图论最大流问题

合集下载

最大流常见算法

最大流常见算法

最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。

一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。

网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。

源点是流量的起点,汇点是流量的终点。

在网络中,还可能存在其他节点和边。

二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。

该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。

三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。

该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。

但是在某些特殊情况下仍然可能需要指数级时间复杂度。

道路交通运输网络分析技术-道路运输系统工程

道路交通运输网络分析技术-道路运输系统工程

§ 6.1
如图6-2 a和图6-2 b
引言
§ 6.1
在生产实际中,我们要了 解某地区的公路交通状况, 要了解公路分布状况和公 路长度,还有与节点或枝 线(弧)相关的数量指标。
引言
§ 6.1
引言
网络,网络理论,网络分析技术
我们带有某种数量指 标的图称为网络图或 称网络
网络
撇开各种图的具体 内容来讨论这种由 点、线段构成的抽 象形式的图,从中 研究其一般规律。
( vi , v j )A


f ij
( vi ,v j ) A
f
ji
0
对于发点vs,记 对于收点vt,记
( vs ,v j )A

f sj
( v j ,vs )A
f
js
V( f )
( vt , v j )A

f tj
( v j ,vt )A
f
jt
V ( f )
11
• 定义每条边与顶点的顺序无关,边都没有方向的 图称为无向图
在无向图中,有(vi , v j ) (v j , vi ). • 如果边是用顶点的有序对来定义,即令其一个 顶点是始点,另一个顶点是终点,那么称该边 为有向边,全部由有向边构成的图称为有向图。 • 有向图中的边称为弧。 • 从有向图中 D (V , A)去掉所有弧上的箭头,就成为无向 图,称为D的基础图. • 图中既有边又有弧, 称为混合图.
水取暖点相互连通,但总的线路长度最短。试求
最短的管道铺设方案。这类问题在网络分析中称 为最小生成树问题。
1、树的定义 无圈的连通图称为树。我们用了T表示树,树中 的边称为树枝
2、树的性质

数学建模-图论

数学建模-图论

图论导引
问题3:四色猜想 地图或地球仪上,最多用四种颜色就可把每一 国的版图染好,使得国界线两侧异色。
电子计算机问世以后,由于演算速度迅速提高,加 之人机对话的出现,大大加快了对四色猜想证明的进 程。美国伊利诺大学哈肯在1970年着手改进“放电过 程”,后与阿佩尔合作编制一个很好的程序。就在 1976年6月,他们在美国伊利诺斯大学的两台不同的电 子计算机上,用了1200个小时,作了100亿判断,终于 完成了四色定理的证明,轰动了世界。
有向图:
1, 若vi是ei的始点 aij 1, 若vi是ei的终点 0, 若v 与e 不关联 i i
无向图:
1, 若vi与v j 关联 aij 0, 若vi与v j 不关联
图的矩阵表示
例6:写出右图与其基本图 的关联矩阵 解:分别为:
图论的基本概念
几个基本定理:
1、对图G V,E ,有 d v 2 E .
vV
2、度为奇数的顶点有偶数个。
3、设G V,E 是有向图, 则 d v d v E .
vV vV
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
基 本 概 念
定义1 在无向图 G=(V,E)中: (1) 顶点与边相互交错的有限非空序列 w (v0 e1v1e2 vk 1ek vk ) 称为一条从 v 0 到 v k 的通路,记为 Wv0vk (2)边不重复但顶点可重复的通路称为道路,记为 Tv0vk (3)边与顶点均不重复的通路称为路径,记为 Pv 0 v k 始点和终点相同的路称为圈或回路.

