-18设计条件数据
物料 流量 kg/h 组成(含乙醇量)mol% 温度 ℃ 操作压力MPa
进口 出口
釜液 109779 3.3 145 0.9
原料液 102680 7 95 128 0.53
试设计选择适宜的列管换热器。
解:
(1) 传热量Q及釜液出口温度
a. 传热量Q
选用 规格钢管,设管内的流速 ,则:
单管程所需管子根数n:
设单台换热器的传热面积为 ,则单台传热面积为:
选取管束长l=6m,则管程数 为
故应选取管程数 为2。根据以上确定的条件,按列管换热器标准系列,初步选取型号为G800-II-16-225固定管板式换热器两台,其主要性能参数如下:
解:
a. 设管内的表面传热系数为
则管内
由以上条件可采用以下公式计算空气表面传热系数 :
所以
判断合用否?
又 ℃
热流量
所需换热面积为

换热管的实际面积为 ,则
所以该换热器合用。
b. 若将苯的流量提高20%,则管内表面传热系数将增大,设为

0.686
0.578 678.0
935.6
908.0
2.617
4.267
4.135
由热流量衡算得:
=113.1℃
(2) 换热器壳程数及流程
a. 换热器的课程数
对于无相变的多管程的换热器壳程数 的确定,是由工艺条件,即冷、热物流进出口温度,按逆流流动给出传热温差分布图如图4-71所示,采用图解方法确定壳程数 。
◎ 计算传热面积并求裕度
根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为:

列管式换热器出口温度控制系统的设计讲解

列管式换热器出口温度控制系统的设计讲解

目录摘要 (1)1换热器过程控制概述、组成及特点 (2)1.1 概述 (2)1.2 换热器的组成 (2)1.3 系统控制过程的特点 (3)1.4 引起换热器出口温度变化的扰动因素 (3)2 换热器出口温度控制系统方案图 (4)2.1 换热器出口温度控制系统流程图 (4)2.2换热器出口温度控制系统方框图 (5)3 换热器过程控制系统分析 (4)3.1 系统介绍 (4)3.2 两极Smith预估补偿器 (6)3.3模糊控制器 (7)4 方案比较 (9)4.1 换热器一般温控系统 (9)4.2 Smith预估器的控制机理 (9)5 控制器的选择 (10)5.1 LDG型系列电磁流量计 (10)5.2 HR-WP-201TR/TC22W智能热电阻/热电偶温度变送器 (10)5.3 LWGB系列涡轮流量变送器 (11)5.4 KVHV电动V型调节球阀 (11)5.5 AI-7048型4路PID 温度控制器 (12)5.6 流量控制器:型号TLS11-LC (13)参考文献 (13)摘要换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。

这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。

本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。

对换热器出口温度偏差、偏差变化率和冷流体的流量值模糊化,使换热器热流体出口温度控制过渡过程平稳,具有较传统PID串级控制算法过渡时间缩短,超调量减少,抗干扰能力强等特点。

列管式换热器出口温度控制系统的设计1换热器过程控制概述、组成及特点1.1 概述换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。

这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。

本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)
完善图纸细节
检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注

化工原理课程设计--列管式换热器设计说明书(完整版)

化工原理课程设计--列管式换热器设计说明书(完整版)

