高速MOS驱动电路设计和应用指南
MOS管驱动电路设计,如何让MOS管快速开启和关闭?
MOS管驱动电路设计,如何让MOS管快速开启和关闭?关于M O S管驱动电路设计,本文谈一谈如何让M O S管快速开启和关闭。
一般认为M O S F E T(M O S管)是电压驱动的,不需要驱动电流。
然而,在M O S管的G极和S极之间有结电容存在,这个电容会让驱动M O S变的不那么简单。
下图的3个电容为M O S管的结电容,电感为电路走线的寄生电感:如果不考虑纹波、E M I和冲击电流等要求的话,M O S管开关速度越快越好。
因为开关时间越短,开关损耗越小,而在开关电源中开关损耗占总损耗的很大一部分,因此M O S管驱动电路的好坏直接决定了电源的效率。
怎么做到M O S管的快速开启和关闭呢?对于一个M O S管,如果把G S之间的电压从0拉到管子的开启电压所用的时间越短,那么M O S管开启的速度就会越快。
与此类似,如果把M O S管的G S电压从开启电压降到0V的时间越短,那么M O S管关断的速度也就越快。
由此我们可以知道,如果想在更短的时间内把G S电压拉高或者拉低,就要给M O S管栅极更大的瞬间驱动电流。
大家常用的P W M芯片输出直接驱动M O S或者用三极管放大后再驱动M O S的方法,其实在瞬间驱动电流这块是有很大缺陷的。
比较好的方法是使用专用的M O S F E T驱动芯片如T C4420来驱动M O S管,这类的芯片一般有很大的瞬间输出电流,而且还兼容T T L电平输入,M O S F E T驱动芯片的内部结构如下:M O S驱动电路设计需要注意的地方:因为驱动线路走线会有寄生电感,而寄生电感和M O S管的结电容会组成一个L C振荡电路,如果直接把驱动芯片的输出端接到M O S管栅极的话,在P W M波的上升下降沿会产生很大的震荡,导致M O S管急剧发热甚至爆炸,一般的解决方法是在栅极串联10欧左右的电阻,降低L C振荡电路的Q值,使震荡迅速衰减掉。
因为M O S管栅极高输入阻抗的特性,一点点静电或者干扰都可能导致M O S管误导通,所以建议在M O S管G极和S极之间并联一个10K的电阻以降低输入阻抗。
mos管的栅极驱动电路设计
mos管的栅极驱动电路设计主要包括以下几个方面:
1.增加电流供应能力:图腾柱电路和推挽输出电路都可以用来增
强驱动,从而快速完成栅极电容输入的充电过程。
2.加速MOS管的关断:在关断的瞬间,驱动电路需要提供尽可
能低阻抗的通路,使MOSFET的栅极和源极之间的电容快速放电,保证开关管可以快速关断。
这通常通过在栅极电阻上并联一个二极管和一个额外的电阻来实现,其中二极管通常采用快恢复二极管,以缩短关断时间并降低关断损耗。
3.防止电源IC损坏:并联在栅极电阻上的额外电阻还可以防止电
源IC在关断时因电流过大而损坏。
4.满足高边驱动要求:对于需要驱动高边MOS管的情况,通常
使用变压器驱动器,有时也用于安全隔离。
高速MOSFET门极驱动电路的设计应用指南(有图完整版)
高速MOSFET门极驱动电路的设计应用指南author Laszlo Baloghtranslator Justin Hu摘要本文主要演示了一种系统化的方法来设计高速开关装置的高性能门极驱动电路。
文章收集了大量one-stop-shopping 主题的信息来解决最普通的设计挑战。
因此它应当对各种水平的电力电子工程师都适用。
最常用的电路方案和它们的性能都经过了分析,包括寄生参数、瞬时和极端运行条件的影响。
文章首先回顾了MOSFET技术和开关运行模式,然后由简入繁地讨论问题。
详细的描述了参考地和高端门极驱动电路的设计程序、交流耦合和变压器隔离方案。
专门的一章用来介绍同步整流装置中MOSFET的门极驱动要求。
文章另举出了几个设计的实例,一步一步进行了说明。
Ⅰ.引言MOSTET是金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor)的缩写,是电子工业中高频、高效率开关装置的关键器件。
令人惊叹的是,场效应晶体管技术发明于1930年,比双极性晶体管早了大约20年。
第一个信号级别的场效应晶体管20世纪50年代末期被制造出来,功率级别的MOSFET在20世纪70年代中期出现。
而今天无数的MOSFET被集成到现代电子器件中,无论是微处理器还是分立的功率晶体管。
本文所关注的是功率MOSFET在各种各样的开关模式功率变换器装置中门极驱动的要求。
Ⅱ.MOSFET技术双极型和MOSFET晶体管都使用了同样的工作原理。
从根本上讲,这两种晶体管都是电荷控制的器件,这就意味着它们的输出电流和控制电极在半导体中建立的电荷成比例。
当这些器件用作开关时,它们都必须被一个低阻抗的电源驱动,电源要能提供足够的充放电电流来使它们快速建立或释放控制电荷。
从这一点来看,MOSFET在开关过程中必须和双极性晶体管一样通过“硬”驱动才能获得类似的开关速度。
理论上,双极型和MOSFET器件的开关速度几乎一样,由载流子运动经过半导体区域所需要的时间决定。
重点讲解MOS管驱动电路详解
重点讲解MOS管驱动电路详解一、MOS管驱动电路综述在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。
这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。
1、MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。
原因是导通电阻小,且容易制造。
所以开关电源和马达驱动的应用中,一般都用NMOS。
下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。
寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2、MOS管导通特性导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
选择导通电阻小的MOS管会减小导通损耗。
电源设计经验之MOS管驱动电路篇
电源设计经验之MOS管驱动电路篇MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。
MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。
下面一起探讨MOSFET用于开关电源的驱动电路。
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。
但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。
更细致的,MOSFET还应考虑本身寄生的参数。
对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。
当电源IC与MOS管选定之后,选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。
一个好的MOSFET驱动电路有以下几点要求:(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。
(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。
(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。
(4)驱动电路结构简单可靠、损耗小。
(5)根据情况施加隔离。
下面介绍几个模块电源中常用的MOSFET驱动电路。
1、电源IC直接驱动MOSFET图1 IC直接驱动MOSFET电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。
第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。
第二,了解一下MOSFET的寄生电容,如图1中C1、C2的值。
如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。
如果驱动能力不足,上升沿可能出现高频振荡,即使把图1中Rg减小,也不能解决问题!IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。
高速MOS驱动电路设计和应用指南教材
高速MOS驱动电路设计和应用指南摘要本篇论文的主要目的是来论证一种为高速开关应用而设计高性能栅极驱动电路的系统研究方法。
它是对“一站买齐”主题信息的收集,用来解决设计中最常见的挑战。
因此,各级的电力电子工程师对它都应该感兴趣。
对最流行电路解决方案和他们的性能进行了分析,这包括寄生部分的影响、瞬态的和极限的工作情况。
整篇文章开始于对MOSFET技术和开关工作的概述,随后进行简单的讨论然后再到复杂问题的分析。
仔细描述了设计过程中关于接地和高边栅极驱动电路、AC耦合和变压器隔离的解决方案。
其中一个章节专门来解决同步整流器应用中栅极驱动对MOSFET的要求。
另外,文章中还有一些一步一步的参数分析设计实例。
简介MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。
或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。
第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。
如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。
本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET 的要求。
场效应晶体管技术双极晶体管和场效应晶体管有着相同的工作原理。
从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。
当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。
从这点看,MOS-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。
理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。
在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。
高速MOSFET门极驱动电路的设计应用的指南
高速MOSFET门极驱动电路的设计应用指南author Laszlo Balogh translator Justin Hu摘要本文主要演示了一种系统化的方法来设计高速开关装置的高性能门极驱动电路。
文章收集了大量one-stop-shopping 主题的信息来解决最普通的设计挑战。
因此它应当对各种水平的电力电子工程师都适用。
最常用的电路方案和它们的性能都经过了分析,包括寄生参数、瞬时和极端运行条件的影响。
文章首先回顾了MOSFET技术和开关运行模式,然后由简入繁地讨论问题。
详细的描述了参考地和高端门极驱动电路的设计程序、交流耦合和变压器隔离方案。
专门的一章用来介绍同步整流装置中MOSFET的门极驱动要求。
文章另举出了几个设计的实例,一步一步进行了说明。
Ⅰ.引言MOSTET是金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor)的缩写,是电子工业中高频、高效率开关装置的关键器件。
令人惊叹的是,场效应晶体管技术发明于1930年,比双极性晶体管早了大约20年。
