六年级数学下册教材梳理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 百分数的应用
第一课时 求一个数比另一个数多(少)百分之几(p1-3)
【教学容】求一个数比另一个数多(少)百分之几(p1-3)
【教学目标】
1.使学生在现实情境中理解并掌握“求一个数比另一个数多(少)百分之几”的基本
思考方法,并能正确解决相关的实际问题。
2.使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中进一步加深
【知 识 点】
1.求一个数比另一个数多百分之几
(1)掌握两种分析方法
(2)对比两种分析方法
2.求一个数比另一个数少百分之几
(1)掌握两种分析方法
(2)对比两种分析方法
3. 能借助线段图分析说明两类问题的异同
4.计算结果除不尽的处理方法
【易 错 点】
1.如何找准单位“1”和比较量。
2.解决问题。
一款手机原来每部成本 320 元,现在降低到 280 元,每部成本降低了百分之几?
提示:一个数量提高一定的百分率后,再下降相同的百分率;或者下降一定的百分 率后,再提高相同的百分率,得到的新数量一定比原来的数量小。
DOC 专业资料.
第四课时 折扣问题
【教学容】折扣问题
【教学目标】
懂得商业打折扣问题的数量关系与“求一个数的百分之几是多少”的应用题相同,
并能正确地解答这类应用题。
【教学重点】按折扣进行计算
答:比原价降低 54 元。
DOC 专业资料.
第五课时 列方程解决稍复杂的百分数问题
【教学容】列方程解决稍复杂的百分数问题(p11 例 5) 【教学目标】
1.通过练习,使学生能比较熟练地掌握列方程解稍复杂的百分数问题,提高解题能力。 2.通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。 【教学重点】分析应用题的数量关系 【教学难点】找准应用题的等量关系. 【知 识 点】 1.利用线段图分析数量关系 2.列方程解决问题的方法 3.渗透一题多解分数问题与百分数问题的对比与沟通 【易 错 点】 1. 找不准单位“1”的量,不会用含有未知数的式子表示另一个量。 2. 不懂得通常设单位“1”的量为χ。 3. 把数值代入含有未知数的式子,计算出结果后添上单位。
错解分析:错在把超过 1600 元部分(900 元)认为符合 500 元~2000 元之间,就要
按 10%征税,即 900×10%就可以求出应缴纳的个人所得税了。其实超过部分首先有 500 元
是按 5%征税的,剩下的 400 元再按 10%征收。
正确解答:2500-1600=900(元)
500×5%=25(元)
对百分数的理解,进一步积累解决实际问题的经验,培养分析、比较、类推解决实际问题
的能力。wk.baidu.com
3.在探索新知的过程中,感受百分数与现实生活的密切联系,增强自主探索和合作
交流的意识,体验成功的乐趣。
【教学重点】正确理解“求一个数比另一个数多(少)百分之几”的实际问题的解题方法。
【教学难点】找准单位“1”的量。
【教学难点】关键是对折扣和成数的理解,并正确列出算式
【知 识 点】
1.理解折扣含义
2.计算折扣的方法
3.根据折扣和原价计算折后价
4.根据折扣和折后价计算原价
5.对比三类问题异同点
【易 错 点】
1.选择。
某超市清仓处理一批袜子,打六五折出售,现价是原价的(
)
A.35%
B.65%
C. 1 65
2.解决问题。
(900-500)×10% =40(元)
25 +40 =65(元)
答:明爸爸应缴纳个人所得税 65 元。
DOC 专业资料.
第三课时 利息问题
【教学容】利息问题 【教学目标】
1.了解储蓄的含义。 2.理解本金、利率、利息的含义。 3.掌握利息的计算方法,会正确地计算存款利息。 【教学重点】利息的计算方法。 【教学难点】利息的计算。 【知 识 点】 1.本金、利息、利率的含义 2.计算应得和实得利息 3.计算本息总额 【易 错 点】 1. 能正确计算本息总金额 2. 能根据存单进行相应计算 3.判断:一种电器先降价 10%,再提价 10%,现价与最初售价相同。( )
280÷320=0.875=87.5%
答: 每部成本降低了 87.5%。
错解分析:错在把“降低到”理解成“降低了”。原来每部成本 320 元,现在降低
到 280 元,说明成本降低了 320—280=40(元)。应用降低了的 40 元除以原来的成本价。
正确解答:320—280=40(元) 40÷320=0.125=12.5%
DOC 专业资料.
