数学分析论文

合集下载

数学分析(3)论文

数学分析(3)论文

云南大学数学分析习作课(3)论文题目:利用幂级数求和函数问题的探究学院:数学与统计学院专业:数学与应用数学姓名、学号:王茂银 *********** 任课教师:黄辉老师时间: 2012年12月14日摘要如何对幂级数进行求和?幂级数是一种较简单的函数项级数,在幂级数理论中,对给定幂级数讨论其收敛性,求收敛幂级数的和函数是重要内容之一,幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。

关键词:幂级数;和函数;收敛;级数。

一、幂级数的基本概念1、幂级数的定义 设()(1,2,3)n u x n =是定义在数集X 上的一个函数列,则称12()()(),n u x u x u x x X ++++∈为定义在X 上的函数项级数,记为1()n n u x ∞=∑。

具有形如200102000()()()()n nn n n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为在点0x 处的幂级数。

特别地,在00()nn n a x x ∞=-∑中,令0x x x -=,即上述形式化为20120n n n n n a x a a x a x a x ∞==+++++∑称为在0点的幂级数。

2、幂级数的和函数若对幂级数中的x ∀都有230123()a a x a x a x s x ++++=,则称()s x 为幂级数的和函数。

幂级数的部分和记为230123()nn n s x a a x a x a x a x =+++++且部分和()n s x 有如下性质lim ()()nn s x s x →∞=二、幂级数收敛的判别幂级数求和是建立在级数收敛的基础上的,所以需先判断一个级数是否收 敛,可以通过以下定理判断级数收敛性。

应用数学数值分析大学期末论文

应用数学数值分析大学期末论文

应用数学数值分析大学期末论文Abstract:本文将探讨应用数学中的数值分析方法,并结合实际案例进行分析。

首先介绍数值分析的基本概念和应用领域,包括数值计算的重要性和发展前景。

然后,针对一些广泛应用的数值分析算法,如数值积分、线性方程组求解和常微分方程数值解等,进行详细的讨论和比较。

最后,利用实例说明数值分析在实际问题中的应用和效果,并总结数值分析在应用数学中的意义和局限性。

1. 引言应用数学数值分析是一门研究数值计算方法的学科,其目标是通过数学模型和计算机算法来解决实际问题。

数值分析方法在科学研究、工程设计、经济分析等领域具有广泛应用,并且在不断发展壮大。

2. 数值分析的基本概念与应用2.1 数值计算的重要性数值计算作为一种利用计算机对数学模型进行近似求解的方法,具有高效、灵活和准确的特点,对于复杂问题的求解具有重要意义。

通过数值计算,可以得到问题的近似解或数值解,帮助研究人员分析问题的特性和趋势。

2.2 数值分析的应用领域数值分析方法广泛应用于科学、工程和计算经济学等领域。

在物理学中,数值分析可以模拟天体运动、流体力学等问题;在工程学中,数值分析用于结构力学、电磁场分析等;在经济学中,数值分析可以帮助进行经济模型的求解和预测等。

3. 数值积分数值积分是数值分析中的基本内容,用于计算函数的定积分值。

常见的数值积分方法有梯形法则、辛普森法则和龙贝格法等。

这些方法基于离散化的思想,将函数曲线分割为若干小区间,然后通过求和或加权求和的方式来近似计算定积分的值。

4. 线性方程组求解线性方程组求解是数值分析中的重要问题,涉及到多个未知数之间的线性关系。

数值方法可以通过矩阵运算和迭代算法来求解线性方程组,如高斯消元法、雅可比迭代法和共轭梯度法等。

这些方法可以高效地解决大规模线性方程组的求解问题。

5. 常微分方程数值解常微分方程是自然科学和工程技术中经常遇到的问题,数值解法是解决常微分方程的常用方法之一。

常见的数值解法包括欧拉法、龙格-库塔法和变步长法等。

数分论文

数分论文

数学分析论文412114000216 景薇方正文引言在刚开始学习数学分析的时候,很容易急躁,急躁的原因是我们很难掌握数学分析这门知识。

数学分析的特点就是枯燥,尤其是在深入挖掘的情况下。

但是,数学分析却是我们学期其他知识的基础。

南无我们必须学好这门知识,而学习数学分析者们知识并不是索然无趣的,实际掌握这门学科,就不能眉毛胡子一把抓,而应该掌握一些学习数学分析的基本的方法,形成一种分析性的思维方式。

深入了解之后,加上一些必要的习题,相信就会对数学分析产生一些相应的兴趣。

毕竟,数学分析是一种体现分析的理性之美的学科,是一门很锻炼思维的理性学科。

下面我将浅谈几个微分中值定理的之间联系摘要了解几个微分中值定理,及他们之间的联系;掌握这几个中值定理的推导过程,能够熟练的辨别他们区别。

关键词:微分;中值定理;罗尔定理;拉格朗日中值定理;柯西中值定理;联系一、几个微分中值定理1、罗尔(Rolle)中值定理若函数f 满足如下条件:(i )f 在闭区间[],a b 上连续;(ii )f 在开区间(),a b 内可导;(iii )()()f a f b =则在(),a b 内至少存在一点,使得ξ'()0f ξ=几何意义:罗尔定理的条件表示,曲线弧 (方程为 )是一条连续的曲线弧 ,除端点外处处有不垂直于x 轴的切线,且两端点的纵坐标相等。

而定理结论表明, 弧上至少有一点 ,曲线在该点切线是水平的.[注意]:(1)定理中的条件是充分的,但非必要的。

(2)导数等于零的点为函数的驻点(或稳定点,临界点)2、拉格朗日(Lagrange )中值定理若函数f 满足如下条件: (i )f 在闭区间[],a b 上连续;(ii )f 在开区间(),a b 内可导; (iii )()()f a f b =,则在(),a b 内至少存在一点,使得ξ ()()'()f b f a b a f ξ--=.拉格朗日定理是罗尔定理的推广。

初中学生学习数学分析论文

初中学生学习数学分析论文

初中学生学习数学分析论文一、初中学生数学学习状况分析(一)学生数学学习的心理分析1.学生的数学学习无目的、无计划、无标准要求。

对学了什么,应掌握什么,有什么作用是茫然的,有的学生竟说“成绩好有什么用,给我多少奖金”,学习具有盲目性。

2.学生对数学学习不主动、自觉性差,对学习内容的理解和学习任务的完成是被动消极的,学习本是自己的事,却常推委、拖拉或希望同学帮忙,所以同学间常出现抄作业现象,学习具有依赖性。

3.学生有上进的心理,但缺乏勤奋刻苦的学习精神,学习兴趣不浓也不愿培养,不作意志努力,学习中思想常常走神或学习时间内干其他事情,具有学习意志不坚定性。

4.学生学习有了一知半解就感到满足,但遇到困难又垂头伤气,遇难而退或绕道而行,得过且过,致使部分学生学习成绩难以提高,甚至下滑,学习缺乏思想性。

5.学生学习不注重方法,不讲求逻辑联系,分析问题思路杂乱,表达东拼西凑,思维不严谨。

明知这方面过不了关,但也不思改进,学习具有随意性。

(二)学生课堂学习的状况分析1.好动,爱讲话,课堂注意力难持久,自控能力差。

2.数学思维简单;形象思维难建立,抽象思维无基础,针对问题常常冲口而出,答非所问。

3.学习的交流、讨论往往人云亦云,难树己见,思维的闪光点往往在不坚持中一错而过。

思维也就在一次次放弃中养成惰性。

4.观察分析无耐性,不细心,往往被问题的表面现象或假象所迷惑,难以拨云见日,难以感受尝试成功的刺激。

5.会的嫌简单,稍难又嫌烦,总不想动手。

对于较繁的式子,较困难的图形就不于理睬,放置一旁,再遇类似问题,似曾相识,动手就困难。

(三)学生数学学习的思维特征分析1.孤立少联系.学生学习中常常割裂所学知识,分化所学内容,孤立地认识理解问题,如;多项式计算脱离有理数的计算基础,导致运算错误常在符号上。

根式化简不以分式化简为前提,在方法上不能有效迁移。

同时对问题的认识和知识的理解往往绝限于某一范围或某个方面,难以拓宽范围,扩大认识面。

数学分析小论文

数学分析小论文

数学分析小论文数学分析小论文有关数学的小论文应该怎么去写呢?以下是小编整理的数学分析小论文,欢迎参考阅读!数学分析小论文1生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。

我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。

记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。

我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。

妈妈告诉我,打八折就是乘以0。

8,也就是35*0。

8=28(元)。

我恍然大悟。

我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。

走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。

这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。

妈妈告诉我35*0。

8=28(元),40*0。

8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。

用28/628≈0。

045,32/650≈0。

049,0。

049>0。

045,所以第二袋划算一点儿,于是,我们买下了第二袋。

通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。

记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。

话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4—X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。