图论基础知识的名词解释

图论基础知识的名词解释

图论基础知识的名词解释图论是数学的一个分支,研究图的属性和关系。

图是由节点和节点之间的边组成的抽象模型,被广泛应用于计算机科学、网络分析、医学和社会科学等领域。

下面,我们将解释一些图论中常用的基础概念和术语。

1. 图 (Graph)图是图论研究的基本对象,由一组节点和连接这些节点的边组成。

节点也被称为顶点 (Vertex),边则是节点之间的连接线。

图可以分为有向图 (Directed Graph) 和无向图 (Undirected Graph) 两种类型。

在有向图中,边有方向,从一个节点指向另一个节点;而在无向图中,边没有方向,节点之间的关系是双向的。

2. 顶点度数 (Degree of a Vertex)顶点度数指的是一个顶点与其他顶点相邻的边的数量。

在无向图中,顶点度数即与该顶点相连的边的数量;在有向图中,则分为入度 (In-degree) 和出度 (Out-degree)。

入度表示指向该节点的边的数量,而出度表示从该节点出发的边的数量。

3. 路径 (Path)路径指的是通过边连接的一系列节点,形成的顺序序列。

路径的长度是指路径上边的数量。

最短路径 (Shortest Path) 是指连接两个节点的最短长度的路径。

最短路径算法被广泛应用于计算机网络中的路由选择和地图导航系统中的路径规划。

4. 连通图 (Connected Graph)连通图是指图中的任意两个节点之间都存在路径的图。

如果一个图不是连通图,那么它可以被分割为多个连通分量 (Connected Component)。

连通图在社交网络分析和传感器网络等领域中具有重要的应用。

5. 完全图 (Complete Graph)完全图是指任意两个节点之间都存在边的图。

在完全图中,每对节点之间都有一条边相连。

n个节点的完全图有n(n-1)/2条边。

完全图经常用于描述需要互相交流的问题,如计算机网络中的通信。

6. 树 (Tree)树是一种无环连通图,其中任意两个节点之间有且仅有一条路径相连。

图论中的网络与流问题

图论中的网络与流问题

图论中的网络与流问题在图论中,网络与流问题是一类重要且广泛应用的问题。

网络与流问题主要研究在图中如何有效地传递信息或者资源,其中最常见的问题是最大流问题和最小割问题。

一、最大流问题最大流问题是指在一个网络中找到从源点到汇点的最大流量。

在一个有向图中,每条边都有一个容量限制表示该边能够传输的最大流量。

通过网络中的流,我们可以将信息或者资源从源点流向汇点。

最大流问题的目标就是找到一种流量分配方案使得从源点到汇点的流量最大。

解决最大流问题的常用算法是Ford-Fulkerson算法和Edmonds-Karp算法。

这些算法通过不断寻找增广路径来更新流量,直到无法再找到增广路径为止,得到最大流量。

二、最小割问题最小割问题是指在一个网络中找到切割最小的边集。

切割是将网络分为两个不相交的部分,源点在一个部分中,汇点在另一个部分中。

割边是指源点部分和汇点部分之间的边。

最小割问题的目标是找到一种切割方式,使得切割的边集的容量之和最小。

解决最小割问题的常用算法是Ford-Fulkerson算法和边缘检测算法。

这些算法通过不断寻找割边来更新割集,直到无法再找到割边为止,得到最小割集。

三、应用领域网络与流问题具有广泛的应用领域,包括:1. 交通流量优化:通过建立网络模型,可以优化城市交通流量分配,提高交通效率;2. 电力传输优化:通过建立电力输电网络模型,可以实现电力资源的高效分配;3. 通信网络设计:通过建立通信网络模型,可以设计出高效的通信网络架构,提高网络传输速度和稳定性;4. 社交网络分析:通过建立社交网络模型,可以深入了解社交网络结构和信息传播规律。