第一个信号级别的场效应晶体管20世纪50年代末期被制造出来,功率级别的MOSFET在20世纪70年代中期出现。
而今天无数的MOSFET被集成到现代电子器件中,无论是微处理器还是分立的功率晶体管。
本文所关注的是功率MOSFET在各种各样的开关模式功率变换器装置中门极驱动的要求。
Ⅱ.MOSFET技术双极性和MOSFET晶体管都使用了同样的工作原理。
从根本上讲,这两种晶体管都是电荷控制的器件,这就意味着它们的输出电流和控制电极在半导体中建立的电荷成比例。
当这些器件用作开关时,它们都必须被一个低阻抗的电源驱动,电源要能提供足够的充放电电流来使它们快速建立或释放控制电荷。
从这一点来看,MOSFET在开关过程中必须和双极性晶体管一样通过“硬”驱动才能获得类似的开关速度。
理论上,双极性和MOSFET器件的开关速度几乎一样,由载流子运动经过半导体区域所需要的时间决定。
MOS驱动电路设计
高速MOS驱动电路设计和应用指南简介MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。
或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。
第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。
如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。
本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET 的要求。
场效应晶体管技术双极晶体管和场效应晶体管有着相同的工作原理。
从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。
当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。
从这点看,MOS-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。
理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。
在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。
与双极结型晶体管相比,MOSFET在数字技术应用和功率应用上的普及和发展得益于它的两个优点。
优点之一就是在高频率开关应用中MOSFET使用比较方便。
MOSFET更加容易被驱动,这是因为它的控制极和电流传导区是隔离开的,因此不需要一个持续的电流来控制。
一旦MOSFET导通后,它的驱动电流几乎为0。
另外,在MOSFET中,控制电荷的积累和存留时间也大大的减小了。
这基本解决了设计中导通电压降(和多余的控制电荷成反比)和关断时间之间的矛盾。
因此,MOSFET技术以其更加简单的、高效的驱动电路使它比晶体管设备具有更大的经济效益。
此外,有必要突出强调下,尤其是在电源应用上,MOSFET本身具有阻抗特性。
mos驱动电路设计
mos驱动电路设计
由于您没有提供更多的情况,因此我将为您提供有关mos驱动电路设
计的一般信息。
MOS驱动电路是一种用于控制MOSFET(金属氧化物半导体场效应晶体管)的电路,它可以将信号转换为适合MOSFET特性的电压和电流。
MOS
驱动电路通常用于开关电源、电机驱动器、LED驱动器、电流源等应用中。
以下是一些关于MOS驱动电路设计的要点:
1.MOSFET的选择:为了有效地控制MOSFET,需要选择适合的MOSFET。
选择时应注意电流和电压等参数,并确保其特性曲线与设计要求相匹配。
2.源极驱动电路:为了快速开启和关闭MOSFET,需要设计一个源极
驱动电路。
该电路通常包括一个反向恢复二极管(用于降低MOSFET的开
启时间)、一个信号放大器(用于增强控制信号)和一个输出级(用于提
供驱动电流)。
3.控制信号:控制信号通常来自于微控制器、PLC等设备,需要进行
适当的信号滤波和升压等处理,以保证稳定性和可靠性。
4.保护电路:为防止过流、过压、过温等情况的发生,需要设计一些
保护电路,并确保其对系统性能不产生负面影响。
5.PCB布局:合理的PCB布局可以降低电磁干扰和串扰,提高系统的
可靠性和稳定性。
总之,MOS驱动电路设计需要考虑很多因素。
如果您需要更具体的帮助,请提供更详细的信息。
高速MOSFET栅极驱动电路的设计与应用指南
高速MOSFEMOSFET T栅极驱动电路的设计与应用指南摘要本文将展示一个用来设计高速开关应用所需的高性能栅极驱动电路的系统性方案。
它综合了各方面的信息,可一次性解决一些最常见的设计问题。
因此,各个层面的电力电子工程师都值得一读。
文中分析了一些最流行的电路方案及其性能,包括寄生元件、瞬间和极端工作条件的影响。
首先,文章对MOSFET技术和开关操作进行了大致讨论,从简单问题逐渐转向复杂问题,并详细讲述了低端和高端栅极驱动电路以及交流耦合和变压器隔离式方案的设计程序。
另外,文章还专门用一个章节的内容来讨论同步整流器应用中MOSFET的栅极驱动要求。
最后,本文还提供了多个分步骤的设计案例。
简介MOSFET,全称为金属氧化物半导体场效应晶体管,是电子产品领域各种高频高效开关应用的关键元器件。
FET技术发明于1930年,比双极晶体管还要早大约20年,这一点令人感到意外。
最早的信号级FET晶体管出现在20世纪50年代末,而功率MOSFET则是在70年代中期问世的。
如今,数百万的MOSFET 晶体管被集成到了各种电子元器件中,从微控制器到“离散式”功率晶体管。
本话题的重点在于各种开关模式电源转换应用中功率MOSFET的栅极驱动要求。
Design And Application GuideFor High Speed MOSFET Gate Drive CircuitsBy Laszlo BaloghABSTRACTThe main purpose of this paper is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Thus it should be of interest to power electronics engineers at all levels of experience.The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special chapter deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications.Several, step-by-step numerical design examples complement the paper.INTRODUCTIONMOSFET – is an acronym for Metal Oxide Semiconductor Field Effect Transistor and it is the key component in high frequency, high efficiency switching applications across the electronics industry. It might be surprising, but FET technology was invented in 1930, some 20 years before the bipolar transistor. The first signal level FET transistors were built in the late 1950’s while power MOSFETs have been available from the mid 70’s. Today, millions of MOSFET transistors are integrated in modern electronic components, from microprocessors, through “discrete” power transistors.The focus of this topic is the gate drive requirements of the power MOSFET in various switch mode power conversion applications. MOSFET TECHNOLOGYThe bipolar and the MOSFET transistors exploit the same operating principle. Fundamentally, both type of transistors are charge controlled devices which means that their output current is proportional to the charge established in the semiconductor by the control electrode. When these devices are used as switches, both must be driven from a low impedance source capable of sourcing and sinking sufficient current to provide for fast insertion and extraction of the controlling charge. From this point of view, the MOSFETs have to be driven just as “hard” during turn-on and turn-off as a bipolar transistor to achieve comparable switching speeds. Theoretically, the switching speeds of the bipolar and MOSFET devices are close to identical, determined by the time required for the charge carriers to travel across the semiconductor region. Typical values in power devices are approximately 20 to 200 picoseconds depending on the size of the device. The popularity and proliferation of MOSFET technology for digital and power applications is driven by two of their major advantages over the bipolar junction transistors. One of these benefits is the ease of use of the MOSFET devices in high frequency switching applications. The MOSFET transistors are simpler to drive because their control electrode is isolated from the current conducting silicon, therefore a continuous ON current is not required. Once