原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。

《数学分析》范文

《数学分析》范文

《数学分析》范文《数学分析》主要研究实数域上的函数和它们的性质。

它首先介绍了实数的基本性质,包括实数的有序性、稠密性以及实数的最大和最小界等等。

接着,《数学分析》引入了函数的概念,学习了实数到实数的映射关系。

函数是数学中非常重要的概念,它可以描述现实世界中的各种关系,如时间与距离的关系、温度与压力的关系等等。

在函数的基础上,《数学分析》引入了极限的概念。

极限是数学分析中非常关键的一个概念,它可以用来描述函数在其中一点的局部行为。

通过极限的研究,我们可以了解到函数的趋势、变化率等等重要的性质。

比如,当自变量趋向于一些值时,函数的取值是否有界、是否趋向于一些特定的值等等。

极限的研究是数学分析的核心内容之一微分和积分则是数学分析中的两个重要操作。

微分是研究函数的局部变化率的工具,它可以用来求得函数的导数。

导数可以告诉我们函数在其中一点的斜率或变化率,从而帮助我们描述函数的几何特征。

而积分则是计算函数在其中一区间上的总量的工具,它可以用来求得函数的原函数。

原函数可以帮助我们计算函数在其中一区间上的面积、体积等等。

除了以上的基础概念之外,数学分析还涉及到级数、微分方程等更深入的内容。

级数是无穷多项相加的运算,它可以用来研究数列的和、函数的展开式等等。

微分方程则是研究函数与其导数之间的关系的数学方程,它在自然科学、工程学等领域中具有广泛的应用。

总之,《数学分析》是一门重要的数学学科,其内容涵盖了函数、极限、微分、积分等各个方面。

通过学习《数学分析》,我们可以掌握一些基本的数学工具,如函数的性质、函数的极限、函数的导数等等。

同时,我们还可以学到一些基本的数学思维方法,如严密的证明思路、逻辑推理等等。

通过《数学分析》的学习,我们可以提高自己的数学分析能力,并且为将来的数学研究打下坚实的基础。

数学分析论文

数学分析论文

数学分析论⽂本⽂利⽤MATLAB 软件,分别运⽤波尔查诺⼆分法和Gauss消元法,对“捕鱼业的持续收获”模型和“⽜奶的⽣产计划”模型进⾏数值分析,从⽽得到最好经济效应下的捕鱼强度E,以及最优的⽜奶⽣产⽅案。

关键词:MATLAB,捕鱼业的持续收获,⽜奶的⽣产计划1MATLAB简介 (1)1.1 基本功能 (1)1.2 特点 (2)1.3 优势 (2)2捕鱼业的持续收获 (5)2.1 背景 (5)2.2 模型建⽴ (5)2.2.1 得到捕捞平衡点 (5)2.2.2 效益模型的建⽴ (6)2.3 算法原理——波尔查诺⼆分法 (6)2.4 利⽤MATLAB编程 (7)2.4.1 编写⼆分法计算的函数⽂件 (7)2.4.2 编写检验函数⽂件 (9)2.4.3 调⽤主函数 (9)2.5 结论分析 (9)3⽜奶的⽣产计划 (10)3.1 背景 (10)3.2 模型建⽴ (10)3.2.1 问题提出 (10)3.2.2 问题分析 (10)3.2.3 基本模型 (10)3.2.4 模型分析与假设 (11)3.3 算法原理——Gauss消元法 (12)3.4利⽤MATLAB编程 (14)3.4.1 编写⾼斯消元法函数 (14)3.4.2 编写⽅程组信息 (15)3.4.3 运⾏主程序 (15)3.5 结论分析 (15)总结 (16)参考⽂献 (17)1MATLAB简介1.1 基本功能MATLAB是由美国mathworks公司发布的主要⾯对科学计算、可视化以及交互式程序设计的⾼科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及⾮线性动态系统的建模和仿真等诸多强⼤功能集成在⼀个易于使⽤的视窗环境中,为科学研究、⼯程设计以及必须进⾏有效数值计算的众多科学领域提供了⼀种全⾯的解决⽅案,并在很⼤程度上摆脱了传统⾮交互式程序设计语⾔(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进⽔平。