总结:网络与流问题是图论中的重要问题,解决这类问题可以优化资源分配、提高效率,并在实际应用中发挥重要作用。

最大流问题和最小割问题是其中两个经典问题,通过不断寻找增广路径或割边来更新流量或割集,得到最大流量或最小割集。

网络与流问题在交通、电力、通信等领域有广泛的应用,帮助优化资源的利用和提高系统的性能。

图论最大流问题.ppt

图论最大流问题.ppt
则 t S ,否则存在s到t的一条可增路,矛盾。 因此,S ,则任意 x S, y S 的边(x,y)有
若 ( x, y)是向前边,fx y cxy; ( y, x) 是后前边,
f yx 0 由定理1, max w min c(S, S )
c(S, S) c(e)
e( S ,S )
网络N中容量最小的割 (S* , S* ) 称为N的最小割。
不难证明,任何一个可行流的流量w都不会超过 任一割的容量,即
w c(S, S)
例如,图2中,若 S {s},(S, S ) {(s, v3 ),(s, v2 )} c(S, S ) 4 3 7.
二、可行流与最大流
1. 定义
在实际问题中,对于流有两个显然的要求:一是 每个弧上的流量不能超过该弧的最大通过能力(即弧 的容量);二是中间点的流量为0,源点的净流出量 和汇点的净流入量必相等。因此有定义如下。
定义2 网络N中每条边都给定一个非负实数fij满足 下列条件
(1)容量约束:0≤fij≤cij,(vi,vj)∈E, (2)守恒条件
过修改,使得整个网络的流值增大。 定义3 设f是一个可行流,P是从源点s到汇点t的一
条路,若P满足下列条件: (1)在P上的所有前向弧(vi→vj)都是非饱和弧,即
0≤fij<cij; (2)在P上的所有后向弧(vi←vj)都是非零弧,即
0<fij≤cij。则称P为(关于可行流f的)一条可增广路 径。
a
第1条可增路s,c,b,t, =2
(1,0) s (2,0)
(1,0)
第2条可增路s,a,b,c,d,t,
(2,0)
t
c (2,0) b
(1,0)
(1,0)

运筹学上机试题5-图论

运筹学上机试题5-图论

四、图论1、求下图中从v1到v3最短路。

v 1v 3v 546从节点 1到节点3的最短路 *************************起点 终点 距离 ---- ---- ---- 1 2 1 2 3 6此问题的解为:7 2、最小生成树电信公司要在15个城市之间铺设光缆,这些城市的位置及相互之间的铺设光缆的费用如下图所示。

试求出一个连接在15个城市的铺设方案,使得总费用最小。

v 1v 2v 3v 4v 5v 6v 7v 8v 9v 10v 11v 12v 13v 14v 152241131456422323135134此问题的最小生成树如下:*************************起点终点距离---- ---- ----1 4 11 2 22 5 25 8 15 6 26 3 18 7 28 9 39 12 212 11 411 10 110 13 313 14 114 15 3此问题的解为:283、最短路问题例. 求下图中从v1到各点的最短路,并指出有哪些点是不可达到的。

vv7v8v4从节点 1到节点2的最短路*************************起点终点距离---- ---- ---- 1 2 4此问题的解为:41到3没有路1到4没有路从节点 1到节点5的最短路*************************起点终点距离 ---- ---- ---- 1 5 1此问题的解为:1从节点 1到节点6的最短路*************************起点终点距离 ---- ---- ---- 1 5 1 5 6 6此问题的解为:7从节点 1到节点7的最短路*************************起点终点距离 ---- ---- ---- 1 7 3此问题的解为:3从节点 1到节点8的最短路*************************起点终点距离 ---- ---- ---- 1 5 1 5 6 66 8 3此问题的解为:104、最短路问题有6个村庄,各村庄的距离如下图所示。

图论

图论
顶点标以二十个城市的名字,要求 有二十个顶点标以二十个城市的名字, 游戏者找一条从某一城市出发的路线, 游戏者找一条从某一城市出发的路线,它经过每 一个城市恰好一次,并且最后回到出发点。 一个城市恰好一次,并且最后回到出发点。 点:城市 边:城市之间的道路 问题:游戏者怎么走才能恰好每个城市走一次, 问题:游戏者怎么走才能恰好每个城市走一次,而 且不重复?如图: 且不重复?如图:
例:有甲、乙、丙、丁、戊五个球队,各队之间比赛 有甲、 戊五个球队, 情况如表: 情况如表: 甲
乙 胜 × 负
丙 负 胜 × 负
丁 胜
戊 胜
甲 乙 丙 丁 戊
× 负 胜 负 负
胜 × 胜 负 ×
点:球队; 球队; 连线:两个球队之间比赛过,如甲胜乙, 连线:两个球队之间比赛过,如甲胜乙,用 v1 v2表示。 表示。
三 、一些特殊图类
1.平凡图 1.平凡图 2.零图 2.零图 3. 连通图 给定图G=(V,E),任何两点间至少有一条链,则 称G是连通图,否则为不连通图。 若G是不连通的,它的每个连通部分称为G的连通分 图。 节点数n=1,边数m=0的图。
边数m=0的图。
4.树 4.树 无圈连通图。 5. 完备图 无向图的完备图:任何两点之间有一条边; 有向图的完备图:任何两点u与v之间有两条有向 边(u,v)及(v,u)。 基本图:把有向图的每条边除去方向得到的无 向图。 6.二分图 6.二分图 若V(G)=X ∪ Y,X ∩ Y= Ф,X 、Y中的任两顶 点不相邻,则G称为二分图,记为(S,X,Y)。
无向图: 无向图:由点及边构成 ,边[vi,vj]
有向图:由点及弧构成, 有向图:由点及弧构成,弧( vi,vj)
中点集V的顶点个数 图G中点集 的顶点个数,记为 (G) ,边数记为 中点集 的顶点个数,记为p q(G),简记 ,q。 简记p, 。 简记

