电容滤波电路的设计与计算
电容滤波电路的设计与计算
原理
在负半周,当|u2|>uC时,另外二个二极管 (VD2 、 VD4) 导通,再次给电容 C 充电,当 uC 充 到u2的最大值时, u2开始下降,且下降速率逐 渐加快。当 |u2| < uC 时,四个二极管再次截止,
电容 C 经负载 RL 放电,重复上述过程。有电容
滤波后,负载两端输出电压波形如图 7-4b所示。
一、电容滤波电路
(一)电路组成及工作原理 在整流电路输出端与负载之间并联一只大
容量的电容,如图7-4a,即可构成最简单的电
容滤波器。其工作原理是利用电容两端的电压 在电路状态改变时不能跃变的特性。
组成及工作原理
uo Tr a u1 u2 VD1~VD4 O iD C uC RL uo
ωt
b
ωt
O
a
U O (1 ~ 1.1)U 2
(半波)
U O 1.2U 2
(桥式、全波)
(三)元件选择
1. 电容选择 滤波电容 C 的大小取决于放
电回路的时间常数,RLC愈大,输出电压脉动就
愈小,通常取RLC为脉动电压中最低次谐波周期
的倍,即
RL C (3 ~ 5) T 2
(桥式、全波) (半波)
RL C (3 ~ 5)T
只使用于负载电流较小的场合。
二、л 型RC复式滤波电路
由上述讨论可知,当RL比较小时,即使滤
波电容容量很大,脉动系数仍比较大。为进一 步减小脉动系数,通常采用如图7-5所示的л 型RC滤波电路。
Tr
R u1
u2 C1
C2
RL
uo
图7-5 π 型RC滤波电路
滤波电路
л 型滤波电路可看成是一节电容滤波电 路和一节Γ 型RC滤波电路的串联。整流输出电
电容滤波的计算方法及电源滤波电容选用技巧
电容滤波的计算方法及电源滤波电容选用技巧
本文主要是关于电容滤波的相关介绍,并着重对电容滤波的计算方法及电源滤波电容选用技巧进行了详尽的阐述。
电容滤波安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件,通常把这种器件称其为滤波电容。
由于滤波电路要求储能电容有较大电容量。
所以,绝大多数滤波电路使用电解电容。
电解电容由于其使用电解质作为电极(负极)而得名。
电解电容的一端为正极,另一端为负极,不能接反。
正极端连接在整流输出电路的正端,负极连接在电路的负端。
在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。
滤波电容在电路中的符号一般用“C“表示,电容量应根据负载电阻和输出电流大小来确定。
当滤波电容达到一定容量后,加大电容容量反而会对其他一些指标产生有害影响。
滤波电容的特点
1、温升低
谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量会影响谐波滤波器的稳定吸收效果,电容器的使用寿命跟温度有很大的关系,温度越高寿命越低,滤波全膜电容器具有温升低等特点,可以保证其使用寿命。
2、损耗低
介质损耗角正切值(tgδ):≤0.0003
3、安全性
符合GB、IEC标准,内部单体电容器均附装保护装置;当线路或单体电容器发生异常时,该保护装置将会立即动作,自动切断电源,以防二次灾害的发生。
附装放电电阻,可确保用电及维护保养之安全。
外壳采用钢板冲压而成,内外部涂上耐候性良好之高温烤漆安全性特高。
滤波电容的选型与计算(详解)
电源滤波电容的采用与估计之阳早格格创做电感的阻抗与频次成正比,电容的阻抗与频次成反比.所以,电感不妨阻扼下频通过,电容可以阻扼矮频通过.二者符合拉拢,便可过滤百般频次旗号.如正在整流电路中,将电容并正在背载上大概将电感串联正在背载上,可滤去接流纹波..电容滤波属电压滤波,是间接储藏脉动电压去仄滑输出电压,输出电压下,靠近接流电压峰值;适用于小电流,电流越小滤波效验越佳.电感滤波属电流滤波,是靠通过电流爆收电磁感触去仄滑输出电流,输出电压矮,矮于接流电压灵验值;适用于大电流,电流越大滤波效验越佳.电容战电感的很多个性是恰恰好异的.普遍情况下,电解电容的效率是过滤掉电流中的矮频旗号,但是纵然是矮频旗号,其频次也分为了佳几个数量级.果此为了符合正在分歧频次下使用,电解电容也分为下频电容战矮频电容(那里的下频是相对付而止).矮频滤波电容主要用于市电滤波大概变压器整流后的滤波,其处事频次与市电普遍为50Hz;而下频滤波电容主要处事正在启闭电源整流后的滤波,其处事频次为几千Hz到几万Hz.当尔们将矮频滤波电容用于下频电路时,由于矮频滤波电容下频个性短佳,它正在下频充搁电时内阻较大,等效电感较下.果此正在使用中会果电解液的一再极化而爆收较大的热量.而较下的温度将使电容里里的电解液气化,电容内压力降下,最后引导电容的饱包战爆裂.电源滤波电容的大小,通常搞安排,前级用4.7u,用于滤矮频,二级用0.1u,用于滤下频,变更引起的下频搞扰.普遍前里那个越大越佳,二个电容值出进大概100倍安排.电源滤波,启闭电源,要瞅您的ESR(电容的等效串联电阻)有多大,而下频电容的采用最佳正在其自谐振频次上.大电容是预防浪涌,机理便佳比大火库防洪本领更强一般;小电容滤下频搞扰,所有器件皆不妨等效成一个电阻、电感、电容的串并联电路,也便有了自谐振,惟有正在那个自谐振频次上,等效电阻最小,所以滤波最佳!电容的等效模型为一电感L,一电阻R战电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率耗费,电容C.果而可等效为串联LC回路供其谐振频次,串联谐振的条件为WL=1/WC,W=2*PI*f,进而得到此式子f=1/(2pi*LC).,串联LC回路核心频次处电抗最小表示为杂电阻,所以核心频率处起到滤波效验.