MATLAB和Mathematica、Maple并称为三⼤数学软件。

数学分析论文

数学分析论文

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)1立体体积 (1)2曲面的面积 (2)3物体的重心 (3)4物体的转动惯量 (6)5物体的引力 (7)结语 (8)参考文献 (8)重庆三峡学院数学分析课程论文重积分的应用院系:数学与统计学院专业:数学与应用数学(师范)姓名:李林年级:2009级学号:200904014215指导老师:王平(教授)2011年5月重积分的应用李林摘 要:重积分主要用来解决实际问题,在本文中,我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及在几何和物理方面的应用,并用实例加以说明.关键词:重积分;曲面面积;重心;转动惯量;引力;应用引言学习重积分,主要掌握重积分的计算和应用,用重积分的思想解决实际问题,而计算又涵盖在应用中,我归纳其应用如下:1 具体应用 1.1.立体体积曲顶柱体的顶为连续曲面()y x f z ,=,()D y x ∈,,则其体积为()dxdyy x f V D⎰⎰=,占有空间有界域 Ω 的立体的体积为⎰⎰=Ddxdydz V .例1 求曲面1:221++=y x z S 任一点的切平面与曲面222:y x z S +=所围立体的体积V .解 曲面1S 在点()000,,z y x 的切平面方程为22000122y x y y x x z --++=. 它与曲面22y x z +=的交线在xoy 面上的投影为()()12020=-+-y y x x (记所围域为D ).[]⎰⎰----++=∴Ddxdy y x y x y y x x V 22202000122()()()[]⎰⎰-+--=Ddxdy y y x x 221.令θcos 0r x x =- θs i n 0r y y =-. 原式θπrdrd r D⋅-=⎰⎰2dr r d ⎰⎰-=1320πθπ2π=.例2 求半径为a 的球面与半顶角为α的内接锥面所围成的立体的体积.解 在球坐标系下空间立体所占区域为.⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωπθαϕϕ200cos 20:a rdr d d r dv ϕθϕsin 2=.则立体体积为⎰⎰⎰Ω=dxdydz Vr d r d a ⎰⎰⎰=παϕϕθ20c o s202s i n⎰=αϕϕϕπ033s i n c o s 316d a()απ43c o s 134-=a . 1.2.曲面的面积设光滑曲面()y x f z S ,:=,()D y x ∈,,则面积A 可看成曲面上各点()z y x M ,,处小切平面的面积dA 无限积累而成.设它在D 上的投影为σd ,则dA d ⋅=γσcos()()y x f y x fyx,,11cos 22++=γ.()()∂++=d y x f y x f dA y x ,,122(称为面积元素).故有曲面面积公式()()∂++=⎰⎰d y x f y x f A Dy x ,,122.即dxdy y z x z A D⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面方程为()z y g x ,=,()yz D z y ∈,,则有dydz y z x z A yzD ⎰⎰⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面方程为()x z h y ,=,()zx D x z ∈,,则有dydz y z x z A yzD ⎰⎰⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面为隐式()0,,=z y x F ,且0≠z F ,则z x F F x z-=∂∂,zy F F y z -=∂∂,()xy D y x ∈,.dxdy F F F F A xyD zz y x ⎰⎰++=∴222.例3求半径为a 的球的表面积. 解 利用球坐标方程 设球面方程为a r =.球面面积元素为θϕϕd d a dA sin 2=.⎰⎰==∴πππϕϕθ022024sin a d d aA .例4 计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A . 解 曲面在xoy 面上投影为222:R y x D ≤+,则dxdy z z A Dy x ⎰⎰++=221.dxdy y x A D⎰⎰++=221r d rr d R⎰⎰+=πθ2021 ()⎥⎦⎤⎢⎣⎡-+=1132232Rπ.1.3. 物体的重心设空间有n 个质点,分别位于()k k k z y x ,,,其质量反别为()n k m k ,2,1 =,由力学知,该质点系的重心坐标为∑∑===nk knk kk mmx x 11.∑∑===nk knk kk mmy y 11.∑∑===nk knk kkmmz z 11.设物体占有空间域Ω,有连续密度函数()z y x ,,ρ则采用 大化小 常代变 取极限 可求出其重心公式 即:把Ω分成n 小块,在第k 块上任取一点()k k k ζηξ,,,将第k 块看作质量集中于点()k k k ζηξ,,的质点,此质点系的重心坐标就近似该物体的重心坐标.若()()∑∑==∆∆≈nk kk k knk kk k kk v v x 11,,,,ζηξρζηξρξ 令各小区域的最大直径0→λ,即得()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x x x ,,,,ρρ.同理可得()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x y y ,,,,ρρ.()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x z z ,,,,ρρ.当()≡z y x ,,ρ常数时,则有:Vxdxdydzx ⎰⎰⎰Ω=.Vydxdydzy ⎰⎰⎰Ω=.Vzdxdydzz ⎰⎰⎰Ω=(⎰⎰⎰Ω=dxdydz V 为Ω的体积).若物体为占有xoy 面上区域D 的平面薄片,其面密度为()y x ,μ,则它的重心()()⎰⎰⎰⎰=DDdxdyy x dxdyy x x x ,,μμ()()⎰⎰⎰⎰=DDdxdyy x dxdyy x y y ,,μμ.当=ρ常数时,则有Axdxdyx D⎰⎰=Ay d x d yy D⎰⎰=(A 为D 的面积).例5 求位于两圆θsin 2=r 和θsin 4=r 之间均匀薄片的重心. 解 利用对称性可知0=x .而⎰⎰=Dydxdy A y 1θθπd r d rDs i n 312⎰⎰=dr r d ⎰⎰=θθπθθρsin 4sin 220sin 31θθππd ⎰=04s i n 956 θθππd ⎰⋅=204s i n 2956 2212956ππ⋅⋅⋅= 37=.例6 一个炼钢炉为旋转体形,剖面壁线的方程为()2239z z x -=,30≤≤z 若炉内储有高为h 的均匀钢液,不计炉体的自重,求它的重心.解 利用对称性可知重心在z 轴上 故其坐标为0==y x ,Vzdxdydzz ⎰⎰⎰Ω=.采用柱坐标,则炉壁方程为()2239z z r -=,. 因此⎰⎰⎰Ω=dxdydz V ⎰⎰⎰⎰Ω=zdxdy dz h 0()dz z z h239-=⎰π⎪⎭⎫ ⎝⎛+-=23412299h h h π. ⎰⎰⎰⎰⎰⎰⎰ΩΩ=zdxdy zdz zdxdydz h()dz z z h22039-=⎰π⎪⎭⎫ ⎝⎛+-=23512339h h h π. 225409043060hh h h h z +-+-=∴. 1.4. 物体的转动惯量因质点系的转动惯量等于各质点的转动惯量之和,故连续体的转动惯量可用积分计算. 设物体占有空间区域Ω,有连续分布的密度函数()z y x ,,ρ,该物体位于()z y x ,,处的微元对z 的转动惯量为()()dv z y x y x dI z ,,22ρ+=因此物体对z轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x y x I z ,,22ρ.类似可得对x 轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x z yI x ,,22ρ. 对y 轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x z xI y ,,22ρ.对原点的转动惯量()()⎰⎰⎰Ω++=dxdydz z y x z y xo ,,222ρ.如果物体是平面薄片,面密度为()y x ,μ,()D y x ∈,则转动惯量的表达式是二重积分.()dxdy y x y I x ,2μ⎰⎰Ω=()dxdy y x x I y ,2μ⎰⎰Ω=()()dxdy y x y x I o ,22μ⎰⎰Ω+=.例7 求半径为a 的均匀半圆薄片对其直径的转动惯量.解 建立坐标系如图所示 ⎩⎨⎧≥≤+0:222y a y x D .⎰⎰=Dx dxdy y I 2μθθμdrd r D23sin ⎰⎰=dr r d a⎰⎰=0302sin θθμπ2212414πμ⋅⋅⋅=a . 半圈薄片的质量μπ221a M =241Ma I x =∴. 例8 求均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为原点, z 轴为l 轴,设球所占域为2222:a z y x ≤++Ω,则()dxdydzy x I z ρ⎰⎰⎰Ω+=22()θϕϕθϕθϕρd drd r r r sin sin sin cos sin 2222222⋅+=⎰⎰⎰Ωdr r d d a⎰⎰⎰=040320sin ϕϕθρππ1322525⋅⋅⋅=a πρM a 252=(ρπ334a M =).1.5. 物体的引力设物体占有空间区域Ω,其密度函数()z y x ,,ρ连续,物体对位于原点的单位质量质点的引力()z y x F F F F ,,=.利用元素法,引力元素在三坐标轴上的投影分别是()dv rxz y x GdF x 3,,ρ=()dv r yz y x GdF y 3,,ρ=()dv rz z y x G dF z 3,,ρ=222z y x r ++=G 为引力常数. 在上积分即得各引力分量:()dv rxz y x G F x ⎰⎰⎰Ω=3,,ρ()dv r yz y x G F y ⎰⎰⎰Ω=3,,ρ()dv rzz y x G F z ⎰⎰⎰Ω=3,,ρ.对xoy 面上的平面薄片D ,它对原点处的单位质量质点的引力分量为()σρμd xy x G F Dx ⎰⎰⎰=3,. ()σρμd y y x G F Dy ⎰⎰⎰=3, (22y x +=ρ). 例9 设密度函数为μ,半径为R 的圆形薄片222R y x ≤+,0=z ,求它对于位于点()a M ,0,00()0>a 处的单位质量质点的引力.解 由对称性知引力()z F F ,0,0= d a d d G dF z ⋅-=2σμ()23222a y x d Ga ++-=σμ()⎰⎰++-=∴Dz a y x d Ga F 23222σμ()⎰⎰+-=Rarrdrd Ga 0232220πθμ⎪⎪⎭⎫⎝⎛-+=a a R Ga 11222μπ. 例10 求半径为R 的均匀球2222R z y x ≤++对位于点()()R a a M >,0,00的单位质量质点的引力.解 利用对称性知引力分量0==y x F F()[]dv a z y xaz G F z 23222-++-=⎰⎰⎰Ωρ()()[]⎰⎰⎰-++-=-zD RRa z y xdxdydz a z G 23222ρ()()[]⎰⎰⎰---+-=220232220z R R Ra z rrdrd dz a z G πθρ()dz a az R z a a z G RR⎪⎪⎭⎫⎝⎛+----=⎰-222112ρπ ()⎥⎦⎤⎢⎣⎡+----=⎰-222122a az R d a z a R G R R ρπ2a M G -=(ρπ343R M =为球的质量).参考文献:1王贵鹏. 数学分析[M]. 北京: 高等教育出版社, 2001年6月.2 田国华. 数学分析辅导及习题全解[M]. 北京: 人民日报出版社, 2007年8月.3 闫晓红,王贵鹏. 数学分析全程导学及学习习题全解[M]. 北京: 中国时代经济出版社,2006年3月.4 强文久,李元章,黄雯荣. 数学分析的基本概念与方法[M]. 上海: 高等教育出版社, 1989年4月.5 刘玉莲,傅沛仁,林钉,苑德馨. 数学分析讲义[M]. 北京: 高等教育出版社, 2008年4月.The application of the heavy integralLiLin(Second class of Grand 2009, mathematics and applied mathematics college of mathematics and ststistics Chongqing Three Gorges University (404000))Abstract : Heavy integral is mainly used to solve practical problems, in this article, I encountered in the study summarized the application, such as heavy points for three-dimensional volume, space objectsin the quality and the applications of geometry and physics, and some examples to illustrate. Key words: Heavy integral; Surface area; Gravity; Inertia; Gravity;Application.10。