运筹学-图论

运筹学-图论
初等链:链中所含的点均不相同, 也称通路;
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点均不相
同的圈;
初等链: (v1 , v2 , v3 , v6 , v7 , v5 )
v1
初等圈: (v1 , v2 , v3 , v5 , v4 , v1 )
图的基本概念
图论中的图是由点、点与点之间的线所组成的。通常, 我们把点与点之间不带箭头的线叫做边,带箭头的线叫 做弧。
如果一个图是由点和边所构成的,那么称为无向图,
记作G=(V,E),其中V表示图G 的点集合,E表示图G的
边集合。连接点vi , vj V 的边记作[vi , vj],或者[vj , vi]。 如果一个图是由点和弧所构成的,那么称为它为有向
v2 (3) v3 (3)
(2)
v5
(4)
v1
v4(6)
多重图
以点v为端点的边的个数称为点v的度(次),记 作 d(v), 如 图 5.4 中 d(v1)=3 , d(v2 )=4 , d(v3 )=4 , d(v4 )=3。
度为零的点称为弧立点,度为1的点称为悬挂点。 悬挂点的边称为悬挂边。度为奇数的点称为奇点, 度为偶数的点称为偶点。
郑州
济南 徐州
青岛 连云港
重庆
武汉 南京
上海
图5.3
例5.2 有六支球队进行足球比赛,我们分别用
点v1 ,…,v6表示这六支球队,它们之间的比赛情 况,也可以用图反映出来,已知v1队战胜v2 队,v2 队战胜v3 队,v3 队战胜v5队,如此等等。这个胜负
情况,可以用图5.3所示的有向图反映出来

第8章图论方法

第8章图论方法

Page 12
【例题·计算题】某城市东到西的交通道路如下图所示,线 上标注的数字为两点间距离(单位:千米)。某公司现需从市 东紧急运送一批货物到市西。假设各条线路的交通状况相同, 请为该公司寻求一条最佳路线。
2 东3
4
3 1
7
2
5
7
3
3
4
4
7 5
6
4 6
7 3
7
西
8
【答案】
1-4-7-西 10 3
9
2
3
5
7
3.5
4
6
10
1
6
4
3
8
2
5
【答案】
2 5
4
6
1
3
5
3 3.5 4
2
Page 8
【解析】按照克鲁斯喀尔的算法很轻松得出答案。
1.(11年7月)已知连接5个城镇的公路交通图如图。为了沿公路架设5个城镇的
光缆线,并要求光缆线架设的总长度为最小,试以最小枝杈树方法求出Pa最ge优9 方 案并计算光缆线的总长度。
8.2 树和树的逐步生成法
Page 4
1、树:连通且不含圈(回路)的图称为树。 2、树的边数=结点数-1。
【选择题】以下叙述中,正确的是( ) A.树的点数为线数加1 B.图的点数小于线数 C.图的点数大于线数 D.树可能含有圈 【答案】A 【解析】树的点数和边数差1,普通图的点数和边数谁多谁少不 确定。 【知识点】图和树的基本概念
Page 22
5.(09年7月)某网络如图,线上标注的数字是单位时间通过两节点的流量。
Page 23
试求单位时间由网络始点到网络终点的最大流量(单位:吨)。