the MOSFET transistors are turned-on, their drive current is practically zero. Also, the controlling charge and accordingly the storage time in the MOSFET transistors is greatly reduced. This basically1eliminates the design trade-off between on state voltage drop – which is inversely proportional to excess control charge – and turn-off time. As a result, MOSFET technology promises to use much simpler and more efficient drive circuits with significant economic benefits compared to bipolar devices.Furthermore, it is important to highlight especially for power applications, that MOSFETs have a resistive nature. The voltage drop across the drain source terminals of a MOSFET is a linear function of the current flowing in the semiconductor. This linear relationship is characterized by the R DS(on) of the MOSFET and known as the on-resistance. On-resistance is constant for a given gate-to-source voltage and temperature of the device. As opposed to the -2.2mV/°C temperature coefficient of a p-n junction, the MOSFETs exhibit a positive temperature coefficient of approximately 0.7%/°C to 1%/°C. This positive temperature coefficient of the MOSFET makes it an ideal candidate for parallel operation in higher power applications where using a single device would not be practical or possible. Due to the positive TC of the channel resistance, parallel connected MOSFETs tend to share the current evenly among themselves. This current sharing works automatically in MOSFETs since the positive TC acts as a slow negative feedback system. The device carrying a higher current will heat up more – don’t forget that the drain to source voltages are equal – and the higher temperature will increase its R DS(on) value. The increasing resistance will cause the current to decrease, therefore the temperature to drop. Eventually, an equilibrium is reached where the parallel connected devices carry similar current levels. Initial tolerance in R DS(on) values and different junction to ambient thermal resistances can cause significant – up to 30% – error in current distribution.Device typesAlmost all manufacturers have got their unique twist on how to manufacture the best power MOSFETs, but all of these devices on the market can be categorized into three basic device types. These are illustrated in Figure 1.Figure 1. Power MOSFET device types Double-diffused MOS transistors were introduced in the 1970’s for power applications and evolved continuously during the years. Using polycrystalline silicon gate structures and self-aligning processes, higher density integration and rapid reduction in capacitances became possible. The next significant advancement was offered by the V-groove or trench technology to further increase cell density in power MOSFET devices. The better performance and denser integration don’t come free however, as trench MOS devices are more difficult to manufacture.The third device type to be mentioned here is the lateral power MOSFETs. This device type is constrained in voltage and current rating due to its inefficient utilization of the chip geometry. Nevertheless, they can provide significant benefits in low voltage applications, like in microprocessor power supplies or as synchronous rectifiers in isolated converters.2The lateral power MOSFETs have significantly lower capacitances, therefore they can switch much faster and they require much less gate drive power.MOSFET ModelsThere are numerous models available to illustrate how the MOSFET works, nevertheless finding the right representation might be difficult. Mostof the MOSFET manufacturers provide Spice and/or Saber models for their devices, but these models say very little about the application traps designers have to face in practice. They provide even fewer clues how to solve the most common design challenges.A really useful MOSFET model which would describe all important properties of the device from an application point of view would be very complicated. On the other hand, very simple and meaningful models can be derived of the MOSFET transistor if we limit the applicabilityof the model to certain problem areas.The first model in Figure 2 is based on the actual structure of the MOSFET device and can be used mainly for DC analysis. The MOSFET symbol in Figure 2a represents the channel resistance and the JFET corresponds to the resistance of the epitaxial layer. The length, thus the resistance of the epi layer is a function of the voltage rating of the device as high voltage MOSFETs require thicker epitaxial layer.Figure 2b can be used very effectively to model the dv/dt induced breakdown characteristic of a MOSFET. It shows both main breakdown mechanisms, namely the dv/dt induced turn-on of the parasitic bipolar transistor - present in all power MOSFETs - and the dv/dt induced turn-onof the channel as a function of the gate terminating impedance. Modern power MOSFETs are practically immune to dv/dt triggering of the parasitic npn transistor due to manufacturing improvements to reduce the resistance between the base