《数学分析》范文

《数学分析》范文

《数学分析》范文《数学分析》是一门研究实数集上的函数极限、连续性、可微性及积分等基本概念和基本理论的数学学科。

它是现代数学中的一门重要课程,也是理工科专业学生的重要基础课程之一、本文旨在介绍《数学分析》的主要内容和学习重点。

《数学分析》主要涉及的内容包括集合与映射、数列极限、函数极限与连续性、导数与微分、积分与可积性等。

首先,集合与映射是《数学分析》的基础内容。

它涉及集合的基本概念、集合间的运算以及映射的定义和性质等。

数列极限是《数学分析》中的重要内容之一、它是研究数列的趋势和性质的数学概念,包括数列的极限定义、数列的收敛性和发散性等。

函数极限与连续性是《数学分析》中的核心概念。

函数极限是研究函数的趋势和性质的数学概念,包括函数极限的定义、函数的收敛性和发散性等。

连续性是函数的重要性质之一,它涉及函数在定义域上的无间断性和光滑性。

导数与微分是《数学分析》中的重要内容之一、它是研究函数变化率和斜率的数学概念,包括导数的定义、导数的性质、函数的可导性和导数的应用等。

积分与可积性是《数学分析》中的另一个重要内容。

它是研究函数面积和曲线下的总量的数学概念,包括定积分的定义、定积分的性质、函数的可积性和积分的应用等。

学习《数学分析》的重点在于掌握基本概念和基本理论的定义、性质和应用。

首先,要熟练掌握集合的基本概念和运算,理解映射的定义和性质。

其次,要理解数列的极限的定义和性质,能够判断数列的收敛性和发散性。

再次,要理解函数极限的概念和性质,能够分析函数的收敛性和发散性。

然后,要掌握导数的定义、导数的性质和函数的可导性,能够求解函数的导数和利用导数解决问题。

最后,要理解定积分的概念和性质,能够计算函数的定积分和应用积分解决问题。

学习《数学分析》还需要进行大量的习题练习和实际问题的应用。

通过习题练习可以强化对基本概念和基本理论的理解,培养分析和解决问题的能力。

通过实际问题的应用可以将所学的知识与实际问题相结合,提高数学建模和解决实际问题的能力。

数学分析毕业论文

数学分析毕业论文

数学分析毕业论文数学分析毕业论文在数学领域中,数学分析是一门重要的学科,它研究的是数学中的极限、连续、微积分等概念与方法。

作为一个数学专业的学生,我选择了数学分析作为我的毕业论文的主题,旨在深入研究数学分析的理论与应用,探索其中的奥秘与美妙。

首先,我将从数学分析的基础概念入手。

数学分析的核心概念有极限、连续和微积分等。

极限是数学分析的基石,它描述了函数在某一点的趋近性质。

通过极限的概念,我们可以研究函数的连续性和可导性,进而探索函数的性质和行为。

连续是数学分析中一个重要的概念,它描述了函数在某一区间上的无间断性。

连续函数具有许多有趣的性质,如介值定理和最值定理等。

微积分是数学分析的重要分支,它研究的是函数的变化率和积分。

通过微积分,我们可以求解曲线的斜率、曲线下的面积以及函数的最值等问题。

接下来,我将探讨数学分析在实际问题中的应用。

数学分析在物理学、工程学和经济学等领域中有着广泛的应用。

在物理学中,数学分析可以用来描述物体的运动和变化。

通过微分方程和积分方程,我们可以建立物理模型并求解出相应的物理量。

在工程学中,数学分析可以用来优化工程设计和解决实际问题。

例如,通过最优化理论和约束条件,我们可以确定最佳的工程方案和决策。

在经济学中,数学分析可以用来研究市场供求关系和经济增长等问题。

通过微分方程和微分方程组,我们可以建立经济模型并预测经济走势。

此外,我还将讨论数学分析中的一些经典问题和定理。

例如,柯西收敛准则、泰勒级数展开和黎曼积分等。

这些经典问题和定理不仅有着重要的理论意义,也具有广泛的应用价值。

通过研究这些问题和定理,我们可以深入理解数学分析的内涵和深度。

最后,我将对数学分析的未来发展进行展望。

随着科技的进步和社会的发展,数学分析在理论和应用方面仍有许多挑战和机遇。

例如,随机分析、非线性分析和复分析等新兴领域的发展,将为数学分析提供更加丰富和广阔的研究空间。

同时,数学分析在人工智能、大数据和量子计算等领域的应用也将得到进一步的拓展和深化。

关于数学分析的论文

关于数学分析的论文

关于数学分析的论文一、教学中的常见问题1、学习兴趣不足在数学教学过程中,学习兴趣不足的问题尤为突出。

由于数学本身具有较强的逻辑性和抽象性,学生在学习过程中容易感到枯燥乏味,进而影响学习效果。

一方面,教材内容的编排和教学方法的选择可能导致学生对数学学习缺乏兴趣;另一方面,学生自身的学习动机、兴趣点和个性特点也会影响他们对数学学习的热情。

(1)教材内容方面:部分教材内容过于理论,缺乏实际应用背景,使得学生在学习过程中难以感受到数学的实用价值,从而降低学习兴趣。

(2)教学方法方面:传统的“灌输式”教学方式使得学生在课堂上被动接受知识,缺乏主动探究和实践的机会,导致学习兴趣不高。

(3)学生个体差异方面:不同学生的兴趣点和学习能力存在差异,而教师在教学过程中往往难以兼顾每个学生的需求,从而影响整体学习兴趣。

2、重结果记忆,轻思维发展在数学教学中,部分教师过于关注学生的考试成绩,强调对公式、定理的记忆,而忽视了对学生思维能力的培养。

这种现象导致学生在面对问题时,往往只会套用公式、定理,缺乏独立思考和解决问题的能力。

(1)课堂教学方面:教师在课堂上过于注重知识传授,缺乏引导学生进行思考、探究的过程,使得学生难以形成自己的思维方式。

(2)作业与评价方面:作业和考试内容多以计算和套用公式为主,忽视了对学生分析、综合、解决问题能力的考查,导致学生重结果记忆,轻思维发展。

3、对概念的理解不够深入概念是数学知识的基石,对概念的理解程度直接影响着学生的学习效果。

然而,在实际教学过程中,学生对概念的理解往往不够深入,表现在以下方面:(1)教师教学方面:部分教师在教学中对概念的引入和阐述不够清晰,导致学生对概念的理解停留在表面。

(2)学生学习方面:学生在学习过程中,往往只关注概念的字面意思,缺乏对内涵和外延的深入挖掘,使得对概念的理解不够全面。

(3)教材编排方面:部分教材对概念的讲解不够详细,缺乏实例和练习,使得学生难以在实际操作中加深对概念的理解。

数学分析论文(第一版)

数学分析论文(第一版)

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。

本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。

了解函数的诞生背景1.早期函数的概念——几何观念下的函数十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。

与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。

2.十八世纪函数概念——代数观念下的函数1718年约翰•贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。