引线电感的大小果其细细少短而分歧,接天电容的电感普遍是1MM为10nH安排,与决于需要接天的频次.采与电容滤波安排需要思量参数:ESRESL耐压值谐振频次那么怎么样采用电源滤波电容呢?电源滤波电容怎么样采用,掌握其细髓与要领,本去也不易1) 表里上理念的电容其阻抗随频次的减少而缩小(1/jwc),但是由于电容二端引足的电感效力,那时电容该当瞅成是一个LC勾通谐振电路,自谐振频次即器件的FSR参数,那表示频次大于FSR值时,电容形成了一个电感,如果电容对付天滤波,当频次超出FSR后,对付搞扰的压制便大挨合扣,所以需要一个较小的电容并联对付天.本果正在于小电容,SFR值大,对付下频旗号提供了一个对付天通路,所以正在电源滤波电路中咱们时常那样明白:大电容滤矮频,小电容滤下频,基础的本果正在于SFR(自谐振频次)值分歧,念念为什么?如果从那个角度念,也便不妨明白为什么电源滤波中电容对付天足为什么要尽大概靠拢天了.2)那么正在本量的安排中,咱们时常会有疑问,尔怎么了解电容的SFR是几? 便算尔了解SFR值,尔怎么样采用分歧SFR值的电容值呢? 是采用一个电容仍旧二个电容?电容的SFR值战电容值有闭,战电容的引足电感有闭,所以相共容值的0402,0603,大概曲插式电容的SFR值也不会相共,天然获与SFR值的道路有二个:1)器件Datasheet,如22pf0402电容的SFR值正在2G安排,2)通过搜集分解仪间接量测其自谐振频次,念念怎么样丈量S21?了解了电容的SFR值后,用硬件仿真,如RFsim99,选一个大概二个电路正在于您所供电电路的工做频戴是可有足够的噪声压制比.仿真完后,那便是本量电路考查,如调试脚机接支敏捷度时,LNA的电源滤波是闭键,佳的电源滤波往往不妨革新几个dB.果,本量上电容是电感战电容的并联电路,(另有电容自己的电阻,偶尔也不可忽略)那便引进了谐振频次的观念:ω=1/(LC)1/2正在谐振频次以下电容呈容性,谐振频次以上电容呈感性.果而普遍大电容滤矮频波,小电容滤下频波.那也能阐明为什么共样容值的STM启拆的电容滤波频次比DIP启拆更下.至于到底用多大的电容,那是一个参照电容谐振频次不过只是是参照而已,老工程师道主要靠体味.更稳当的搞法是将一大一小二个电容并联,普遍央供出进二个数量级以上,以赢得更大的滤波频段.尔瞅了那篇文章,也搞个大略的归纳吧:1.电容对付天滤波,需要一个较小的电容并联对付天,对付下频旗号提供了一个对付天通路.2.电源滤波中电容对付天足要尽大概靠拢天.3.表里上道电源滤波用电容越大越佳,普遍大电容滤矮频波,小电容滤下频波.4.稳当的搞法是将一大一小二个电容并联,普遍央供出进二个数量级以上,以赢得更大的滤波频段.(类似1)滤波电容的采用准则通过整流桥以去的是脉动曲流,动摇范畴很大.后里普遍用大小二个电容大电容用去宁静输出,寡所周知电容二端电压不克不迭突变,果此不妨使输出仄滑小电容是用去滤除下频搞扰的,使输出电压杂洁电容越小,谐振频次越下,可滤除的搞扰频次越下容量采用:(1)大电容,背载越沉,吸支电流的本领越强,那个大电容的容量便要越大(2)小电容,凭体味,普遍104即可2.他人的体味(去自互联网)1、电容对付天滤波,需要一个较小的电容并联对付天,对付下频旗号提供了一个对付天通路.2、电源滤波中电容对付天足要尽大概靠拢天.3、表里上道电源滤波用电容越大越佳,普遍大电容滤矮频波,小电容滤下频波.4、稳当的搞法是将一大一小二个电容并联,普遍央供出进二个数量级以上,以赢得更大的滤波频段.简曲案例:AC220-9V再通过齐桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微收以上.后者电容耐压应大于9V,容量应大于220微收以上.2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,央供:(1)采用整流二极管;(2)采用滤波电容;(3)另:电容滤波是落压仍旧删压?(1)果为桥式是齐波,所以每个二极管电流只消达到背载电流的一半便止了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输进接流电压灵验值的1.2倍,所以您的电路输进的接流电压灵验值应是20V,而二极管启受的最大反压是那个电压的根号2倍,所以,二极管耐压应大于28.2V.(2)采用滤波电容:1、电压大于28.2V;2、供C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF.(3)电容滤波是降下电压.滤波电容的采用准则其中:C为滤波电容,单位为UF;T为频次,单位为HzR为背载电阻,单位为Ω天然,那不过普遍的采用准则,正在本量的应用中,如条件(空间战成本)允许,皆采用C≥5T/R.PCB制版电容采用印制板中有交战器、继电器、按钮等元件时.支配它们时均会爆收较大火花搁电,必须采普遍的10PF安排的电容用去滤除下频的搞扰旗号,0.1UF安排的用去滤除矮频的纹波搞扰,还不妨起到稳压的效率滤波电容简曲采用什么容值要与决于您PCB上主要的处事频次战大概对付系统制成效率的谐波频次,不妨查一下相闭厂商的电容资料大概者参照厂商提供的资料库硬件,根据简曲的需要采用.至于个数便纷歧定了,瞅您的简曲需要了,多加一二个也挺佳的,姑且出用的不妨先不揭,根据本量的调试情况再采用容值.如果您PCB上主要处事频次比较矮的话,加二个电容便不妨了,一个滤除纹波,一个滤除下频旗号.