图论讲义第9章-网络流理论

图论讲义第9章-网络流理论

注:网络 N 的一个割 K 称为最小割,如果网络 N 中不存在割 K′使得 CapK ′ < CapK 。 推论 9.1.1 设 f * 是网络 N 的一个最大流,K*是 N 的一个最小割,则 Val f * ≤ CapK * . 证明显然。 推论 9.1.2 设 f 是 N 的一个可行流,K 是 N 的一个割,若 Val f = CapK ,则 f 是最大流而
a∈K

(S ) =
a∈( S , S )

f (a ) ≥ 0 。
由引理 9.1.1, Val f = f + ( S ) − f − ( S ) ≤ CapK , 可见第 一个结论成立。另外注意到 f + ( S ) = CapK 当且仅当
S K
S
( S , S ) 中每条弧都是 f 饱和的;而 f − ( S ) = 0 当且仅当 ( S , S ) 中每条弧都是 f 零的,故定理的第二个结论也成立。证毕。
v2 v1 x P Q v3 y v6 v4 v5
定义 9.2.2 设 f 是网络 N = (V , x, y , A, C ) 中的一可行流,P 是 N 中一条 x-y 路。如果对于 P 上任一条弧
a ,都有
(1) 若弧 a 是 P 的正向弧,则 Δf ( a ) (2) 若弧 a 是 P 的反向弧,则 Δf ( a )
Байду номын сангаас
§9.1 网络与网络流的基本概念
定义 9.1.1 一个网络 N=(V,A)是指一个连通无环弧且满足下列条件的有向图: (1) 有一个顶点子集 X,其每个顶点的入度都为 0; (2) 有一个与 X 不相交的顶点子集 Y,其每个顶点的出度都为 0; (3) 每条弧都有一个非负的权,称为弧的容量。 注: 上述网络 N 可写作 N=(V, X, Y, A, C),X 称为网络的发点集或源点集,Y 称为网络的 收点集或汇点集,C 称为网络的容量函数。 例:

求解最大流问题的算法和模型

求解最大流问题的算法和模型

求解最大流问题的算法和模型最大流问题是图论中的一个基本问题,涉及到网络流的计算和优化。

在实际应用中,最大流问题的求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic算法、最小割定理等。

本文将从这些方面进行论述。

1. 增广路径算法增广路径算法是求解最大流问题的经典算法,其基本思想是不断地寻找增广路径,通过增加路径上的流量来增加整个网络的流量。

具体来说,首先通过深度优先搜索或广度优先搜索找到一条从源点到汇点的增广路径,然后确定路径上的最小流量d,将当前流量增加d,将反向边的流量减少d,同时计算当前网络的流量。

2. Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的增广路径算法,其基本理念与增广路径算法相同,但采用不同的策略来确定增广路径。

具体来说,Ford-Fulkerson算法采用贪心策略,在每次迭代中选择路径上的最小容量,从而确定增加的流量。

此外,Ford-Fulkerson算法还引入了残量图的概念,用于计算增广路径的容量。

3. Dinic算法Dinic算法是一种高效的增广路径算法,其主要优点是采用了分层图的策略来确定增广路径,使得每次迭代的搜索范围大为缩小。

具体来说,Dinic算法首先利用BFS算法确定每个节点的分层,然后在分层图上通过DFS算法查找增广路径,在路径上增加流量,更新分层图,重复此过程直至求解最大流。

4. 最小割定理最小割定理是求解最大流问题的重要定理,其核心思想是将网络分成两个不相交部分,并将其最小的割称为最小割。

最小割定理指出,在任意网络中,最大流等于最小割。

因此,求解最大流可以转化为求最小割问题,即在网络中寻找一组最小割,使得所有的割中容量最小的一组割。

总之,求解最大流问题是图论中的一个重要问题,其求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic 算法、最小割定理等。