”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。

1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。

不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。

3.十九世纪函数概念——对应关系下的函数1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

数学分析的毕业论文

数学分析的毕业论文

数学分析的毕业论文数学分析的毕业论文数学分析是数学的一个重要分支,它研究的是数学对象的性质和变化规律。

作为数学专业的学生,我在大学期间学习了数学分析的相关知识,并对其产生了浓厚的兴趣。

在即将毕业之际,我决定以数学分析为主题撰写我的毕业论文,以探索更深入的数学领域。

一、引言在引言部分,我将简要介绍数学分析的背景和重要性。

数学分析作为数学学科的核心内容,具有广泛的应用价值。

它不仅为其他学科提供了重要的理论基础,也在实际问题的解决中发挥着重要作用。

在本文中,我将重点研究数学分析的一些基本概念和定理,并探讨它们在实际问题中的应用。

二、基本概念和定理的介绍在这一部分,我将详细介绍数学分析中的一些基本概念和定理。

首先,我将介绍实数和实数集的概念,以及实数的基本性质。

接着,我将介绍极限和连续的概念,并讨论它们的性质和应用。

此外,我还将介绍导数和微分的概念,并探讨它们在函数研究中的重要性。

最后,我将介绍积分的概念和性质,以及它在数学分析中的应用。

三、实际问题的数学建模和分析在这一部分,我将探讨数学分析在实际问题中的应用。

数学分析作为一门应用性很强的学科,可以通过建立数学模型来解决实际问题。

我将以一些具体的实际问题为例,介绍如何利用数学分析的方法进行建模和分析。

例如,我可以选择研究一个物体的运动问题,通过分析其位移、速度和加速度的关系,来推导出物体的运动规律。

此外,我还可以选择研究一个经济问题,通过建立数学模型来分析市场供求关系和价格变动的规律。

四、数学分析的发展和前景在这一部分,我将探讨数学分析的发展和前景。

数学分析作为数学学科的核心内容,一直在不断发展和完善。

随着科学技术的进步和应用领域的拓展,数学分析的研究和应用也将越来越广泛。

在未来,数学分析将继续发挥重要作用,并为其他学科的发展提供理论支持。

同时,数学分析的研究也将面临一些挑战和困难,需要不断探索和创新。

五、结论在结论部分,我将总结本文的主要内容,并对数学分析的研究进行回顾和展望。

数学分析中的极限问题论文

数学分析中的极限问题论文

师学院本科毕业论文专业数学与应用数学年级姓名论文题目数学分析中的极限问题指导教师职称**** 年*月* 日目录摘要1关键词1Abstract1Key words.1引言11.综述21.1极限的产生与开展21.2极限问题的类型32.常见的极限求解方法42.1简单求极限的方法42.2利用两个重要极限公式求极限52.3利用洛必达法那么求极限62.4利用极限的四那么运算法那么求极限72.5利用等价无穷小替换求极限72.6利用定积分求极限82.7利用泰勒公式求极限92.8两边夹法那么求极限102.9利用单侧极限求极限112.10利用中值定理求极限12小结13参考文献14数学分析中的极限问题学生:** 学号:*********数学与计算机科学系数学与应用数学专业指导教师:** 职称:**摘要:极限是数学分析这门学科的根底,通过极限思想、借助极限工具使数学分析容更加严谨,贯穿整个数学分析的始末. 本文主要是对数学分析中的极限的产生与开展,以及常见极限的假设干常规解法进展了讨论和研究. 本文的重点在第二章,具体介绍了运用四那么运算法那么、两个重要极限、两边夹法那么、等价无穷小替换等方法求解极限.关键词:四那么运算法那么;洛比达法那么;泰勒公式;两边夹法那么.Abstract: Limit is the basis of mathematical analysis of the subject, through the of though with the tools of limit, make the content more rigorous mathematical analysis, through the mathematical analysis of events. This article is mainly to limit the emergence and development of mathematical analysis, as well as the mon limit of conventional method are disscussed and studied. In the second chapther, the focus of this article, using the laws of arthmetic are analysised in detail, two important limits,between law and equivalent infinitesimal substitution method to solve the limit.Key words: four arithmetic operations; the derivation rule; Taylor formula; both sides grip rule.引言极限是描述数列和函数在无限过程中的变化趋势的重要概念,是从近似认识准确,从有限认识无限,从量变认识质变的一种数学方法,能够通过旧事物的量的变化规律,去计算新事物的量. 因此,极限具有由此达彼的重大创新作用. 同时,极限是研究微积分的理论根底和根本手段,它一直贯穿于该学科的始终. 极限的思想方法不仅在整个分析学的建立和开展中起着根本作用,而且还广泛应用于其他数学分支和自然科学. 同时,考研数学中也少不了有关于极限的题目.极限的思想方法作为人类发现数学问题并解决数学问题的一种重要手段,随着科学技术的不断开展,社会生产力的不断提高,在数学的开展史上将发挥越来越重要的作用. 因此,探讨如何求极限、怎样使求极限变得容易,是一个非常具有现实意义的重要问题. 求极限不仅要准确理解极限的概念、性质和极限存在的条件,而且还要清楚认识各种极限的类型,并熟练应用多种求极限的根本方法.众所周之,求极限的方法繁多且变化灵活,不易掌握. 本文在总结各种常用的求极限方法的同时,更重要的是,也会提出一些创新的极限求解方法,希望能够开拓思路,起到抛砖引玉的作用.1.综述1.1极限的产生与开展早在两千多年前,我国的惠施就在庄子的?天下篇?中有一句著名的话:“一尺之棰,日取其半,万世不竭〞,惠施提出了无限变小的过程,这是我国古代极限思想的萌芽.我国三国时期的大数学家徽〔约225年~295年〕的割圆术,通过不断倍增圆接正多边形的边数来逼近圆周,徽计算了圆接正3072边形的面积和周长,从而推得3.141024 3.142704<<.在国外一千多年以后欧洲人安托尼兹才算到同样准确度π的小数.π这扇窗口闪烁着我国古代数学家的数学水平和才能的光芒.徽的割圆术不仅仅是先导,而且是一面旗帜,为研究复杂的逼近数列翻开了先河.16世纪前后,欧洲资本主义的萌芽和文艺复兴运动促进了生产力和自然科学的开展. 17世纪,牛顿和莱布尼兹在总结前人经历的根底上,创立了微积分. 随着微积分应用的更加广泛和深入,遇到的数量关系也日益复杂,例如研究天体运行的轨道等问题已超出直观围.在这种情况下,微积分的薄弱之处也越来越暴露出来,严格的极限定义就显得十分迫切需要. 经过近百年的争论,直到19世纪上半叶人们通过对无穷级数的研究和总结,明确的认识了极限的概念.德国著名数学家维尔斯特拉斯通过静态刻板的定义,描述了无限的过程,刻画了极限,对于数列{}n a 如果找到一个实数a ,无论预先指定多么小的正数ε,都能够在数列中找到一项n a ,使得这一项后面的所有项与a 的差的绝对值都小于ε,就把这个实数a 叫做数列{}n a 的极限. 1.2极限问题的类型数列极限定义 设{}n a 为实数数列,a 为定数,任意ε>0,总存在正整数N ,使得当n N >时,有n a a ε-<,那么称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限.不等式n a a ε-<刻画了n a 与a 的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明n a 与a 可以接近到任何程度. 然而,尽管ε有其任意性,但一经给出正整数,N ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数,那么2ε,ε的平方等等同样也是任意小的正数,因此定义中不定式n a a ε-<中的ε可用2ε,ε的平方等来代替. 同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数.函数极限定义 设函数()f x 在点0x 的某一去心邻域有定义,如果存在常数A ,对于任意给定的正数ε,总存在正整数d ,当x 满足不等式00x x d <-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=.2.常见的极限求解方法数列极限的求法可谓是多种多样,通过归纳和总结,本章将介绍几种常见的极限求解方法,这些方法均有各自的特点,因为这些常见的方法是研究极限求解的根底,需要我们去深刻的理解并扎实的掌握.我们罗列出一些常用的求法. 2.1简单求极限的方法我们知道,在同一趋近过程中,无穷大量的倒数是无穷小量;有界量乘以无穷小量等于无穷小量;有限个〔一样类型〕无穷小量之和 、差、积仍为无穷小量,以及利用函数的连续性可以求出某些函数的极限.例1 求极限2147lim32x x x x →--+. 解 当1x →时,分母的极限为0,而分子的极限不为0,可以先求出所给函数的倒数的极限2132132lim 04747x x x x →-+-+==--, 利用无穷小量的倒数是无穷大量,故 2147lim32x x x x →-=∞-+. 例2 求极限201sin limsin x x x x→.解 运用极限运算的四那么运算法那么,有200001sin11limlim sin lim lim sin sin sin sin x x x x x x x x x x x x x x x→→→→=⋅⋅=⋅, 因为0lim1sin x xx→=,当0x →时,x 为无穷小量,1sinx为有界量,所以1lim sin0x x x→⋅=, 故201sin lim0sin x x x x→=.2.2利用两个重要极限公式求极限 我们所熟悉的两个重要极限是 (i)lim ()0x af x →=那么sin ()lim1()x a f x f x →=,(ii)lim ()0x af x →=那么1()lim(1())f x x af x e →+=,其中,第一个重要极限是“00〞型;第二个重要极限是“1∞〞型.利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限的标准型或者它们的变形,这就要抓住重要极限公式的特征,并且能够根据它们的特征,识别它们的变形,有时会利用到归结原那么.例3 求极限10lim(12).xx x →+解1112220lim(12)lim[(12)(12)]x x xx x x x x e →→+=+⋅+=.例4 求极限211lim(1)n n n n→∞+-.解2111(1)(1)(n )n n e n n n+-<+→→∞,当1n >时,有2221112221111(1)(1)(1)n nn n n n n n n n n nn -------+-=+≥+,而由归结原那么〔取2,(n 2,3,)1n n x n ==⋅⋅⋅-〕有 2221122111lim(1)lim(1)lim(1)n n n n n n n n n n e n n n---→∞→∞→∞--+=+=+=, 于是,由数列极限的迫敛性得211lim(1)n n e n n→∞+-=. 2.3利用洛必达法那么求极限 定理1 假设函数()f x 与()g x 满足 (i) 0lim ()lim ()0();x x x x f x g x →→==∞(ii) 在点0x 的某空心邻域0()U x 两者都可导,且()0g x ≠; (iii) 0()lim()x x f x A g x →'='〔A 可为实数,也可为+∞或-∞〕,那么 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例5 求极限1220(12)limln(1)xx e x x →-++. 解 利用22ln(1)~(0)x x x +→,得11132222220000(12)(12)(12)(12)limlim limlimln(1)22xxxxx x x x e x e x e x e x x x x--→→→→-+-+-+++===+.应用洛必达法那么计算待定型极限需要注意的问题(1)审查计算的极限是不是待定型,如果不是待定型就不能运用洛必达法那么,因为它不满足洛必达法那么的条件. (2)除计算“00〞或者“∞∞〞两种待定型外,计算其它五种待定型00"0,1,0,,"∞⋅∞∞∞-∞都要用对数或代数运算将它们化为待定型“00〞或者“∞∞〞,然后再应用洛比达法那么.(3)在求极限的过程中,有可约的因子或者极限不是零的因子,可以先约去或从极限符号取出.(4)要特别注意,一般来说,应用洛必达法那么计算待定型极限都比拟简单.但是对少数的待定型极限应用洛比达法那么,并不简单.2.4利用极限的四那么运算法那么求极限定理2〔极限的四那么运算法那么〕假设0lim ()x x f x A →=,0lim ()x x g x B →=,那么(i)0lim ()lim ()x x x x f x g x A B →→±=±,(ii)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→⋅=⋅=⋅,(iii)假设0B ≠,那么000lim ()()lim ()lim ()x xx x x x f x f x A g x g x B→→→==, 综上所述,函数的和、差、积、商的极限等于函数极限的和、差、积、商.例6 求极限2223lim 4x x x x →+++.解2223lim 4x x x x →+++=222lim(23)lim(4)x x x x x →→++=+116. 2.5利用等价无穷小替换求极限以下是当0x →时常用的等价无穷小关系sin ~,tan ~,arcsin ~,arctan ~,11~,1~,log (1x)~,ln 11~ln 1~,2(1)1~,ln(1)~.x a x x x x x x x x xx e x n aa x a x x x x x -+-+-+αα等价无穷小代换法 设,,,ααββ'' 都是同一极限过程中的无穷小量,且有~,~,limαααβββ''''存在,那么 βαlim 也存在,且有limlim ααββ'='. 例7求极限321(1cos )n n ⋅-解 因为lim1n →∞=,故321(1cos)n n ⋅-221(1cos )n n ⋅-=2411n n ⋅⋅=1=. 例8求极限0x →解 有等价无穷小关系 tan ~,1~ln (0).x x x a x a x -→x →0x →=0x →=21.2x →===2.6利用定积分求极限由于定积分是积分和的极限,因此,某些和式问题可以化为定积分的计算,使运算得以完成.例9 求极限2222221lim 12(n 1)n n nnn n n n →∞⎡⎤++++⎢⎥+++-⎣⎦.解222222112(n 1)n nnn n n n +++++++-2221111112111()1()1()n n n n n ⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦. 可取函数21()1f x x =+,[0,1],x ∈上述和式恰好是21()1f x x =+,在[]0,1上n 等分的积分和,所以2222222221201lim 12(n 1)1111lim 112111()1()1()1.14n n n n nn n n n n n n n n dx x π→∞→∞⎡⎤++++⎢⎥+++-⎣⎦⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦==+⎰ 2.7利用泰勒公式求极限常用泰勒公式展开235211224221211();2!!sin (1)();3!5!(21)!cos 1(1)();2!4!(2)!ln(1)(1)();2nxn n n n n n n nn n x x e x x n x x x x x x n x x x x x n x x x x x nοοοο--+-=+++⋅⋅⋅++=-++⋅⋅⋅+-+-=-++⋅⋅⋅+-++=-+⋅⋅⋅+-+22(1)(1)(1)(1)1();2!!11().1n n n n n x x x x x n x x x x x--⋅⋅⋅-++=+++⋅⋅⋅++=+++⋅⋅⋅++-αααααααοο例10求极限00)x a →>.解利用泰勒公式,当0x →时1()2xo x =++,于是x →0x →=01211()()1()22limx x x o x o x a a x→⎤++--⋅-⎥⎣⎦=0()2lim x x o x a x →+=0x →==. 例11 求极限2602cos 2lim x x x e e x x x -→+--.解应用泰勒公式,将函数x e ,x e -,cos x 展开到6x 项,有2345661(),1!2!3!4!5!6!xx x x x x x e x ο=+++++++2345661(),1!2!3!4!5!6!xx x x x x x ex ο-=-+-+-++2466cos 1().2!4!6!x x x x x ο=-+-+将它们代入上式,整理,得66266004()2cos 246!lim lim 6!xxx x x x e e x x x x ο-→→++--==. 2.8两边夹法那么求极限当极限不易求出时,可考虑将所求极限变量,做适当的放大或缩小,是放大或缩小的新变量,易于求极限,且二者的极限值相等,那么原极限存在,切等于此公共值.例11 求极限01lim x x x →⎡⎤⎢⎥⎣⎦.解 因为1x ⎡⎤⎢⎥⎣⎦是对1x 取整,那么1111(0)x x x x⎡⎤-<≤≠⎢⎥⎣⎦, 当0x >时,111x x x ⎡⎤-<≤⎢⎥⎣⎦,当0x <时,111x x x ⎡⎤->≥⎢⎥⎣⎦, 故1lim 1x x x →⎡⎤=⎢⎥⎣⎦. 例12 设1!2!!,!n n x n ++⋅⋅⋅+=求极限lim .n n x →∞解 当分子2n >时,有2!1!2!(2)!(1)!n n n n -<++⋅⋅⋅+-+-(2)(2)!(1)!!n n n n <--+-+2(1)!!n n <-+,因此,当2n >时,211n x n<<+, 所以lim 1n n x →∞=.2.9利用单侧极限求极限可以用单侧极限求解的问题类型如下(1) 求含xa 的函数x 趋向无穷的极限,或求含1xa 的函数x 趋于0的极限; (2) 求含取整函数的函数极限; (3) 分段函数在分段点处的极限;(4) 含偶次方根的函数以及arctan x 的函数,x 趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,那么函数在分界点处的极限存在,否那么极限不存在.例13 设函数21sin ,0()1,0x x f x xx x ⎧>⎪=⎨⎪+≤⎩,求()f x 在0x =的极限. 解 由于1lim sin 1x x x+→=,20lim (1)1x x -→+=,故00lim ()lim ()1x x f x f x +-→→==, 从而lim ()1x f x →=.2.10利用中值定理求极限拉格朗日(Lagrange 〕中值定理 假设函数()f x 满足如下条件 (i)()f x 在闭区间,a b 上连续 ; (ii)()f x 在开区间(,)a b 可导, 那么在(,)a b 至少存在一点ξ,使得()()()f b f a f b aξ-'=- .例14 求函数极限30sin(sin )sin lim x x xx →- .解 因为sin(sin )sin x x -[](sin )cos (sin )x x x x x θ=-⋅⋅-+(01)θ<<,所以30sin(sin )sin limx x xx→- []3(sin )cos (sin )limx x x x x x xθ→-⋅⋅-+=20cos 1lim3x x x →-=0sin lim6x xx→-=16=- 积分中值定理 假设()f x 在[,]a b 上连续,那么至少存在一点[,]a b ξ∈,使得()()()b af x dx f b a ξ=-⎰.例15 求极限sin lim ,n p nn xdx x+→∞⎰p 为某实数. 解 由积分中值定理,得sin sin n p n nnx dx p x ξξ+=⋅⎰,因为n ξ为介于n 与n p +之间的某值,那么111n n n p ξ≤≤+ 或 111n n n pξ≥≥+, 而sin 1n ξ≤,由无穷小量与有界量的乘积仍为无穷小量及迫敛性得sin lim 0n p nn xdx x+→∞=⎰. 定理〔推广的积分第一中值定理〕 假设函数()f x 与()g x 在[],a b 上连续,且()g x 在[],a b 上不变号,那么至少有一点[],a b ξ∈,使得()()()()b baaf xg x dx f g x dx ξ=⎰⎰.例16 求函数极限40lim sin n n xdx π→∞⎰.解由题 ()sin ,()1,n f x x g x ==均在[0,]4π上连续,且()g x 不变号,由推广的积分第一中值定理40lim sin nn xdx π→∞⎰40lim sin nn dx πξ→∞=⎰limsin (0)4n n πξ→∞=⋅-lim(sin )04n n πξ→∞==.小结以上所求极限的方法各有条件、各具特色,因此各种类型所采用的技巧方法都不尽一样,我们必须根据其条件来判断极限的类型,进而根据类型来找到解决问题的方法.当然,有些题目有可能可以用多种方法来解决,此时,我们不可以死搬硬套,要从繁琐中找复杂,在复杂中找简单,而关于如何做到这一点,就必须在做题中不断总结、摸索、领悟各种方法的精华,才能熟练而有灵活的掌握与运用各种求极限的方法.参考文献[1] 林源渠,方企勤.数学分析解题指南.[M].:大学,2003.[2] 郝涌,学志,有德. 数学分析选讲.[M].:国防工业,2010.[3] 同济大学应用数学系. 高等数学.[M].:高等教育,1996.[4] 玉琏,奎元,伟,吕风.数学分析讲义学习辅导书.[M].:高等教育,2003.[5] 清华,昊.数学分析容、方法与技巧.[M].华中科技大学,2003.[6] 华东师大学数学系. 数学分析上册第三版.[M].高等教育,2001.[7] 钱. 数学分析解题精粹.[M].:崇文书局,2003.[8] 梁昌洪. 话说极限.[M].:高等教育,2009.。