东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。

列管式(正丁醇)换热器设计

列管式(正丁醇)换热器设计

设计任务书设计题目:正丁醇冷却器设计设计条件⑴、处理能力:12721kg/h⑵、设备类型:列管式换热器(非定型式)⑶、操作条件:流体名称入口温度℃出口温度℃物料纯正丁醇冷却介质自来水允许压力降:热损失:按传热量的计算设计内容⑴、前言⑵、确定设计方案(设备选型、换热器材质)⑶、确定物性数据(冷却循环水的出口温度、纯正丁醇和水在物性温度下的物理性质)⑷、工艺设计初占换热面积、确定换热器基本尺寸(包括管径、管长、程数、每程管数、管子数排列、壁厚、换热器直径、流体进出管管径等计算)⑸、换热器计算①核算总传热系数(传热面积)②换热器内流体的流动阻力校核(计算压降)⑹、机械结构的选用①管板选用、管子在管板上的固定、管板与壳体连接结构②封头类型选用③温差补偿装置的选用④管法兰选用⑤管、壳程接管⑺、换热器主要结构尺寸和计算结果表⑻、结束语(包括对设计的自我评述及有关问题的分析讨论)⑼、换热器结构和尺寸(4#图纸)⑽、参考资料目录开始时期年月日结束时期年月日学生:班级:学号:指导老师:流程图和工艺流程图冷却水出口管()纯正丁醇入口管(温度:)冷却水入口管(温度:)纯正丁醇出口管(温度:50℃)设计计算确定设计方案确定设备类型两流体的温度变化:①热流体的入口温度,出口温度;力体定性温度。

②冷流体的入口温度,出口温度;冷流体定性温度。

冷热流体的最大温差,因此,选用列管式换热器。

确定壳程流体与管程流体流体经过管程和壳程的选择原则:①不清洁或易结垢的流体,应走容易清洗的管道,可走管程。

②腐蚀性流体应走管程。

③压力高的流体应走管程。

④有毒流体应走管程。

⑤被冷却的流体应走管程。

⑥饱和蒸汽应走壳程。

⑦黏度大的流体或流量小的流体应走壳程。

两种流体的物理性质如下表:物性流体纯正丁醇 2.649水 4.178综上所述,纯正丁醇走壳程,水走管程;且采用逆流。

初算换热面积热流量(的热损失)若换热器无相变化,且流体的比热容可取平均温度下的比热容,则式中——换热器的热负荷,;——分别为冷、热流体的质量流量,;——分别为冷、热流体的平均比热容,;——冷流体的进、出口温度,——热流体的进、出口温度,有效传热量冷却水用量平均传热温差①平均温差先算出逆流的对数平均温差,再乘以考虑流动方向的校正因子,即式中——按逆流计算的对数平均温度差,——温度差校正系数,量纲为其中,。