如果会出现比较大的瞬时电流,修议再加一个比较大的钽电容.本去滤波该当也包罗二个圆里,也便是诸位所道的大容值战小容值的,便是去耦战旁路.本理尔便不道了,真用面的,普遍数字电路去耦0.1uF即可,用于10M以下;20M以上用1到10个uF,去除下频噪声佳些,大概按C=1/f.旁路普遍便比较的小了,普遍根据谐振频次普遍为0.1大概0.01uF道到电容,百般百般的喊法便会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,本去无论怎么样称呼,它的本理皆是一般的,即利用对付接流旗号浮现矮阻抗的个性,那一面不妨通过电容的等效阻抗公式瞅出去:Xcap=1/2лfC,处事频次越下,电容值越大则电容的阻抗越小..正在电路中,如果电容起的主要效率是给接流旗号提供矮阻抗的通路,便称为旁路电容;如果主假如为了减少电源战天的接流耦合,缩小接流旗号对付电源的效率,便不妨称为去耦电容;如果用于滤波电路中,那么又不妨称为滤波电容;除此以中,对付于曲流电压,电容器还可动做电路储能,利用冲搁电起到电池的效率.而本量情况中,往往电容的效率是多圆里的,咱们大可不必花太多的心情索虑怎么样定义.本文里,咱们统一把那些应用于下速PCB安排中的电容皆称为旁路电容.电容的真量是通接流,隔曲流,表里上道电源滤波用电容越大越佳.但是由于引线战PCB布线本果,本量上电容是电感战电容的并联电路,(另有电容自己的电阻,偶尔也不可忽略)那便引进了谐振频次的观念:ω=1/(LC)1/2正在谐振频次以下电容呈容性,谐振频次以上电容呈感性.果而普遍大电容滤矮频波,小电容滤下频波.那也能阐明为什么共样容值的STM启拆的电容滤波频次比DIP启拆更下.至于到底用多大的电容,那是一个参照不过只是是参照而已,用老工程师的话道——主要靠体味.更稳当的搞法是将一大一小二个电容并联,普遍央供出进二个数量级以上,以赢得更大的滤波频段.普遍去道,大电容滤除矮频波,小电容滤除下频波.电容值战您要滤除频次的仄圆成反比.简曲电容的采用不妨用公式C=4Pi*Pi/(R*f*f)电源滤波电容怎么样采用,掌握其细髓与要领,本去也不易.1)表里上理念的电容其阻抗随频次的减少而缩小(1/jwc),但是由于电容二端引足的电感效力,那时电容该当瞅成是一个LC勾通谐振电路,自谐振频次即器件的FSR参数,那表示频次大于FSR值时,电容形成了一个电感,如果电容对付天滤波,当频次超出FSR后,对付搞扰的压制便大挨合扣,所以需要一个较小的电容并联对付天,不妨念念为什么?本果正在于小电容,SFR值大,对付下频旗号提供了一个对付天通路,所以正在电源滤波电路中咱们常常那样明白:大电容滤矮频,小电容滤下频,基础的本果正在于SFR(自谐振频次)值分歧,天然也不妨念念为什么?如果从那个角度念,也便不妨明白为什么电源滤波中电容对付天足为什么要尽大概靠拢天了.2)那么正在本量的安排中,咱们时常会有疑问,尔怎么了解电容的SFR是几?便算尔了解SFR值,尔怎么样采用分歧SFR值的电容值呢?是采用一个电容仍旧二个电容?电容的SFR值战电容值有闭,战电容的引足电感有闭,所以相共容值的0402,0603,大概曲插式电容的SFR值也不会相共,天然获与SFR值的道路有二个:1)器件Datasheet,如22pf0402电容的SFR值正在2G安排2)通过搜集分解仪间接量测其自谐振频次,念念怎么样量测?S21?了解了电容的SFR值后,用硬件仿真,如RFsim99,选一个大概二个电路正在于您所供电电路的工做频戴是可有足够的噪声压制比.仿真完后,那便是本量电路考查,如调试脚机接支敏捷度时,LNA的电源滤波是闭键,佳的电源滤波往往不妨革新几个dB.滤波电容的采用与估计从网上瞅有二种工程时常使用的估计要领:(参照,感觉有些原理)一、当央供不是很透彻的话,不妨根据背载估计,每mA,2uf.二、按RC时间常数近似等于3~5倍电源半周期估算.给出一例:背载情况:曲流1A,12V.其等效背载电阻12欧姆.桥式整流:RC=3(T/2)C=3(T/2)/R=3x(0.02/2)/12=2500(μF)工程中可与2200μF,果为不2500μF那一规格.若期视纹波小些,按5倍与.那里,T是电源的周期,50HZ时,T=0.02秒.齐波整流截止一般,但是半波整流时,时间常数更加.根据齐波整流波形,不妨瞅出,输出电压的仄滑与电容充搁电时间战旗号的频次有闭系,当疑号的频次删大时,输出电压的动摇便分变大,不妨改变滤波电容的大小去改变充搁电时间,使动摇减小.那也反应了上述滤波电容的估计闭系.表里上滤波电容越大滤波效验越佳,输出电压便越仄滑,但是正在电路接通的瞬间,电路中所爆收的冲打电流果素却不克不迭被忽略,那是果为,险些所有的电子元器件皆有其不妨通过的最大电流值,所以,正在采用电子元器件时,必须思量冲打电流所戴去的流过相闭元器件瞬间电流的最大值,冲打电流越大,对付电子元器件的央供便越下,电路的成本便会普及。
详解滤波电容的选择及计算
详解滤波电容的选择及计算电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10n H左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少? 就算我知道SFR 值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率电容值DIP(MHz) STM(MHz)1.0μF2.5 50.1μF8 160.01μF25 501000pF 80 160100pF 250 50010pF 800 1.6(GHz) 不过仅仅是参考而已,老工程师说主要靠经验. 更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401 000ax6.html我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