在实际应用中,不同情况下可能需要采用不同的算法和模型来求解,需要灵活应用。

图论中的网络流问题分析

图论中的网络流问题分析

图论中的网络流问题分析网络流问题是图论中一个重要的研究领域,它研究的是在网络中如何有效地传输信息和资源。

本文将对网络流问题进行详细的分析和探讨。

一、网络流问题的定义网络流问题是指在一个网络中,给定源点和汇点以及每条边的容量限制,求从源点到汇点的最大流量或最小割。

二、网络流问题的建模为了解决网络流问题,我们需要对其进行合适的建模。

一种广为使用的建模方法是使用有向图和容量函数来表示网络各个节点之间的连接关系和容量限制。

在有向图中,每个节点代表一个网络中的位置,边表示节点之间的连接关系。

每条边上的容量表示该连接的最大流量限制。

源点表示流量的起点,汇点表示流量的终点。

三、最大流问题最大流问题是网络流问题中的一种经典问题,它研究的是如何找到从源点到汇点的最大流量。

求解最大流问题的常用算法包括:Ford-Fulkerson算法、Edmonds-Karp算法和Dinic算法等。

这些算法通过不断找增广路径来增加流量,直到无法找到增广路径为止。

最大流问题的应用非常广泛,例如在网络通信中,我们希望通过给定网络传输最大的数据量,来提高网络的传输效率。

四、最小割问题最小割问题是网络流问题中的另一种常见问题,它研究的是如何找到一个割,将源点和汇点分离,并且割的容量最小。

求解最小割问题的常用算法是Ford-Fulkerson算法。

该算法通过不断找增广路径来增加流量,同时记录割的容量。

最小割问题的应用也非常广泛,例如在电力系统中,我们希望通过切断某些输电线路,以实现能量传输的最小损失。

五、网络流问题的应用网络流问题在现实生活中有着广泛的应用。

以下是一些常见的应用领域:1. 网络优化:网络流问题可以用于求解网络中数据传输的最优方案,以提高网络的传输效率。

2. 运输规划:网络流问题可以用于优化城市交通规划,减少交通拥堵,提高交通效率。

3. 电力系统:网络流问题可以用于优化电力系统的能量传输,以减少能量损失。

4. 供应链管理:网络流问题可以用于优化供应链中的货物流动,以减少运输成本和提高配送效率。

最大流问题2

最大流问题2

Ford-Fulkerson算法的步骤
(S,4) (0,∞) S 5(4) A2 6(5) A4 12(9) (A2,1) 15(11) A1 13(11) A3 4(0) (A1,2)
7(6) (A3,1)
10(9) T
(S,1)
第三步:修改流量。设图中原有可行流为f,令
fi , f fi , f , i 对增广链上所有 对增广链上所有 s t 的弧 t s 的弧

建立最大流问题模型

决策变量:每条弧的实际流量
顶点 A B
B
f AB
C
f AC
D
E
f AE
F
f BD
C
D E
fCD
f DE f ED
f DF
f EF

目标函数:可行流量 最大
m ax Z f E F f D F
约束条件:
弧的实际流量小于等于弧的容量:
f A B 2, ..., f E F 3
转化的方法:网络结点设置为每种语言和每个
应聘人各一个结点,再加上起点和终点。某个 应聘人懂某种语言就将语言和应聘人连线,边 的权数为1。再将起点与每种语言相连,将终 点与每个应聘人相连,边的权数也为1。
俄 v1 英 v2 vs
甲 v6 乙 v7
日 v3
德 v4 法 v5
丙 v8
丁 v9 戊 v10
s 1 t 2
我们应该炸毁哪个截集中的所有桥梁才能 使破坏的桥梁最少? 截量的概念:给定截集(V1,V2),把截集 (V1,V2)中所有弧的容量之和称为这个截集 的截量。 找到截量最小的截集也就能使破坏的桥梁 最少 根据最大流问题最小截量定理:任一个网 络D中,从vs到vt的最大流的流量等于分离 vs,vt的最小截量。