and emitter regions.It must be mentioned also that the parasitic bipolar transistor plays another important role. Its base – collector junction is the famous body diode of the MOSFET.Figure 2. Power MOSFET models34Figure 2c is the switching model of the MOSFET. The most important parasitic components influencing switching performance are shown in this model. Their respective roles will be discussed in the next chapter which is dedicated to the switching procedure of the device.MOSFET Critical ParametersWhen switch mode operation of the MOSFET is considered, the goal is to switch between the lowest and highest resistance states of the device in the shortest possible time. Since the practical switching times of the MOSFETs (~10ns to 60ns) is at least two to three orders of magnitude longer than the theoretical switching time (~50ps to 200ps), it seems important to understand the discrepancy. Referring back to the MOSFET models in Figure 2, note that all models include three capacitors connected between the three terminals of the device. Ultimately, the switching performance of the MOSFET transistor is determined by how quickly the voltages can be changed across these capacitors.Therefore, in high speed switching applications, the most important parameters are the parasitic capacitances of the device. Two of these capacitors, the C GS and C GD capacitors correspond to the actual geometry of the device while the C DS capacitor is the capacitance of the base collector diode of the parasitic bipolar transistor (body diode).The C GS capacitor is formed by the overlap of the source and channel region by the gate electrode. Its value is defined by the actual geometry of the regions and stays constant (linear) under different operating conditions.The C GD capacitor is the result of two effects. Part of it is the overlap of the JFET region and the gate electrode in addition to the capacitance of the depletion region which is non-linear. The equivalent C GD capacitance is a function of the drain source voltage of the device approximated by the following formula:DS1GD,0GD V K 1C C ⋅+≈The C DS capacitor is also non-linear since it is the junction capacitance of the body diode. Its voltage dependence can be described as:DS 2DS,0DS V K C C ⋅≈Unfortunately, non of the above mentioned capacitance values are defined directly in the transistor data sheets. Their values are given indirectly by the C ISS , C RSS , and C OSS capacitor values and must be calculated as: RSSOSS DS RSS ISS GS RSSGD C C C C C C C C −=−== Further complication is caused by the C GD capacitor in switching applications because it is placed in the feedback path between the input and output of the device. Accordingly, its effective value in switching applications can be much larger depending on the drain source voltage of the MOSFET. This phenomenon is called the “Miller” effect and it can be expressed as:()GD L fs eqv GD,C R g 1C ⋅⋅+=Since the C GD and C DS capacitors are voltage dependent, the data sheet numbers are valid only at the test conditions listed. The relevant average capacitances for a certain application have to be calculated based on the required charge to establish the actual voltage change across the capacitors. For most power MOSFETs the following approximations can be useful: offDS,spec DS,spec OSS,ave OSS,off DS,spec DS,spec RSS,ave GD,V V C 2C V V C 2C ⋅⋅=⋅⋅=The next important parameter to mention is the gate mesh resistance, R G,I . This parasitic resistance describes the resistance associated by the gate signal distribution within the device. Its importance is very significant in high speed switching applications because it is in between the driver and the input capacitor of the device, directly impeding the switching times and the5dv/dt immunity of the MOSFET. This effect is recognized in the industry, where real high speed devices like RF MOSFET transistors use metal gate electrodes instead of the higher resistance polysilicon gate mesh for gate signal distribution. The R G,I resistance is not specified in the data sheets, but in certain applications it can be a very important characteristic of the device. In the back of this paper, Appendix A4 shows a typical measurement setup to determine the internal gate resistor value with an impedance bridge.Obviously, the gate threshold voltage is also a critical characteristic. It is important to note that the data sheet V TH value is defined at 25°C and at a very low current, typically at 250μA. Therefore, it is not equal to the Miller plateau region of the commonly known gate switching waveform. Another rarely mentioned fact about V TH is its approximately –7mV/°C temperature coefficient. It has particular significance in gate drive circuits designed for logic level MOSFET where V TH is already low under the usual test conditions. Since MOSFETs usually operate at elevated temperatures, proper gate drive design must account for the lower V TH when turn-off time, and dv/dt immunity is calculated as shown in Appendix A and F.The transconductance