详解滤波电容的选择及计算
详解滤波电容的选择及计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
0.1uf电容和4.7k电阻滤波组合
0.1uf电容和4.7k电阻是一种常见的滤波组合,在电子电路中起着重要的作用。
下面将从电容和电阻滤波的原理、滤波器的分类以及该组合在电路设计中的应用等方面进行介绍。
一、电容和电阻滤波的原理1. 电容滤波电容是一种存储电荷的器件,其电压-电荷关系为V=Q/C,即电压与电荷成反比。
在交流电路中,电容可以对电压进行平滑处理,使得输出端的电压波动减小。
2. 电阻滤波电阻是一种阻碍电流流动的器件,其电压-电流关系为V=IR,即电压与电流成正比。
在交流电路中,电阻可以降低电流的幅值和频率,实现对信号的衰减和滤波的目的。
二、滤波器的分类根据滤波器的频率特性和传输函数,可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
其中,0.1uf电容和4.7k电阻组合常用于低通滤波器和带通滤波器中。
三、0.1uf和4.7k在电路设计中的应用1. 低通滤波器低通滤波器是一种能够通过低频信号而阻止高频信号的电路。
0.1uf电容和4.7k电阻可以组成一个简单的一阶RC低通滤波器,将高频成分从输入信号中滤除,适用于在音频放大电路、电源稳压电路和传感器信号处理电路中。
2. 带通滤波器带通滤波器是一种能够通过一定频率范围内的信号而阻止其他频率信号的电路。
0.1uf电容和4.7k电阻可以与其他元件组合成二阶或更高阶的带通滤波器,用于对特定频率范围内的信号进行处理,常见于通信系统、音频处理和振动传感器等领域。
以上是对0.1uf电容和4.7k电阻滤波组合的介绍,其在电路设计中具有广泛的应用价值。
通过合理的搭配和设计,可以实现对不同频率范围的信号进行精确的滤波和处理,为电子设备的正常运行和性能优化提供了重要的支持。
四、电容和电阻滤波器在实际电路中的特点和设计要点1. 特点0.1uf电容和4.7k电阻作为滤波器组合,在实际电路中具有以下特点:- 简单易用:这种滤波器组合结构简单,成本低廉,适用于各种电子电路的滤波需求。
- 可调性强:通过调整电容和电阻的数值,可以实现对滤波器的截止频率进行精确控制,满足不同频率信号的处理要求。
详解滤波电容的选择及计算
电源滤波电容的选择与计算电感的阻抗与频率成正比 ,电容的阻抗与频率成反比 .所以 ,电感可以阻扼高频通过 ,电容可以阻扼低频通过 . 二者适当组合 ,就可过滤各种频率信号 .如在整流电路中 ,将电容并在负载上或将电感串联在负载上 ,可滤去交流纹波 . 。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千 Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用 4.7u,用于滤低频,二级用 0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,O.luF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100 倍左右。
电源滤波,开关电源,要看你的ESR电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L, 一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM 为10n H左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取 ,掌握其精髓与方法 ,其实也不难1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc), 但由于电容两端引脚的电感效应 , 这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地•原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了 .2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的 SFR是多少?就算我知道SFR 值,我如何选取不同 SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关所以相同容值的 0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量 S21?知道了电容的SFR值后,用软件仿真,如 RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比 .仿真完后,那就是实际电路试验,如调试手机接收灵敏度时丄NA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好•但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:3 =1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性 .因而一般大电容滤低频波,小电容滤至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验更可靠的做法是将一大一小两个电容并联, 一般要求相差两个数量级以上,以获得更大的滤波频段文章来源:我看了这篇文章,也做个粗略的总结吧:1•电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