答: 每部成本降低了 12.5%。
第二课时 纳税问题
【教学容】纳税问题
【教学目标】
1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
2.初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
3.培养和解决简单的实际问题的能力,体会生活中处处有数学。
【教学重点】理解和掌握应纳税额的计算方法。
一件上衣原价 180 元,现在打七折出售,比原价降低多少元?
180×70%=126(元)
答:比原价降低 126 元。
错解分析:此题错在没有理解“打七折出售”的意义。“打七折出售”是说现价是原
价的 70%,而不是说现价比原价少 70%。
正确解答:180—180×70%=54(元)或 180×(1—70%)=54(元)
如:80%χ=20×80%=16 (人) 正确 :80%χ=20×80%=16
DOC 专业资料.
第六课时 列方程解稍复杂的百分数实际问题
【教学容】列方程解稍复杂的百分数实际问题(p12 例 6) 【教学目标】
月收入超过 1600 元,超过部分按下面的标准征税。
不超过 500 元的
5%
超过 500 元~2000 元 的部分
10%
超过 2000 元~5000 元 的部分
15%
……
明的爸爸月收入 2500 元,应缴纳个人所得税多少元?
(2500-1600)×10%=900×10%=90(元)
答:明爸爸应缴纳个人所得税 90 元。
【教学难点】分段纳税
【知 识 点】
1.纳税的意义是什么?怎样纳税?
2.熟练地运用百分数进行各种税额的计算。
3.分段纳税的有关知识和方法。
【易 错 点】
1. 用百分数进行纳税的计算时,以谁为单位“1”。
2. 分段纳税的有关知识。如课本 P6 第 4 题:
2005 年我国公布了新的个人收入所得税征收标准。个人月收入 1600 元以下不征税。
第一课时 求一个数比另一个数多(少)百分之几(p1-3)
【教学容】求一个数比另一个数多(少)百分之几(p1-3)
【教学目标】
1.使学生在现实情境中理解并掌握“求一个数比另一个数多(少)百分之几”的基本
思考方法,并能正确解决相关的实际问题。
2.使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中进一步加深
【知 识 点】
1.求一个数比另一个数多百分之几
(1)掌握两种分析方法
(2)对比两种分析方法
2.求一个数比另一个数少百分之几
(1)掌握两种分析方法
(2)对比两种分析方法
3. 能借助线段图分析说明两类问题的异同
4.计算结果除不尽的处理方法
【易 错 点】
1.如何找准单位“1”和比较量。
2.解决问题。
一款手机原来每部成本 320 元,现在降低到 280 元,每部成本降低了百分之几?
提示:一个数量提高一定的百分率后,再下降相同的百分率;或者下降一定的百分 率后,再提高相同的百分率,得到的新数量一定比原来的数量小。
DOC 专业资料.
第四课时 折扣问题
【教学容】折扣问题
【教学目标】
懂得商业打折扣问题的数量关系与“求一个数的百分之几是多少”的应用题相同,
并能正确地解答这类应用题。
【教学重点】按折扣进行计算
答:比原价降低 54 元。
DOC 专业资料.