of the MOSFET is its small signal gain in the linear region of its operation. It is important to point out that every time the MOSFET is turned-on or turned-off, it must go through its linear operating mode where the current is determined by the gate-to-source voltage. The transconductance, g fs , is the small signal relationship between drain current and gate-to-source voltage:GSD fs dV dI g =Accordingly, the maximum current of the MOSFET in the linear region is given by: ()fs th GS D g V V I ⋅−=Rearranging this equation for V GS yields the approximate value of the Miller plateau as a function of the drain current.fs D th Miller GS,g IV V +=Other important parameters like the source inductance (L S ) and drain inductance (L D ) exhibit significant restrictions in switching performance. Typical L S and L D values are listed in the data sheets, and they are mainly dependant on the package type of the transistor. Their effects can be investigated together with the external parasitic components usually associated with layout and with accompanying external circuit elements like leakage inductance, a current sense resistor, etc.For completeness, the external series gate resistor and the MOSFET driver’s output impedance must be mentioned as determining factors in high performance gate drive designs as they have a profound effect on switching speeds and consequently on switching losses.SWITCHING APPLICATIONSNow, that all the players are identified, let’s investigate the actual switching behavior of the MOSFET transistors. To gain a better understanding of the fundamental procedure, the parasitic inductances of the circuit will be neglected. Later their respective effects on the basic operation will be analyzed individually. Furthermore, the following descriptions relate to clamped inductive switching because most MOSFET transistors and high speed gate drive circuits used in switch mode power supplies work in that operating mode.Figure 3. Simplified clamped inductive switchingmodelThe simplest model of clamped inductive switching is shown in Figure 3, where the DC current source represents the inductor. Its current can be considered constant during the short switching interval. The diode provides a path for the current during the off time of the MOSFET and clamps the drain terminal of the device to the output voltage symbolized by the battery.Turn-On procedureThe turn-on event of the MOSFET transistor can be divided into four intervals as depicted in Figure 4.Figure 4. MOSFET turn-on time intervalsIn the first step the input capacitance of the device is charged from 0V to V TH. During this interval most of the gate current is charging the C GS capacitor. A small current is flowing through the C GD capacitor too. As the voltage increases at the gate terminal and the C GD capacitor’s voltage has to be slightly reduced. This period is called the turn-on delay, because both the drain current and the drain voltage of the device remain unchanged.Once the gate is charged to the threshold level, the MOSFET is ready to carry current. In the second interval the gate is rising from V TH to the Miller plateau level, V GS,Miller. This is the linear operation of the device when current is proportional to the gate voltage. On the gate side, current is flowing into the C GS and C GD capacitors just like in the first time interval and the V GS voltage is increasing. On the output side of the device, the drain current is increasing, while the drain-to-source voltage stays at the previous level (V DS,OFF). This can be understood looking at the schematic in Figure 3. Until all the current is transferred into the MOSFET and the diode is turned-off completely to be able to block reverse voltage across its pn junction, the drain voltage must stay at the output voltage level. Entering into the third period of the turn-on procedure the gate is already charged to the sufficient voltage (V GS,Miller) to carry the entire load current and the rectifier diode is turned off. That now allows the drain voltage to fall. While the drain voltage falls across the device, the gate-to-source voltage stays steady. This is the Miller plateau region in the gate voltage waveform. All the gate current available from the driver is diverted to discharge the C GD capacitor to facilitate the rapid voltage change across the drain-to-source terminals. The drain current of the device stays constant since it is now limited by the external circuitry, i.e. the DC current source.The last step of the turn-on is to fully enhance the conducting channel of the MOSFET by applying a higher gate drive voltage. The final amplitude of V GS determines the ultimate on-resistance of the device during its on-time. Therefore, in this fourth interval, V GS is increased from V GS,Miller to its final value, V DRV. This is accomplished by charging the C GS and C GD capacitors, thus gate current is now split between the two components. While these capacitors are being charged, the drain current is still constant, and the drain-to-source