滤波电容参数计算与设计
滤波电容参数计算与设计滤波电容参数计算与设计步骤一:了解滤波电容的基本概念滤波电容是电子电路中常用的一个元件,用于滤除电路中的高频噪声。
滤波电容的参数包括电容值和额定电压。
步骤二:确定滤波电容的额定电压滤波电容的额定电压是指能够在长期使用中安全工作的最大电压。
要确定滤波电容的额定电压,可以参考电路中的最高电压峰值,然后选择一个稍大于该值的额定电压。
步骤三:确定滤波电容的电容值滤波电容的电容值决定了其对高频噪声的滤波效果。
要确定滤波电容的电容值,可以根据以下公式进行计算:C = 1 / (2 * π * f * R)其中,C为滤波电容的电容值,f为需要滤除的高频噪声频率,R为电路中负载电阻的阻值。
步骤四:根据计算结果选择合适的滤波电容根据计算得到的滤波电容的电容值,可以在市场上选择一个最接近该值的标准电容。
在选择滤波电容时,还需考虑其额定电压和尺寸等因素。
步骤五:将滤波电容连接到电路中根据电路设计需求,将选定的滤波电容连接到电路中。
注意滤波电容的正负极性,以免逆接导致短路或其他故障。
步骤六:测试滤波效果将电路连接好后,可以使用测试仪器对滤波效果进行测试。
通过示波器或频谱分析仪等设备,观察电路中的高频噪声是否被滤除,以及滤波电容对电路性能的影响。
步骤七:优化设计如果测试结果不理想,可以考虑调整滤波电容的参数,如改变电容值或尝试使用多个滤波电容进行级联滤波等方法,以达到更好的滤波效果。
通过以上步骤,我们可以根据滤波电容的参数进行计算与设计。
在实际应用中,还需根据具体的电路需求和性能要求进行调整和优化,以实现更好的滤波效果。
滤波电路
大 负载电阻R L的阻值越___,电容滤波的效果越好。 突变 ,从而使流 5.电感滤波是利用电感线圈电流不能_____
平滑 来实现滤波的,负载电阻R L越 过负载的电流变得_____ 小 ,滤波电感L越_____ 大 ,电感滤波的效果越好。 _____ 6.电容滤波适用于负载电流较小 ___________场合,电感滤波适用于 负载电流较大 ____________ 场合。 7.若变压器次级电压为U2,则单相半波整流电容滤波电 U2 ,不接负载 路负载获得的直流电压在接负载时为_____ 时为_____ 2U2 。
全波 整流 电容滤 波 桥 式整流 电容滤波 半波整 流 电容滤波
2U2
U2
2 2 U2
I
L
*使用条件: d RLC (3 ~ 5) T
2
项目练习:填空题 1.所谓滤波,就是保留脉动直流电中的_____ 直流 成分, 交流成分,把脉动直流电变成 尽可能滤除其中的_____ 平滑 直流电的过程。 _____
项目练习:
4.试判断图5—3所示电路中元件R、L、C能否起 滤波作用。
各种电路参数比较:
名 称 半 波整流
UL(空载)
2U2 2U2 2U2
UL(带载)
0.45 U2
1.2 U2* 1.2 U2*
二极 管反向 每 管 平 最 大电压 均 电 流 IL 2U2
2 2 U2 2U2 0.5I L 0. 5I L
4
+
uc
D4 D1
1
+
+
22 0V
u1
u2
3
D3
2
+
C
D2
uL +
3、电容滤波电路的特点:
滤波电容计算
滤波电容计算
滤波电容计算
一、滤波电容的作用
滤波电容是电子产品设计中保护电子元件免受外部干扰和感应
干扰的关键部件之一,其主要作用是将抗干扰的直流电源与负载相隔离。
通常,电容可以将直流电源与负载之间的干扰滤除,并可以稳定直流电源、增强电源电容补偿电容,以及减少电源电压的漂移等。
同时,滤波电容还可以减少电路所产生的噪声,消除对设备造成的不良影响,保护电子元件免受外界现象。
二、滤波电容的选取
1、计算滤波电容的计算公式
滤波电容的计算公式:
C=R*I/V
其中,C为滤波电容值,R为电路的衰减系数,I为电路中的电流,V为电路的电压变化率。
2、滤波电容的选取原则
(1)电压的要求:电容最低电压应大于电路最大工作电压,以满足电路功能要求;
(2)电流的要求:滤波电容的电流大小要求不高,其最大工作电流不建议超过电容额定电流90%;
3、滤波电容的常用参数
滤波电容的常用参数主要包括电容值、最大工作电压、损耗因数、
最大工作电流、温度范围等。
电容滤波电路原理及设计计算方法
电容滤波电路原理及设计计算方法1、电容滤波电路:滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
经过滤波电路后,既可保留直流分量,又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
现以单相桥式整流电容滤波电路为例来说明。
电容滤波电路如图15.06所示,在负载电阻上并联了一个滤波电容C。
图4电容滤波电路2、滤波原理:若V2处于正半周,二极管D1、D3导通,变压器次端电压V2给电容器C充电。
此时C相当于并联在V2上,所以输出波形同V2,是正弦波。
当V2到达o t=K/2时,开始下降。
先假设二极管关断,电容C 就要以指数规律向负载R L放电。