第五课时 列方程解决稍复杂的百分数问题
【教学容】列方程解决稍复杂的百分数问题(p11 例 5) 【教学目标】
1.通过练习,使学生能比较熟练地掌握列方程解稍复杂的百分数问题,提高解题能力。 2.通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。 【教学重点】分析应用题的数量关系 【教学难点】找准应用题的等量关系. 【知 识 点】 1.利用线段图分析数量关系 2.列方程解决问题的方法 3.渗透一题多解分数问题与百分数问题的对比与沟通 【易 错 点】 1. 找不准单位“1”的量,不会用含有未知数的式子表示另一个量。 2. 不懂得通常设单位“1”的量为χ。 3. 把数值代入含有未知数的式子,计算出结果后添上单位。
错解分析:错在把超过 1600 元部分(900 元)认为符合 500 元~2000 元之间,就要
按 10%征税,即 900×10%就可以求出应缴纳的个人所得税了。其实超过部分首先有 500 元
是按 5%征税的,剩下的 400 元再按 10%征收。
正确解答:2500-1600=900(元)
500×5%=25(元)
对百分数的理解,进一步积累解决实际问题的经验,培养分析、比较、类推解决实际问题
的能力。wk.baidu.com
3.在探索新知的过程中,感受百分数与现实生活的密切联系,增强自主探索和合作
交流的意识,体验成功的乐趣。
【教学重点】正确理解“求一个数比另一个数多(少)百分之几”的实际问题的解题方法。
【教学难点】找准单位“1”的量。
【教学难点】关键是对折扣和成数的理解,并正确列出算式
【知 识 点】
1.理解折扣含义
2.计算折扣的方法
3.根据折扣和原价计算折后价
4.根据折扣和折后价计算原价
5.对比三类问题异同点
【易 错 点】
1.选择。
某超市清仓处理一批袜子,打六五折出售,现价是原价的(
)
A.35%
B.65%
C. 1 65
2.解决问题。
(900-500)×10% =40(元)
25 +40 =65(元)
答:明爸爸应缴纳个人所得税 65 元。
DOC 专业资料.
第三课时 利息问题
【教学容】利息问题 【教学目标】
1.了解储蓄的含义。 2.理解本金、利率、利息的含义。 3.掌握利息的计算方法,会正确地计算存款利息。 【教学重点】利息的计算方法。 【教学难点】利息的计算。 【知 识 点】 1.本金、利息、利率的含义 2.计算应得和实得利息 3.计算本息总额 【易 错 点】 1. 能正确计算本息总金额 2. 能根据存单进行相应计算 3.判断:一种电器先降价 10%,再提价 10%,现价与最初售价相同。( )
280÷320=0.875=87.5%
答: 每部成本降低了 87.5%。
错解分析:错在把“降低到”理解成“降低了”。原来每部成本 320 元,现在降低
到 280 元,说明成本降低了 320—280=40(元)。应用降低了的 40 元除以原来的成本价。
正确解答:320—280=40(元) 40÷320=0.125=12.5%
DOC 专业资料.
答: 每部成本降低了 12.5%。
第二课时 纳税问题
【教学容】纳税问题
【教学目标】
1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
2.初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
3.培养和解决简单的实际问题的能力,体会生活中处处有数学。
【教学重点】理解和掌握应纳税额的计算方法。
一件上衣原价 180 元,现在打七折出售,比原价降低多少元?
180×70%=126(元)
答:比原价降低 126 元。
错解分析:此题错在没有理解“打七折出售”的意义。“打七折出售”是说现价是原
价的 70%,而不是说现价比原价少 70%。
正确解答:180—180×70%=54(元)或 180×(1—70%)=54(元)
如:80%χ=20×80%=16 (人) 正确 :80%χ=20×80%=16
DOC 专业资料.
第六课时 列方程解稍复杂的百分数实际问题
【教学容】列方程解稍复杂的百分数实际问题(p12 例 6) 【教学目标】
月收入超过 1600 元,超过部分按下面的标准征税。
不超过 500 元的
5%
超过 500 元~2000 元 的部分
10%
超过 2000 元~5000 元 的部分
15%
……
明的爸爸月收入 2500 元,应缴纳个人所得税多少元?
(2500-1600)×10%=900×10%=90(元)
答:明爸爸应缴纳个人所得税 90 元。
【教学难点】分段纳税
【知 识 点】
1.纳税的意义是什么?怎样纳税?
2.熟练地运用百分数进行各种税额的计算。
3.分段纳税的有关知识和方法。
【易 错 点】
1. 用百分数进行纳税的计算时,以谁为单位“1”。
2. 分段纳税的有关知识。如课本 P6 第 4 题:
2005 年我国公布了新的个人收入所得税征收标准。个人月收入 1600 元以下不征税。