运筹学图与网络分析

运筹学图与网络分析
v6
07
含有奇点的连通图中不含欧拉圈,此时,最优的邮递路线是什么呢?
08
求解中国邮路问题的奇偶点图上作业法
奇偶点表上作业法
奇偶点表上作业法 (1)找出奇点(一定为偶数个),在每两个奇点之间找一条链,在这些链经过的所有边上增加一条边,这样所有的奇点变为偶点,一定存在欧拉圈,但是不一定是路线最短的,所以需要检验和调整。 (2)检验增加的边的权值是否是最小的。 定理3 假设M是使得图G中不含奇点的所有增加边,则M是权值总和为最小的增加边的充分必要条件是: 1)图G中每条边上最多增加一条边; 2)在图G的每个圈上,增加的边的总权值不超过该圈总权值的一半。 如果上述两个条件都满足则已经找到权值最小的欧拉圈 否则转入3) 3)调整增加边。如果1)不满足,则从该条边的增加边中去掉偶数条; 如果2)不满足,则将这个圈上的增加边去掉,将该圈的其余边上添加增 加边,转入(2)
v1
v2
v3
v4
v5
v1
v2
v3
v4
v5
图2
图3
如果在比赛中: A胜E, B胜C, A胜D, C胜A, E胜D, A胜B,
v1
v2
v3
v4
v5
注:本章所研究的图与平面几何中的图不 同,这里我们只关心图有几个点,点与点 之间有无连线,两条线有无公共顶点,点 与线是否有关联,至于连线的方式是直线 还是曲线,点与点的相对位置如何都是无 关紧要的。
求从v1到v8的最短路
(0)
(1,1)
(1,3)
(3,5)
(2,6)
(5,10)
(5,9)
(5,12)
注:在给顶点编号时,如果在多个为标号点均取得最小值Llk则对这多个点同时标号,这些点的第二个标号相同,但是第一个标号不一定相同。

最大流问题经典例题

最大流问题经典例题

最大流问题经典例题最大流问题是图论中的一个经典问题,其目的是在一个有向图中找到一条从源点到汇点的路径,使得路径上的流量最大。

最大流问题有多种解法,其中最著名的是Ford-Fulkerson算法和Edmonds-Karp 算法。

下面介绍一个最大流问题的经典例题:给定一个有向图G=(V,E),其中V表示节点集合,E表示边集合。

假设有源点s和汇点t,并且每条边都有一个容量c,表示该边最多可以通过的流量。

请找到从源点s到汇点t的最大流量。

解法:一种解法是使用Ford-Fulkerson算法。

该算法通过不断增广路径来寻找最大流,直到无法找到增广路径为止。

具体实现过程如下:1. 初始化流f=0。

2. 寻找一条增广路径,即从s到t的一条路径,使得路径上所有边的剩余容量都大于0。

3. 计算该路径上的最小剩余容量d。

4. 对该路径上的所有边e,将其流量增加d,同时将其反向边的流量减少d。

5. 将f增加d。

6. 重复步骤2-5,直到无法找到增广路径。

另一种解法是使用Edmonds-Karp算法。

该算法在Ford-Fulkerson算法的基础上优化了增广路径的选择,选择最短路作为增广路径,从而提高了算法的效率。

具体实现过程如下:1. 初始化流f=0。

2. 寻找一条从s到t的最短增广路径,即路径上所有边的剩余容量都大于0,且路径长度最短。

3. 计算该路径上的最小剩余容量d。

4. 对该路径上的所有边e,将其流量增加d,同时将其反向边的流量减少d。

5. 将f增加d。

6. 重复步骤2-5,直到无法找到增广路径。

无论使用哪种算法,最后得到的f即为从源点s到汇点t的最大流量。

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO 求解技巧我们介绍使用LINGO 求解图论与网络问题中的一些典型问题。

如最短路问题、最大流问题、关键路径问题、最优树问题,以及TSP 问题。

这里主要介绍使用LINGO 求解的方法,重在应用和解决问题。

1 最短路问题的Lingo 求解设图共有个节点,其赋权图的邻接矩阵为n n n w ×.ij w p =表示节点i 到j 的权值为.当为有向图时,p ji w w ij =;当为无向图时,和ij w ji w 分别由图得到,通常不一样。