数学分析论文

数学分析论文

数学分析论文数学分析的重要性入大学以来,数学分析就成为了大学生要面对的主要学科,不仅是数学专业的同学,其他的很多专业也都要学习高等数学,来夯实进行研究的基础,但特别是对于数学专业的同学,学好数学分析,就是为了学好接下来其他更深更难的数学问题打好根基,由此可见,没有数学分析作为基石,上层建筑无论建的多高,也只能是成为危楼,随时都有坍塌的危险。

并且作为一名师范生,数学分析对于中学教学也具有非常重要的意义,在数学高速发展的时期,数学分析的思想方法在中学数学的教与学的过程中占有举足轻重的地位,因此,我们要切实学懂学透数学分析,才能在日后的教学工作中熟练应用。

1.(1)我是怎么学习数学的?刚入大学,怀着对数学的无比热爱之情,我预习了第一章数学分析,感觉整个人都无法理解大学数学的思想,完全靠背下来,接下来的一章更是不知所云,所以我便对数学分析的学习积极性有所减弱,在学习新内容之前也无法保证每次都提前预习,在老师授课后,也不能做到及时的复习,并且由于自身的贪玩和懒惰,更是很少对一阶段的学习内容进行总结,不过还好经常会有数学分析考试,这便也督促了我重新看一下最近学过的知识,这样突击,虽然也是对于考试有利于提高分数,但并不是很利于对学过内容的巩固,一个惨痛的事实就是上学期学过的定义,定理及证明,基本已经忘光了。