指数放电起始点的放电速率很大。
在刚过m=兀/2时,正弦曲线下降的速率很慢。
所以刚过O t=K/2时二极管仍然导通。
在超过O t=K/2后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。
所以在t2到t3时刻,二极管导电,C充电,Vi=V。
按正弦规律变化;t1到t2时刻二极管关断,Vi=Vo按指数曲线下降,放电时间常数为RLC。
当放电时间常数RLC增加时,t1点要右移,t2点要左移,二极管关断时间加长,导通角减小;反之,RLC减少时,导通角增加。
显然,当RL很小,即IL很大时,电容滤波的效果不好;反之,当RL很大,即IL很小时,尽管C较小,RLC仍很大,电容滤波的效果也很好。
所以电容滤波适合输出电流较小的场合。
此外,为了进一步减小负载电压中的纹波,电感后面可再接一个电容而构成倒L型滤波电路或采用n型滤波电路,分别如图5 (a)和图5(b)所示。
(b)兀舞彼电路3、电容滤波电路参数的计算:电容滤波电路的计算比较麻烦,因为决定输出电压的因素较多。
工程上有详细的曲线可供查阅,一般常采用以下近似估算法:一种是用锯齿波近似表示,即v =42V(1 - T);O 2 4 R L C另一种是在RLC=(3〜5)4的条件下,近似认为VO=1.2V2。
滤波器电路实验设计报告
滤波器电路实验设计报告一、实验目的1.了解滤波器电路的基本原理和工作原理;2.学习设计各种类型的滤波器电路;3.掌握实际搭建滤波器电路的方法。
二、实验器材1.函数信号发生器;2.电压表;3.万用表;4.电容、电感、电阻等被动元件。
三、实验原理及步骤在滤波器电路设计中,我们主要关注低通、高通和带通滤波器。
1.低通滤波器电路设计低通滤波器的作用是将高频信号滤除,只保留低频信号通过。
设计步骤如下:(1)计算截止频率:根据实验要求,确定截止频率fc。
(2)选择电容和电阻:根据截止频率fc,选择合适的电容C和电阻R,其中R应满足条件R > 1 / (2πfcC)。
(3)搭建电路:将电容和电阻按照设计要求搭建成低通滤波器电路。
2.高通滤波器电路设计高通滤波器的作用是将低频信号滤除,只保留高频信号通过。
设计步骤如下:(1)计算截止频率:根据实验要求,确定截止频率fc。
(2)选择电容和电阻:根据截止频率fc,选择合适的电容C和电阻R,其中R应满足条件R > 1 / (2πfcC)。
(3)搭建电路:将电容和电阻按照设计要求搭建成高通滤波器电路。
3.带通滤波器电路设计带通滤波器的作用是只允许特定频率范围内的信号通过,将其他频率的信号滤除。
设计步骤如下:(1)计算截止频率:根据实验要求,确定带通滤波器的上限频率fH和下限频率fL。
(2)选择电容和电感:根据上限频率fH和下限频率fL,选择合适的电容C和电感L,其中C和L满足条件1/(2πfH)=√(L/C)和1/(2πfL)=√(L/C)。
(3)搭建电路:将电容和电感按照设计要求搭建成带通滤波器电路。
四、实验结果及分析根据设计的滤波器电路,通过函数信号发生器输入一定的频率信号,并利用万用表和电压表测量电路中的电压,得到实验结果。
根据实验结果,可以通过频谱分析验证滤波器电路的滤波效果,检测与设计要求是否一致。
五、实验总结通过本次滤波器电路实验,我们学习和掌握了滤波器电路的设计方法和搭建技巧。
输入滤波电容的计算
达到交流电压峰值时整流器电流为零。滤波输出提供变换器电源,即使在最低输入电压 Uimin,保证额 定功率 Po 输出。根据能量守恒定律,在半周期内输出能量 Po/2f 等于电容从谷点电压 Uv 充电到电网峰 值电压 Up 存储的能量
Po 2f
=
1 2
C(U
2 p
−
U
2 v
)
式中 f-电网频率(Hz),中国和欧洲为 50Hz,美国为 60Hz。C-滤波电容量(F)。即
冲为矩形波,电流脉冲在导通时间 t 内给电容补充的电荷应当 等于电容电压从峰值 Up 放电到最低电压 Uv 失去的电荷量
Icpt = C(U p −Uv )
脉冲宽度
t = cos−1 k 2πf
(3-25a)
Ui ~ Up
C DC/DC UL
电流占空比
D = t = 2 ft = cos−1 k (3-25b)
压峰值 Upmin=1.412×0.8×220=249V, k = (U p − 35) /U p = (249 − 35) / 249 = 0.86 , k=0.85 相近,
从表 3-13 查得α=0.036,根据式(3-21)得到
C
= α Po U2
i min
=
0.036× 23.5 1762
= 27 ×10−6 F=27μF
C=
Po
=
f
(U
2 p
−
U
2 v
)
Po
= α Po
fU
2 p
(1
−
k
2
)
U2 i min
(3-23)
式中 k= Uv/Up-谷-峰比,U p = 2Uimin ,因为即使在最低频率时,变换器还要输出最大功率。
LC滤波电路分析,LC滤波电路原理及其时间常数的计算
LC滤波电路分析,LC滤波电路原理及其时间常数的计算LC滤波器具有结构简单、设备投资少、运⾏可靠性较⾼、运⾏费⽤较低等优点,应⽤很⼴泛。
LC滤波器⼜分为单调谐滤波器、滤波器、双调谐滤波器及三调谐滤波器等⼏种。
LC滤波主要是电感的电阻⼩,直流损耗⼩。
对交流电的感抗⼤,滤波效果好。
缺点是体积⼤,笨重。
成本⾼。
⽤在要求⾼的电源电路中。
RC滤波中的电阻要消耗⼀部分直流电压,R不能取得很⼤,⽤在电流⼩要求不⾼的电路中.RC体积⼩,成本低。
滤波效果不如LC电路 常⽤的滤波电路有⽆源滤波和有源滤波两⼤类。