当,表示节点i 与节点0ij w =j 不连通。

令0ii w =。

假设图的所有权值 0ij w ≥现求节点a 到节点b 的最短路,其线性规划模型为:模型一、决策变量:设1ij i j x i j ⎧=⎨⎩节点与节点连通节点与节点不连通目标函数为寻找一条节点到节点的通路,使其上权值和最小,故目标函数为:a b 11min .nnij ij i j Z w x ===∑∑1. 对节点恰有一条路出去,却不能有路回来,故有:a 11najj j ax=≠=∑ 且10nkak k a x=≠=∑2. 对节点恰有一条路到达,却不能有路出去,故有:b 11nkbk k bx=≠=∑ 且10nbjj j bx=≠=∑3. 对除起始点a 和目标点之外,其它点进入和出去的路是一样多(可都为0),则:b 11,nnkiijk j xx i a ===≠∑∑b4. 对不通的路不取,约束为:,1,2,ij ijx w i j ≤=L n总的线性规划模型为:11111111min .,10..10,1,2,,01n nij iji j nnki ijk j naj j j a n ka k k a n kb k k a nbj j j a ij ijijZ w x x x i a b x x s t x x x w i j x =====≠=≠=≠=≠=⎧=≠⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎪⎪≤=⎪⎪=⎪⎪⎪⎩∑∑∑∑∑∑∑∑L 或n示例演示。

运筹学图与网络模型以及最小费用最大流

运筹学图与网络模型以及最小费用最大流
4. 对上述弧的集合中的每一条弧,计算 sij=li+cij 。在所有的 sij中, 找到其值为最小的弧。不妨设此弧为(Vc,Vd),则给此弧的终 点以双标号(scd,c),返回步骤2。
最短路问题
(P233)例1 求下图中v1到v6的最短路 v2
7
3
v6
v1
5 2 v4 5
21
31
5
v3
v5
解:采用Dijkstra算法,可解得最短路径为v1 v3 v4 v6
v1
v2
v3
v4
v5
v6
把所有弧的权数计算如下表:
1
2
3
4
5
6
1
16
22
30
41
59
2
16
22
30
41
3Leabharlann 172331
4
17
23
5
18
6
最短路问题
(继上页) 把权数赋到图中,再用Dijkstra算法求最短路。
59
22
30 41
23
v1
16
v2 16 v3 17 v4 17 v5 18
v6
22
23
31
v2 v1
v4 v3
v5
最短路问题
最短路的Dijkstra算法(双标号法)的步骤:
1.给出点V1以标号(0,s) 2.找出已标号的点的集合I,没标号的点的集合J以及弧的集合
{(vi , v j ) | vi I , v j J}
3. 如果上述弧的集合是空集,则计算结束。如果vt已标号(lt,kt), 则 vs到vt的距离为lt,而从 vs到vt的最短路径,则可以从kt 反向 追踪到起点vs 而得到。如果vt 未标号,则可以断言不存在从 vs 到vt的有向路。如果上述的弧的集合不是空集,则转下一步。

最大流标号法

最大流标号法

8
12 6 10
00
30 上8
10
京 18
广
0

W ( f* ) =10+6+12+30+12+10+5 = 85
多个发点多个收点的情形
对于多发点多收点的容量网络的最大流问题可 以通过添加两个新点vs与vt扩充为新的单发点 与单收点的容量网络的方式解决。
+∞ x1
vs
x2
使fij=0的弧称为零流弧,使fij>0的弧称为非零
流弧。
v2 3,1
vs
1,0
5,2
4,1 1,0
v4 5,2
3,1 2,1vt
若μ是联结发点vs 和收点vt的一条链,
我们规定链的方向是
从vs到vt,则链上的
v1
2,2 v3
弧被分成两类:前向
弧、后向弧。
设f是一个可行流,μ是从vs到vt的一条链,若
号(vi,l(vj)),其中l(vj)=min[l(vi),cij – fij],vj成为已标号未检查的点;若有非零 弧(vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji],vj成为已标号未检查的 点。vi成为已标号已检查的点。 • 重复步骤(2),直到vt成为标号点或所有标号点都检查过。若vt成为标号点,表 明得到一条vs到vt的增广链,转入调整过程;若所有标号点都检查过,表明这 时的可行流就是最大流,算法结束。
1 x3
1
[xv4s,1] 1
x5
[vs,1]
y1
1
y2
y3 [x3,1y]4 1 [x3,1y]5
[x2,1y]1 [x1,1y]2 1 [x1,1y]3 [x5,1y]4 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档