这是很危险的事情,学一点,忘一点,到最后自己什么也没记住,对于一个学生来说,学习过程中最大的悲哀莫过于此。

(2)我在学习中的困惑(仲易)因为自己对于大学的学习并不如高中一样用心,也还有其他的一些事情来让我分心,学习起来经常会效率低下,心不在焉,然而,作为一名数学师范生,这是很不应该存在的状态,而且我还认为我自己并没有严谨的逻辑思维,尤其是在证明题时往往感到无从下手,而恰恰是因为答案的存在,让我根本无法控制的去翻看答案,我曾经以为看会了答案上面写的自己争取摆脱答案的限制。

2.(1)我是怎么学习数学的?大一上学期开始的时候,我挺努力用心地学数分的,刚开始接触的知识还算简单,虽然有时也不理解定理的证明过程什么的,但感觉总体上还是数分离我不是那么的遥远的。

数学分析极限论文

数学分析极限论文

数学分析中求极限的方法总结熊伟 1303090119 数学0901摘要:数学分析是以极限为工具来研究函数的学科,掌握求极限的方法对学习数学分析有很大帮助,然而求极限的题型多变,技巧性强,本文总结了几种一般的求极限方法,并对专用于求数列极限和函数极限以及两者通用的方法进行归类总结,同时为每种方法相应的举例对方法加以说明.关键词:极限 、数列极限 、函数极限 、方法 、总结在我们所学过的数学分析中有数列极限和函数极限两种,我将用于专门求数列极限或函数极限,两者通用的方法进行了如下归纳.1 求数列极限的方法定义法 这是求数列极限最基本的方法.设{n x }是数列,A 为常数,0>∀ε,∃正整数N ,当N n >有ε<-A x n 成立,称{n x }以A 为极限或{n x }收敛于A ,记作A x n n =∞→lim .[1]例1 证明0)1(lim=-∞→nnn 证明:0>∀ε,取1]1[+=εN ,则当N n >时,有ε<--0)1(nn0)1(lim=-∴∞→n n n 2 求函数极限的方法2.1 定义法 设)(x f y =在)(00x O 内有定义,A 为常数,0>∀ε,0>∃δ,当δ<-<00x x 时,有ε<-A x f )(,称)(x f 在0x 点收敛于A ,记作A x f x x =→)(lim 0.[1]例2 求证211lim=--→x x x x证明:0>∃δ,取εδ=,则当δ<-<10x 时,有ε<-<+-=-=---1111211x x x x x x2.2 两个重要极限的应用.1sin lim0=→x x x e xx x =+∞→)11(lim例3 求)0,(sin sin lim 0≠→n m nx mx x 解:原式n mnx nx nx mx mx mx x ==→sin **sin lim 0例4 求n n n )111(lim ++∞→ 解:原式=11])111[(lim ++∞→++n nn x n =1lim1])111[(lim ++∞→∞→++n nn x n n e = 3 以下方法求数列极限和函数极限均适用,方法均以数列为例举出,将n x 和n y 相应的替换为)(x f 和)(x g 可得求函数极限的方法. 3.1 利用极限的夹逼准则求极限. 例5 求)12111(lim 222n n n n n ++++++∞→解:设原式的=A , 那么122+≤≤+n n A n n n 又 1lim2=+∞→nn n n ,11lim2=+∞→n n n1)12111(lim 222=++++++∴∞→nn n n n3.2利用极限的四则运算,此法一般参杂在其他方法中使用. 例6 求)(lim 2n n n n -+∞→解:∞→n lim (n n +2-n)=∞→n limnnn n ++2=)111(lim ++∞→n n =2. 3.3利用泰勒公式求极限,在含有xe ,正余弦的极限中注意此方法. 例7 求)1(11sin lim 2x x e x x ----=→解: )(!2122x o x x e x+++= )(sin 2x o x x += )(21)1(222x o x x +-=- ∴2!21sin 22x x x e x==-- )(2)1(1222x o x x +=-- 1021021lim )(21)(21lim)(2)(2lim )1(11sin lim 0222202222020=++=++=++=----∴→→→→x x x xx xx o x x o x o x x o x x x e 3.4利用洛必达法则求解,首先介绍使用洛必达法则的前提. 必须是00或∞∞型才能用洛必达法则,若是∞-∞,∞*0,00,∞1,0∞等待定型,则用通分,取倒数或取对数的方法将其转化为00或∞∞型. 例8 求xx xx x x sin cos lim0--→解:原式3)sin cos 2(lim sin cos sin sin lim cos 1sin cos 1lim 000=+=++=-+-=→→→xxx x x x x x x x x x x x x此外,还有一个简便的方法,在我们了解函数图像大体趋势时,可根据函数图像上升或下降的速度来判断极限是0还是∞.应注意的是,当函数x 无限趋近于某一数时,这两个函数图像同增或同减.以上是我总结的几种求极限的方法。

数学分析论文15篇(数学分析对于企业规模化发展的优化作用探析)

数学分析论文15篇(数学分析对于企业规模化发展的优化作用探析)

数学分析论文15篇数学分析对于企业规模化发展的优化作用探析数学分析论文摘要:高校数学分析课程,作为数学、统计学、金融学、保险精算学等专业一门重要的专业基础课,是学生后续课程的基础,对于培养学生良好的专业素养非常重要。

进行高校数学分析课程的教学改革,在教学中融入数学文化,既可使学生体会到数学的独特文化内涵,又可激发学生的学习兴趣,更好地掌握数学分析的知识体系和思维方法,更为高效地完成学习。

关键词数学分析数学论文数学数学分析论文:数学分析对于企业规模化发展的优化作用探析摘要:企业的规模化发展是企业的经营格局达到了一定的水平和标准,要想实现企业规模化发展的不断优化,理论指导必不可少,其中数学分析又是理论指导的重要组成部分,为此,将以边际成本和机会成本为例浅析数学分析对于企业规模化发展的优化作用。

关键词:边际成本;机会成本;数学分析;企业规模化发展;优化发展0引言随着我国经济的飞速发展,各个行业的迅速崛起,企业面临的竞争和压力越来越大,想要在众多的企业当中脱颖而出力争上游,必须实现企业的规模化发展,并在发展中不断优化自己的经营模式和格局。

而企业的规模化发展和优化离不开正确的理论指导,这时通过正确的数学分析来降低成本和增加收益是一条很重要的途径,下面本文将以边际成本和机会成本为例简单介绍数学分析在实现企业的规模化发展中的优化作用。

1边际成本和机会成本概述1.1边际成本概述所谓边际成本,是指在经济学和金融学范围内,每个企业或者单位生产新产品或者购买新产品所造成的总体成本的增加量。

这样的概述表明每个企业或者单位生产或者购买的新产品的成本和总产品量是直接相关的。

比如,某个电子产品公司仅仅设计和生产一部手机的成本是极其巨大的,而如果设计和生产一万部手机的话,成本就会大大降低,收益却比设计和生产一部手机增加了很多,这就是规模化生产所带来的效益。

1.2机会成本概述在经济学和金融学中,所谓机会成本,就是指想要得到某种东西而所要放弃的另一种或者另外几种东西中的最大价值,或者说在对多种方案进行决策时,所舍弃的方案中的最高价值就是这次决策的机会成本;还指厂商把相同的生产投入到其他的行业当中时可以获得的最高收益。

数学分析的毕业论文

数学分析的毕业论文

数学分析的毕业论文数学分析是数学中的一门基础性学科,它主要研究数列、函数、极限等概念及其相关的理论方法。

数学分析在科学研究和工程技术中都有着重要的应用,因此,它一直是数学学科的重要分支之一。

本篇毕业论文将基于数学分析的基础知识,探讨一下函数极限在数学中的应用及其相关的定理。

一、函数极限的应用函数极限是数学分析中的一个重要概念,它是指当自变量x接近一定的值时,函数f(x)的值会趋向于一个常数L。

具体来说,若存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,则称函数f(x)在x=a 处收敛于L。

函数极限的应用非常广泛,它可以用来描述函数在某一点的行为方式,例如函数的连续性、导数、积分等。

另外,在物理学、经济学、工程学等领域中,函数极限的应用也非常重要。

例如在物理学中,当进行一些物理量的测量时,通过获得一系列渐进趋向的数值,可以使用函数极限的概念来精确地计算物理量的值。

二、函数极限的基本定理在数学分析中,函数极限的基本定理包括了极限的四个基本法则:算术、夹逼、单调性和介值原理。

1.算术法则对于两个函数f(x)和g(x),如果它们在x=a处收敛于L和M,则有:①f(x)+g(x)在x=a处收敛于L+M。

②kf(x)在x=a处收敛于kL,其中k为实数。

③f(x)×g(x)在x=a处收敛于LM。

④f(x)/g(x)在x=a处收敛于L/M(其中,g(x)≠0)。

这表示了求和、差、积、商等四则运算在极限运算中也是可行的。

2.夹逼法则夹逼法则也称为挤压定理,它是证明函数极限的有力工具之一。

它的基本思想是,如果一个函数f(x)始终位于两个收敛函数g(x)和h(x)之间,且两个函数的极限相等,则f(x)也收敛于相同的极限值。

它的数学表达式如下:假设f(x)、g(x)和h(x)是三个函数,并满足以下条件:①g(x)≤f(x)≤h(x),其中x在某个区间(a,∞)中。

高数论文(五篇)