voltage is slightly decreasing as the on-resistance of the device is being reduced.6Turn-Off procedureThe description of the turn-off procedure for the MOSFET transistor is basically back tracking the turn-on steps from the previous section. Start with V GS being equal to V DRV and the current in the device is the full load current represented by I DC in Figure 3. The drain-to-source voltage is being defined by I DC and the R DS(on) of the MOSFET. The four turn-off steps are shown in Figure 5. for completeness.Figure 5. MOSFET turn-off time intervals The first time interval is the turn-off delay which is required to discharge the C ISS capacitance from its initial value to the Miller plateau level. During this time the gate current is supplied by the C ISS capacitor itself and it is flowing through the C GS and C GD capacitors of the MOSFET. The drain voltage of the device is slightly increasing as the overdrive voltage is diminishing. The current in the drain is unchanged.In the second period, the drain-to-source voltage of the MOSFET rises from I D⋅R DS(on) to the final V DS(off) level, where it is clamped to the output voltage by the rectifier diode according to the simplified schematic of Figure 3. During this time period – which corresponds to the Miller plateau in the gate voltage waveform - the gate current is strictly the charging current of the C GDcapacitor because the gate-to-source voltage is constant. This current is provided by the bypass capacitor of the power stage and it is subtracted from the drain current. The total drain current still equals the load current, i.e. the inductor current represented by the DC current source in Figure 3.The beginning of the third time interval is signified by the turn-on of the diode, thus providing an alternative route to the load current.The gate voltage resumes falling from V GS,Miller to V TH. The majority of the gate current is coming out of the C GS capacitor, because the C GDcapacitor is virtually fully charged from the previous time interval. The MOSFET is in linear operation and the declining gate-to-source voltage causes the drain current to decrease and reach near zero by the end of this interval.Meanwhile the drain voltage is steady at V DS(off)due to the forward biased rectifier diode.The last step of the turn-off procedure is to fully discharge the input capacitors of the device. V GSis further reduced until it reaches 0V. The bigger portion of the gate current, similarly to the third turn-off time interval, supplied by the C GScapacitor. The drain current and the drain voltage in the device are unchanged.Summarizing the results, it can be concluded that the MOSFET transistor can be switched between its highest and lowest impedance states (either turn-on or turn-off) in four time intervals. The lengths of all four time intervals are a function of the parasitic capacitance values, the required voltage change across them and the available gate drive current. This emphasizes the importance of the proper component selection and optimum gate drive design for high speed, high frequency switching applications.7Characteristic numbers for turn-on, turn-off delays, rise and fall times of the MOSFET switching waveforms are listed in the transistor data sheets. Unfortunately, these numbers correspond to the specific test conditions and to resistive load, making the comparison of different manufacturers’ products difficult. Also, switching performance in practical applications with clamped inductive load is significantly different from the numbers given in the data sheets.Power lossesThe switching action in the MOSFET transistorin power applications will result in some unavoidable losses, which can be divided into two categories.The simpler of the two loss mechanisms is the gate drive loss of the device. As described before, turning-on or off the MOSFET involves chargingor discharging the C ISS capacitor. When the voltage across a capacitor is changing, a certain amount of charge has to be transferred. The amount of charge required to change the gate voltage between 0V and the actual gate drive voltage V DRV, is characterized by the typical gate charge vs. gate-to-source voltage curve in the MOSFET datasheet. An example is shown in Figure 6.Figure 6. Typical gate charge vs. gate-to-sourcevoltage This graph gives a relatively accurate worst case estimate of the gate charge as a function of the gate drive voltage. The parameter used to generate the individual curves is the drain-to-source off state voltage of the device. V DS(off) influences the Miller charge – the area below the flat portion of the curves – thus also, the total gate charge required in a switching cycle. Once the total gate charge is obtained from Figure 6, the gate charge losses can be calculated as:DRVGDRVGATEfQVP⋅⋅=where V DRV is the amplitude of the gate drive waveform and f DRV is the gate drive frequency – which is in most cases equal to the switching frequency. It is interesting to notice that the Q G⋅f DRV term in the previous equation