若滤波电路元件仅由⽆源元件(电阻、电容、电感)组成,则称为⽆源滤波电路。
⽆源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
若滤波电路不仅由⽆源元件,还由有源元件(双极型管、单极型管、集成运放)组成,则称为有源滤波电路。
有源滤波的主要形式是有源RC滤波,也被称作电⼦滤波器。
⽆源滤波电路的结构简单,易于设计,但它的通带放⼤倍数及其截⽌频率都随负载⽽变化,因⽽不适⽤于信号处理要求⾼的场合。
⽆源滤波电路通常⽤在功率电路中,⽐如直流电源整流后的滤波,或者⼤电流负载时采⽤LC(电感、电容)电路滤波。
有源滤波电路的负载不影响滤波特性,因此常⽤于信号处理要求⾼的场合。
有源滤波电路⼀般由RC⽹络和集成运放组成,因⽽必须在合适的直流电源供电的情况下才能使⽤,同时还可以进⾏放⼤。
但电路的组成和设计也较复杂。
有源滤波电路不适⽤于⾼电压⼤电流的场合,只适⽤于信号处理。
根据滤波器的特点可知,它的电压放⼤倍数的幅频特性可以准确地描述该电路属于低通、⾼通、带通还是带阻滤波器,因⽽如果能定性分析出通带和阻带在哪⼀个频段,就可以确定滤波器的类型。
识别滤波器的⽅法是:若信号频率趋于零时有确定的电压放⼤倍数,且信号频率趋于⽆穷⼤时电压放⼤倍数趋于零,则为低通滤波器;反之,若信号频率趋于⽆穷⼤时有确定的电压放⼤倍数,且信号频率趋于零时电压放⼤倍数趋于零,则为⾼通滤波器;若信号频率趋于零和⽆穷⼤时电压放⼤倍数均趋于零,则为带通滤波器;反之,若信号频率趋于零和⽆穷⼤时电压放⼤倍数具有相同的确定值,且在某⼀频率范围内电压放⼤倍数趋于零,则为带阻滤波器。
电容滤波电路的工作原理和计算
电容滤波电路的工作原理和计算
电容滤波电路如下图所示,即在原来桥式整流电路的输出端并联一个电解电容,所用电容器一般是有极性的电解质电容器,在直流电路中电容极性不得接反。
当没有接负载,即负载开路时,电容没有放电回路,电容充电电压达到最大值以后无法继续变化,保持一个直流电压输出。
输出的电压波形如下图中蓝线所示。
接入负载以后,电容能通过负载电阻放电,因此输出电压波形如下图中蓝线所示。
流过二极管的电流只有在二极管阳极电位高于阴极(也就是输出端)电位时才形成,即给电容充电时二极管才有电流,因此其电流波形如下图阴影部分所示。
电路特点:
(a)平均电压高:桥式电路中,Uo≈1.2U2 ;
(b)外特性软:Uo受负载影响大,通常要求时间常数为
(c)二极管导电时间短,电流峰值电压增大,易损坏二极管;
(d)适合于高电压,小电流,负载变化小的场合。
例有一单相桥式整流滤波电路,已知交流电源频率f=50HZ,,负载电阻RL=200Ω,要求直流输出电压Uo=30V,试选择整流二极管及滤波电容器。
解:(1)整流二极管的正向平均电流。
整流桥的输入电压。
二极管反向工作电压。
所以二极管的最大整流电流应不小于75mA,反向峰值工作电压不小于35V。
(2)选择滤波电容
取
所以,滤波电容的容值应不小于250。
滤波电路电容电感计算公式
滤波电路电容电感计算公式滤波电路是电子电路中常见的一种电路,用于滤除输入信号中的杂波或者对输入信号进行频率选择。
在滤波电路中,电容和电感是两种常见的元件。
在设计滤波电路时,需要计算电容和电感的数值,以满足滤波器的性能要求。
本文将介绍滤波电路中电容和电感的计算公式,并且讨论它们在滤波电路中的应用。
电容的计算公式。
在滤波电路中,电容通常用于对输入信号进行滤波。
电容的数值取决于所需的截止频率和电路的阻抗。
电容的计算公式如下:C = 1 / (2 π f R)。
其中,C为电容的数值,单位为法拉德(F);f为所需的截止频率,单位为赫兹(Hz);R为电路的阻抗,单位为欧姆(Ω);π为圆周率。
根据上述公式,可以得出电容的数值。
在实际设计中,需要根据具体的滤波要求和电路的特性来选择合适的电容数值。
电感的计算公式。
电感也是滤波电路中常用的元件,用于对输入信号进行滤波或者频率选择。
电感的数值取决于所需的截止频率和电路的阻抗。
电感的计算公式如下:L = R / (2 π f)。
其中,L为电感的数值,单位为亨利(H);R为电路的阻抗,单位为欧姆(Ω);f为所需的截止频率,单位为赫兹(Hz);π为圆周率。
根据上述公式,可以得出电感的数值。
在实际设计中,需要根据具体的滤波要求和电路的特性来选择合适的电感数值。
电容和电感在滤波电路中的应用。
电容和电感是滤波电路中不可或缺的元件,它们可以单独使用,也可以组合在一起使用,以实现不同类型的滤波效果。
在低通滤波器中,电容和电感通常被串联使用。
电容的作用是阻止低频信号通过,而电感的作用是允许高频信号通过。
通过合理选择电容和电感的数值,可以实现对低频信号的滤波效果。
在高通滤波器中,电容和电感通常被并联使用。
电容的作用是允许高频信号通过,而电感的作用是阻止低频信号通过。
通过合理选择电容和电感的数值,可以实现对高频信号的滤波效果。
除了单独使用电容和电感外,它们还可以组合在一起使用,形成多种不同类型的滤波电路,如带通滤波器、陷波滤波器等。
电容滤波的计算方法及电源滤波电容选用技巧
电容滤波的计算方法及电源滤波电容选用技巧电容滤波是一种常见的电力电子滤波电路,用于减小电源中的脉动电压。
在电源中添加一个电容器,可以通过存储能量的方式将脉动电压平滑化,从而提供稳定的直流电源。
本文将介绍电容滤波的计算方法和电源滤波电容选用技巧。
首先,我们需要了解电容滤波的原理。
在一个整流电路中,电容滤波电路的主要部分是一个电容器和负载电阻。
当交流电源输入经过整流后,得到的直流电压存在脉动。