高数论文(五篇)

高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。

相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。

在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。

学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。

在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。

在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。

另外,全微分,多元函数微分学也是这一章的重点。

在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。

在积分这一块都采用分割,近似,求和,取极限四个步骤。

此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。

另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。

在曲线积分与曲面积分这一章当中,化归的思想继续在体现。

这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。

学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。

在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。

最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析中求极限的方法总结摘要 数学分析是以极限为工具来研究函数的学科,掌握求极限的方法对学习数学分析有很大帮助,然而求极限的题型多变,技巧性强,本文总结了几种一般的求极限方法,并对专用于求数列极限和函数极限以及两者通用的方法进行归类总结,同时为每种方法相应的举例对方法加以说明.关键词 极限 数列极限 函数极限 方法 总结在我们所学过的数学分析中有数列极限和函数极限两种,我将用于专门求数列极限或函数极限,两者通用的方法进行了如下归纳. 1 求数列极限的方法1.1 定义法 这是求数列极限最基本的方法.设{n x }是数列,A 为常数,0>∀ε,∃正整数N ,当N n >有ε<-A x n 成立,称{n x }以A 为极限或{n x }收敛于A ,记作A x n n =∞→lim .[1]例1 证明0)1(lim=-∞→nnn 证明:0>∀ε,取1]1[+=εN ,则当N n >时,有ε<--0)1(n n 0)1(l i m =-∴∞→nnn 1.2 等差等比数列的应用 求等比数列极限用此法必须保证公比1<q .例2 求)214121(lim n n +++∞→解:原式1211)211(21lim =--=∞→n n 1.3 各项的拆分相加 消去中间大部分数. 例3 证明1)1(13*212*11lim =-+++=∞→nn x n n 证明:原式1)11(lim )1113121211(lim =-=--++-+-=∞→∞→nn n n n1.4 左右求极限法 例如已知n x 与n x +1的关系,在n x 极限存在的情况下,n x 与n x +1的极限一样,去掉有限项极限值不变. 1.5 单调有界数列必有极限例4 设0>a ,n n n n n a a a a x ++++= 共有n 重根号,求证n n x ∞→lim 存在,并求出极限.证明:a x =1,a a x +=2 显然n x 是单调递增的 1-+=n n n x a x n n n x a x a x +≤+=∴-121110+≤+≤+≤<∴a aa x a x n n }{n x ∴有界 n n x ∞→∴lim 存在设l x n n =∞→lim 则由n n n x a x a x +≤+=-12得a l l +=2 2411al +±=∴ }{n x 为正数列,它的极限不能是负的,取上述方程正根,则2411al ++= 2 求函数极限的方法2.1 定义法 设)(x f y =在)(00x O 内有定义,A 为常数,0>∀ε,0>∃δ,当δ<-<00x x 时,有ε<-A x f )(,称)(x f 在0x 点收敛于A ,记作A x f x x =→)(lim 0.[1] 例5 求证211lim=--→x x x x证明:0>∃δ,取εδ=,则当δ<-<10x 时,有ε<-<+-=-=---1111211x x x x x x2.2 两个重要极限的应用.2.2.1 1sin lim0=→xxx 2.2.2 e xx x =+∞→)11(lim例6 求)0,(sin sin lim0≠→n m nxmxx 解:原式nmnx nx nx mx mx mx x ==→sin **sin lim例7 求nn n )111(lim ++∞→ 解:原式=11])111[(lim ++∞→++n nn x n =1lim1])111[(lim ++∞→∞→++n nn x n n e =3 以下方法求数列极限和函数极限均适用,方法均以数列为例举出,将n x 和n y 相应的替换为)(x f 和)(x g 可得求函数极限的方法. 3.1 利用极限的夹逼准则求极限. 例8 求)12111(lim 222n n n n n ++++++∞→解:设原式的=A , 那么122+≤≤+n n A nn n 又 1lim2=+∞→nn n n ,11lim2=+∞→n n n1)12111(lim 222=++++++∴∞→nn n n n3.2利用极限的四则运算,此法一般参杂在其他方法中使用. 3.2.1 n n n n n n y x y x ±=±∞→∞→lim )(lim3.2.2 n n n n n n n y x y x ∞→∞→∞→=lim lim )(lim若数列{n x }有界,数列{n y }为无穷小量,则它们的乘积为无穷小量.3.2.3 当0lim ≠∞→n n y 时,有nn nn n n n y x y x ∞→∞→∞→=lim lim lim 3.3 带有根号的式子可以通分求解. 例9 求)(lim 2n n n n -+∞→解:∞→n lim (n n +2-n)=∞→n limnnn n ++2=)111(lim ++∞→n n =2. 3.4 形如)0,0(00110110≠≠++++++=--b a b n b n b a n a n a x ll l kk k n 用此法. ll k k lk n n b n b b n a n a a n x ++++++=- 1010 ⎪⎪⎩⎪⎪⎨⎧<∞=>=++++++--∞→kl k l b a kl b n b n b a n a n a l l l k k k n 001101100lim 3.5利用同阶无穷小量的转化求极限,在求极限的过程中,往往可以把其中的无穷小量用同阶的无穷小量或它的主要部分来代替.设函数)(x f ,)(x g ,)(x h 在)(00x O 内有定义,且有)(x f ~)(x g )(0x x → I 若A x h x f x x =→)()(lim 0则A x h x g x x =→)()(lim 0II 若B x f x h x x =→)()(lim则Bx g x h x x =→)()(lim 0[2]例10 从x 21sin ~x 21可得8)21(lim )21(sin lim33403340=+=+→→x x x x x x x x 但应注意,不是乘或除的情况,不一定能这样做.例11 11111lim 2=+-∞→n n n n 显然不能把11+n 用n1代替.3.6利用泰勒公式求极限,在含有x e ,正余弦的极限中注意此方法. 例12 求)1(11sin lim 2x x e x x ----=→解: )(!2122x o x x e x +++= )(s i n 2x o x x += )(21)1(222x o x x +-=-∴2!21sin 22x x x e x==-- )(2)1(1222x o x x +=-- 1021021lim )(21)(21lim )(2)(2lim )1(11sin lim 0222202222020=++=++=++=----∴→→→→x x x x x xx o x x o x o x x o x x x e 3.7利用洛必达法则求解,首先介绍使用洛必达法则的前提.3.7.1 设l 是要趋近的一个定值或无穷大,必须是l x →才能使用洛必达法则,若是l n →,则转化成求l x →的极限,再用海涅定理求出l n →的极限. 3.7.2 必须是函数的导数要存在,若只给出)(x g 未说明是否可导,则不能用洛必达法则.3.7.3 必须是00或∞∞型才能用洛必达法则,若是∞-∞,∞*0,00,∞1,0∞等待定型,则用通分,取倒数或取对数的方法将其转化为00或∞∞型.例13 求xx xx x x sin cos lim0--→解:原式3)sin cos 2(lim sin cos sin sin lim cos 1sin cos 1lim000=+=++=-+-=→→→xxx x x x x x x x x x x x x 例14 求)arctan 2(lim x x x -+∞→π解:原式11lim 111lim 1arctan 2lim 2202200=+=-+-=-=→→→x x xx xx z x x π例15 求x x x 0lim +→解:设x x y =,则x x y ln ln = 01lim ln lim ln lim 2000=-=-==∴+→+→+→x x x x xy x x x1lim lim lim lim 00ln 0====∴+→+→+→+→e e y x x y x x x x3.8 用定积分求极限,变量必须在[]1,0上.例16 求)212111(lim n n n n +++++∞→ 分析:⎰∑∆==→ab i ni i x f dx x f )(lim )(1ξλ)11211111(1212111n n n n n n n n ++++++=+++++xx f +=11)( []1,0∈x 解:原式⎰=-=+=++++++=∞→102ln 1ln 2ln 11)11211111(1lim dx x nnn n n n 3.9 此外,还有一个简便的方法,在我们了解函数图像大体趋势时,可根据函数图像上升或下降的速度来判断极限是0还是∞.应注意的是,当函数x 无限趋近于某一数时,这两个函数图像同增或同减. 以上是我总结的几种求极限的方法。

参考文献:[1]陈传璋 金福临 朱学炎.数学分析(上册).高等教育出版社,1983,7 [2]吴良森 毛羽辉 韩士安.数学分析学习指导书.高等教育出版社,2004,8。

相关文档
最新文档