gives the average bias current required to drive the gate. The power lost to drive the gate of the MOSFET transistor is dissipated in the gate drive circuitry. Referring back to Figures 4 and 5, the dissipating components can be identified as the combination of the series ohmic impedances in the gate drive path. In every switching cycle the required gate charge has to pass through the driver output impedances, the external gate resistor, and the internal gate mesh resistance. As it turns out, the power dissipation is independent of how quickly the charge is delivered through the resistors. Using the resistor designators from Figures 4 and 5, the driver power dissipation can be expressed as:OFFDRV,ONDRV,DRVIG,GATELODRVGDRVLOOFFDRV,IG,GATEHIDRVGDRVHIONDRV,PPPRRRfQVR21PRRRfQVR21P+=++⋅⋅⋅⋅=++⋅⋅⋅⋅=In the above equations, the gate drive circuit is represented by a resistive output impedance and this assumption is valid for MOS based gate drivers. When bipolar transistors are utilized in the gate drive circuit, the output impedance becomes non-linear and the equations do not yield the correct answers. It is safe to assume that with low value gate resistors (<5Ω) most gate drive losses are dissipated in the driver. If R GATE is sufficiently large to limit I G below the output89current capability of the bipolar driver, the majority of the gate drive power loss is then dissipated in R GATE .In addition to the gate drive power loss, the transistors accrue switching losses in the traditional sense due to high current and high voltage being present in the device simultaneously for a short period. In order to ensure the least amount of switching losses, the duration of this time interval must be minimized. Looking at the turn-on and turn-off procedures of the MOSFET, this condition is limited to intervals 2 and 3 of the switching transitions in both turn-on and turn-off operation. These time intervals correspond to the linear operation of the device when the gate voltage is between V TH and V GS,Miller , causing changes in the current of the device and to the Miller plateau region when the drain voltage goes through its switching transition.This is a very important realization to properly design high speed gate drive circuits. It highlights the fact that the most important characteristic of the gate driver is its source-sink current capability around the Miller plateau voltage level. Peak current capability, which is measured at full V DRV across the driver’s output impedance, has very little relevance to the actual switching performance of the MOSFET. What really determines the switching times of the device is the gate drive current capability when the gate-to-source voltage, i.e. the output of the driver is at ~5V (~2.5V for logic level MOSFETs).A crude estimate of the MOSFET switching losses can be calculated using simplified linear approximations of the gate drive current, drain current and drain voltage waveforms during periods 2 and 3 of the switching transitions. First the gate drive currents must be determined for the second and third time intervals respectively:()G.I GATE HI MillerGS,DRV G3G.IGATE HI TH Miller GS,DRVG2R R R V V I R R R V V 0.5V I ++−=+++⋅−=Assuming that I G2 charges the input capacitor of the device from V TH to V GS,Miller and I G3 is the discharge current of the C RSS capacitor while the drain voltage changes from V DS(off) to 0V, the approximate switching times are given as:G3offDS,RSS G2THMillerGS,ISS I V C t3I V V C t2⋅=−⋅=During t2 the drain voltage is V DS(off) and the current is ramping from 0A to the load current, I L while in t3 time interval the drain voltage is falling from V DS(off) to near 0V. Again, using linear approximations of the waveforms, the power loss components for the respective time intervals can be estimated:Loff DS,Loff DS,I 2V T t3P32I V T t2P2⋅⋅=⋅⋅=where T is the switching period. The total switching loss is the sum of the two loss components, which yields the following simplifed expression:Even though the switching transitions are well understood, calculating the exact switching losses is almost impossible. The reason is the effect of the parasitic inductive components which will significantly alter the current and voltage waveforms, as well as the switching times during the switching procedures. Taking into account the effect of the different source and drain inductances of a real circuit would result in second order differential equations to describe the actual waveforms of the circuit. Since the variables, including gate threshold voltage, MOSFET capacitor values, driver output impedances, etc. have a very wide tolerance, the above described linear approximation seems to be a reasonable enough compromise to estimate switching losses in the MOSFET.Effects of parasitic componentsThe most profound effect on switching performance is exhibited by the source inductance. There are two sources for parasitic source inductance in a typical circuit, the sourceTt3t22I V P L DS(off)SW +⋅⋅=。
日常学习归纳
熔断器