列管式换热器 工作原理

列管式换热器 工作原理

列管式换热器工作原理列管式换热器是一种常见的换热设备,其工作原理是利用流体在管内和管外之间的热传导和对流传热,实现热量的交换。

该设备通常由一组管子和外壳组成,流体通过管内流动,而另一种流体则在管外流动,通过两种流体之间的热传递,实现换热的目的。

列管式换热器的工作原理可以简单分为三个步骤:流体进口、热交换和流体出口。

两种流体分别通过换热器的进口进入设备。

其中,一个流体(通常被称为工作流体)通过管内流动,而另一个流体(被称为介质流体)则通过管外流动。

这两种流体在进入换热器后,分别流经管内和管外,从而形成一个热交换的界面。

接下来,热交换开始进行。

工作流体在管内流动时,通过管壁和管外的介质流体进行热传导和对流传热。

这样,工作流体的热量将通过管壁传递给介质流体,而介质流体的热量也将通过管壁传递给工作流体。

通过这种方式,两种流体之间的热量得以交换,实现热量的平衡。

两种流体分别通过换热器的出口离开设备。

在热交换过程中,工作流体的温度会下降,而介质流体的温度则会升高。

通过出口,两种流体分别回到原来的系统中,继续循环运行。

这样,换热器实现了两种流体之间热量的传递和平衡。

列管式换热器的工作原理是基于热传导和对流传热的基本原理。

热传导是指热量沿着温度梯度的方向由高温区传递到低温区的过程,而对流传热是指流体通过对流的方式将热量从一个区域传递到另一个区域的过程。

在列管式换热器中,工作流体通过管内流动,利用热传导将热量传递给管壁,然后通过对流将热量传递给管外的介质流体,从而实现热量的交换。

列管式换热器具有热效率高、结构紧凑、适用范围广等优点。

由于管子和外壳的设计,它可以应用于各种工况和流体,包括气体、液体和蒸汽等。

此外,列管式换热器的结构紧凑,占用空间较小,适用于安装在有限空间的场合。

同时,它的热效率高,能够实现较大的热交换面积,提高换热效果。

列管式换热器通过管内和管外流体之间的热传导和对流传热,实现热量的交换。

它的工作原理基于热传导和对流传热的基本原理,通过流体的流动和热量的传递,实现两种流体之间的热量平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас〖复习〗
1、压力、温度、流量、液位的代号 2、显示、控制的代号
【答案】
1、压力P、温度T、流量F、液位L 2、显示I、控制C
〖新课导入〗
通过前面的课程学习,我们认识了一些仪表 、控制器,以及控制器的控制方法。在工厂 中还有其它仪表、控制器,而且某些控制器 的控制方式也有些不同,本节将继续学到一 些。
动画1_5_8_2列管式换热器工艺流程
二、主要的仪表
列管式换热器中重要仪表及相关参数如下: 表1_5_8_2主要仪表参数
位号 FIC101 TIC101 PI101 TI101 PI102 TI102 TI103 TI104 FI101 FI102 Evap.rat
说明 冷流入口流量控制 热流入口温度控制 冷流入口压力显示 冷流入口温度显示 热流入口压力显示 冷流出口温度显示 热流入口温度显示 热流出口温度显示 流经换热器流量 未流经换热器流量 冷物流出口气化率
一、列管式换热器工艺流程
本节利用管式换热器学习换热工艺的操作。由一种沸点:198.25℃的 冷物流,初温92℃时由泵P101A/B送至换热器E101的壳程,通过与 管程热物流温度交换后加热至145℃输送入后续单元,并有20%物流 被汽化。冷物流流量由流量控制器FIC101控制,正常流量为 12000kg/h。而225℃热物流经过泵P102A/B一部分输送到换热器 E101与注经壳程的冷物流进行热交换,另一部分热物流与经过换热 后的热物流混合后输送下一单元,并由TIC101控制温度为177℃。
〖答案〗 1、TIC101开度为50,FIC101、FIC102的流量均为10000kg/h。 2、TIC101开度为0,FIC101流量减小直至消失;FIC102流量增大至20000kg/h。 3、TIC101开度为100,FIC102流量减小直至消失;FIC101流量增大至20000kg/h。
动画1_5_8_2TIC101分程控制演示
类型 PID PID AI AI AI AI AI AI AI AI AI
正常值 12000 177
9.0 92 10.0 145.0 225 129 10000 10000 0.200
量程上限 20000 300 27000 200 50 300 400 300 20000 20000 1.000
量程下限 0 0 0 0 0 0 0 0 0 0 0
工程单位 KG/H ℃ atm ℃ atm ℃ ℃ ℃ KG/H KG/H %
三、分程控制器
本单元控制器
1、 FIC101 冷物流流量控制器 2、TIC101 热物流出口温度控制器
TIC101采用分程控制 ,TV101A和TV101B 分别调节流经E101 和副线的流量 ,TIC101输出 0%~100%分别对应 TV101A开度
〖本课小结〗
本节是根据实际生产案例给出的数据。由于生产中的不定因素 很多,如果采用热物流只能通过换热器来控制温度的话,不一 定能保证热物流降温后能满足后续生产工艺要求,因此采用了 分程控制方法。这里的分程控制与离心泵单元中的压力分程控 制类似,却不完全相同。控制时应加以注意。
〖作业〗
1、你认为本系统调节器TIC101的设置合理吗?如何改进? 2、影响间壁式换热器传热量的因素有哪些?
0%~100%,TV101B 开度100~0%。
100.0% 位 阀
TV101B
0.0% 0.0%
TV101A 调节器输出
100%
图1_5_8_2TIC101的分程控制线
〖学生练习〗
启动换热器单元中正常操作培训项目。 1、仔细观察TIC101的开度大小,FIC101、FIC102流量大小,并作记录。 2、手动控制TIC101开度为0,观察FIC101、FIC102流量的变化,并做记录。 3、手动控制TIC101开度为100,观察FIC101、FIC102流量的变化,并做记录。
相关文档
最新文档