这时通过将电容器连接到输出端,在充电-放电周期内,电容器的电压会随着时间逐渐增加,这样就可以减小输出电压的脉动。
要计算电容器的容值,我们首先需要确定电容器的放电时间常数。
放电时间常数代表了电容器在放电时所需的时间,是一个重要的参考指标。
通常情况下,放电时间常数应该小于整个周期的时间,以确保电容器能够在周期内完全放电。
放电时间常数的计算公式如下:τ=R*C其中,τ为放电时间常数,R为负载电阻的阻值,C为电容器的电容值。
接下来,我们需要根据系统的需求来确定电容器的容值。
一般来说,电容器的容值越大,脉动电压越小,但是成本和尺寸也会增加。
所以在选用电容器时需要权衡这些因素。
一般情况下,可以按照以下步骤选择电容器的容值:1.确定对输出电压脉动的要求。
根据设计要求,确定允许的输出电压脉动范围。
2.根据最大负载电流和输出电压脉动的要求,计算电容器的容值。
可以使用以下公式进行计算:C=I/(ΔV*f)其中,C为电容器的容值,I为负载电流的峰值,ΔV为输出电压脉动的允许范围,f为电源频率。
3.根据计算结果选择合适的商用电容器,注意商用电容器的标称容值通常有一定的误差,因此要选取稍大于所计算出的容值的电容器。
需要注意的是,电容器的有效值与其标称容值之间存在一个关系。
电容器的有效值是指在给定频率下的等效电流波动值,与电容器的容值和频率有关。
一般来说,频率越高,电容器的有效值越小,因此选用电容器时要根据实际工作频率来选择。
另外,还需要注意电容器的寿命和可靠性。
滤波电容的选型与计算(详解)
电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来它在高频充放电时内阻较大,等效电感较高。
而较高的温度将使电容内部的电解液气化,电容内0.1u,用于滤高频,4.7uF100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1)FSR参数,这表示频率大于FSR值时,FSR后,对干扰的抑制就大打折扣,,SFR值大,对高频信号提供了一个对地通路,,小电容滤高频,根本的原因在于SFR(自谐振频率)近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组成及工作原理
uo Tr a u1 u2 VD1~VD4 O iD C uC RL uo
ωt
b
ωt
O
a
t1 t2
t3 t4
b
t5 t6
图7-4 电容滤波原理及波形图 a. 原理图 b. 波形图
原理
加了一只电容后,二极管导通时,一方面 给负载RL供电,一方面对电容C充电。在忽略 二极管正向压降后,充电时,充电时间常数τ 充电=2RDC,其中RD为二极管的正向导通电阻, 其值非常小,充电电压uC与上升的正弦电压u2 一致,uo=uC≈u2,当uC充到u2的最大值时,u2 开始下降,且下降速率逐渐加快。当|u2|<uC 时,四个二极管均截止,电容C经负载RL放电, 放电时间常数为τ 放电=RLC,故放电较慢,直 到负半周。
U O (1 ~ 1 . 1)U 2
(半波)
U O 1 . 2U 2
(桥式、全波)
(三)元件选择
1.电容选择 滤波电容C的大小取决于放
电回路的时间常数,RLC愈大,输出电压脉动就
愈小,通常取RLC为脉动电压中最低次谐波周期
的倍,即
R L C (3 ~ 5 ) T 2
(桥式、全波) (半波)
л 型滤波电路可看成是一节电容滤波电 路和一节Γ 型RC滤波电路的串联。整流输出电
压先经电容C1,滤除了交流成分后,已经比较
平滑,再经一节R和组成的分压器,可进一步 降低输出端纹波电压。
使负载电压变得不够平稳,所以电容滤波电路
只使用于负载电流较小的场合。
二、л 型RC复式滤波电路
由上述讨论可知,当RL比较小时,即使滤
波电容容量很大,脉动系数仍比较大。为进一 步减小脉动系数,通常采用如图7-5所示的л 型RC滤波电路。
Tr
R
u1
u2 C1
C2
RL
uo
图7-5 π 型RC滤波电路
滤波电路
R L C ( 3 ~ 5 )T
元件选择
2.整流二极管的选择
IO
ID 1 2 IO
正向平均电流为
(半波)
(桥式)
(四)电容滤波的特点
电容滤波电路结构简单、输出电压高、 脉动小。但在接通电源的瞬间,将产生很大的 充电电流,这种电流称为“浪涌电流”,同时, 因负载电流太大,电容器放电的速度加快,会
(二)负载上电压的计算
由上述讨论可见,电容放电时间常数为 τ
放电=RLC,即输出电压的大小和脉动程度与
负载电阻直接相关。若RL开路,即输出电流为
零,电容C无放电通路,一直保持最大充电电 压;若RL很小,放电时间常数很小,输出电压 几乎与没有滤波时一样。
计算公式
因此,电容滤波电路的输出电压在0.9U2~范 围内波动,在工程上一般采用估算公式
原理
在负半周,当|u2|>uC时,另外二个二极管 (VD2 、VD4)导通,再次给电容C充电,当 uC 充 到u2的最大值时, u2开始下降,且下降速率逐 渐加快。当|u2|< uC 时,四个二极管再次截止,
电容C经负载 RL 放电,重复上述过程。有电容
滤波后,负载两端输出电压波形如图7-4b所示。
第三节 滤波电路
整流电路输出的直流电压脉动较大,一般不 能满足实际需要,必须用滤波电路滤除交流分 量,得到平滑的直流电压。在小功率直流电源 中,常用的滤波电路有电容滤波、Г 型滤波和
п 滤波。
一、电容滤波电路
(一)电路组成及工作原理 在整流电路输出端与负载之间并联一只大
容量的电容,如图7-4a,即可构成最简单的电