1、熔断器是根据电流超过规定值一段时间后,以其自身产生的热量使熔体熔化,从而使电路 断开,运用这种原理制成的一种电流保护器。熔断器广泛应用于高低压配电系统和控制系统以 及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。 2、熔断器是一种过电流保护器。熔断器主要由熔体和熔管以及外加填料等部分组成。使用时, 将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体 自身产生的热量熔断熔体,使电路断开,从而起到保护的作用。以金属导体作为熔体而分断电 路的电器,串联于电路中,当过载或短路电流通过熔体时,熔体自身将发热而熔断,从而对电 力系统、各种电工设备以及家用电器都起到了一定的保护作用。具有反时延特性,当过载电流 小时,熔断时间长;过载电流大时,熔断时间短。因此,在一定过载电流范围内至电流恢复正 常,熔断器不会熔断,可以继续使用。 自复熔断器:采用金属钠作熔体,在常温下具有高电导率。当电路发生短路故障时,短路 电流产生高温使钠迅速汽化,汽态钠呈现高阻态,从而限制了短路电流。当短路电流消失后, 温度下降,金属钠恢复原来的良好导电性能。自复熔断器只能限制短路电流,不能真正分断电 路。其优点是不必更换熔体,能重复使用。 熔断器具有反时延特性,即过载电流小时,熔断时间长;过载电流大时,熔断时间短。所 以,在一定过载电流范围内,当电流恢复正常时,熔断器不会熔断,可继续使用。熔断器有各 种不同的熔断特性曲线,可以适用于不同类型保护对象的需要。
1每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外 界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电 流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流 12.5A以下时不会熔断。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中 使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护 用,但此时的过载保护特性并不理想。 熔断器的选择主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电 动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数
高速MOSFET门极驱动电路的设计应用指南
高速MOSFET门极驱动电路的设计应用指南一、背景介绍二、设计步骤及要点1.确定MOSFET型号和工作条件:根据实际应用需求,选择合适的MOSFET型号,并确定其工作电压和电流。
这些参数将直接影响到驱动电路的设计。
2.确定驱动电源电压和电流:根据MOSFET的特性参数,选择合适的驱动电源电压和电流。
一般来说,高速应用中通常需要较高的电源电压和电流,以确保MOSFET能够迅速开关。
3.选择驱动芯片或设计驱动电路:根据以上参数,选择合适的驱动芯片或自行设计驱动电路。
常用的驱动芯片有IR2110、TC4420等,可以根据实际应用需求选择合适的芯片。
4.进行驱动电路的布局和连接:根据驱动芯片或电路设计,进行布局和连接。
注意保持短而稳定的门极连接线路,尽量减小电流环路和电磁干扰。
5.添加保护电路:考虑MOSFET的过电流、过压等保护问题,设计相应的保护电路,以确保MOSFET的安全工作。
6.进行仿真和测试:通过仿真软件进行仿真分析,验证电路设计是否满足要求。
同时,进行实际测试,检查电路的性能和稳定性。
三、高速MOSFET门极驱动电路的典型设计示例下图为一种常用的高速MOSFET门极驱动电路设计示例,以IR2110为例:[电路图]该驱动电路可实现高速的MOSFET开关控制,具有较高的转换效率和可靠性。
其中VCC为驱动电源电压,VDD为MOSFET的工作电源电压,VIN为控制信号输入端,VD为MOSFET的漏极电压,R1和R2为限流电阻,D1为反向恢复二极管。
四、设计注意事项1.选择合适的驱动芯片或自行设计驱动电路时,要充分考虑芯片的最大驱动电流和工作频率等参数,以确保其满足实际应用需求。
2.在设计驱动电路时,要注意尽量减小电流回路和电磁干扰,保持稳定的门极连接线路。
3.添加合适的保护电路,以保护MOSFET免受过电流、过压等故障的影响。
4.在设计完成后,进行仿真分析和实际测试,检查电路的性能和稳定性,并及时进行调整和改进。
高速MOS驱动电路设计和应用指南
高速MOS驱动电路设计和应用指南摘要本篇论文的主要目的是来论证一种为高速开关应用而设计高性能栅极驱动电路的系统研究方法。
它是对“一站买齐”主题信息的收集,用来解决设计中最常见的挑战。
因此,各级的电力电子工程师对它都应该感兴趣。
对最流行电路解决方案和他们的性能进行了分析,这包括寄生部分的影响、瞬态的和极限的工作情况。
整篇文章开始于对MOSFET技术和开关工作的概述,随后进行简单的讨论然后再到复杂问题的分析。
仔细描述了设计过程中关于接地和高边栅极驱动电路、AC耦合和变压器隔离的解决方案。
其中一个章节专门来解决同步整流器应用中栅极驱动对MOSFET的要求。
另外,文章中还有一些一步一步的参数分析设计实例。
简介MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。
或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。
第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。
如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。
本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET 的要求。
场效应晶体管技术双极晶体管和场效应晶体管有着相同的工作原理。
从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。
当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。
从这点看,MOS-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。
理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。
在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。
MOS管驱动电路设计细节
MOS管驱动电路设计细节MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)驱动电路是一种常见的电子电路,用于控制和驱动MOS管的开关动作。
驱动电路的设计细节包括选择正确的驱动方法、确定合适的驱动电压和电流、考虑驱动电路的稳定性和保护电路等。
首先,选择正确的驱动方法是设计驱动电路的重要一步。
常见的MOS管驱动方法有共源共栅驱动、共漏共栅驱动和高压驱动等。
共源共栅驱动方法简单可靠,适用于大多数应用场合;共漏共栅驱动方法具有较高的电流放大倍数,适用于高频应用;高压驱动方法适用于驱动高压MOS管的场合。
选择正确的驱动方法可以提高电路的性能和可靠性。
确定合适的驱动电压和电流是设计驱动电路的关键。
驱动电压需要超过MOS管的阈值电压,通常推荐使用5V或12V的电压。
驱动电流需要满足MOS管的输入电容和开关速度的要求,一般应选取足够大的电流。
可以通过选用合适的电压源、电流源和电阻等元器件来实现所需的驱动电压和电流。
考虑驱动电路的稳定性也是设计驱动电路的重要一环。
稳定性可以通过添加负反馈来提高,常见的方法包括反馈电阻和反馈电容等。
负反馈可以减小电路的电压和电流波动,提高驱动电路的稳定性和可靠性。
保护电路的设计是确保MOS管和驱动电路安全工作的重要环节。
常见的保护电路包括电压限制器、电流限制器和瞬态电压抑制器等。
电压限制器用于限制驱动电压在安全范围内,避免过压和击穿现象;电流限制器用于限制驱动电流在安全范围内,避免过流和烧毁MOS管;瞬态电压抑制器用于抑制电路中的瞬态电压,避免对MOS管和驱动电路造成损害。
此外,还需要考虑其他一些细节问题。
比如,选择合适的MOS管型号和参数,确保其能够满足电路要求;注意驱动电路的布局和线路连接,避免产生干扰和噪声;选择合适的散热器和散热方式,确保MOS管和驱动电路的散热效果良好等。
总之,MOS管驱动电路的设计细节涉及驱动方法选择、驱动电压和电流确定、稳定性和保护电路设计等方面。
高速MOS驱动电路设计和应用指南
150ma BAS40
dv/dt
23
Pnp
pnp 13
QOFF
DON
MOSFET DON
RGATE
QOFF
MOpn MOSFET ,
24
VDRV+0.7
GND-0.7
QOFF
0
Npn
npn 14
pnp
Npn
pnp MOSFET
MOSFET
MOSFET N MOSFET
CGS
CDS V-I
MOSFET MOSFET QSR 16 buck
MOSFET QFW MOSFET
28
MOSFETQSR
20ns
80ns
0 CGD CDS Miller 0 0 VDRV CGD VDRV
MOSFET
RDS(on)
CBST
12 PWM
24
NMOS
: R1 MOSFET
PWM
MOSFET npn Cbst
PWM
R1
R2
, PWM
24V 24
48V
,
41
,
600V
1mA 0.5W 25
PWM
42
600V
120
KHz 100V
26 N
N
MOSFET
3 VDRV~VGS
MOSFET LD·di/dt LD LD
LD VDS(off)
PWM
PWM 8
17
8 MOSFET MOSFET
PWM
PCB PWM PWM PWM MOSFET
MOSFET MOSFET 0.1uF 1uF
PWM
浅析MOSFET 高速驱动器电路设计
’ 汤世贤5微波测量5北京:国防工业出版社,’33’
关键词 !"#$%& 驱动电路 功率损耗
+引 言
开关电源的发展趋势是工作频率越来越高。 国外发达国家的实用频率已接近或超过,!-., 我国 目 前 实 用 频 率 为 *+!,++/-.。 要 提 高 工 作频率,驱动电路的设计选型尤为重要,因此在 !-.范围工作的高速 !"#$%& 的过渡过程就 成为整个开关过程的重要部分。过渡过程太慢 不仅影响工作频率的提高,而且对开关电源的效 率、寿命等产生严重影响。本文就工程研制中高 速驱动电路的设计考虑加以分析。
第4+卷
的容性负载有很大差别,更不能仅将 !"#$%& 的输入电容当作驱动器的实际负载来考虑。实 际上 ’ 个 !"#$%& 的 有 效 输 入 电 容 !()要 比 !(**高得多,所以驱动电路的设计选型不仅要知 道 最 大 有 效 负 载,更 重 要 的 是 要 知 道 驱 动 器 在 ’次给足的开关过程中的瞬时负载。以上参数 从厂家提供的手册上可以查到。
* 转换过程的功率损耗
为了简 便 起 见,把 线 性 变 化 部 分 作 为 三 角
波,不变部分作为常量处理,并设(!2!!/)为转 换周期 ’#,则在(!#!!*)之间的功耗为:
((!!!!#)82)9#01:".’-(0;;()!!<!#)(#) ((!*!!!)82)9#01:".’-(0;;()!*<!!)(!) 式中:#01为 $%&’() 导通时,流过 $ 极至* 极 的电流;".-(0;;)为 $%&’() 截止时,$ 极和* 极 上施加的电压。
基于UCC27321高速MOSFET驱动芯片的功能与应用
1引言随着电力电子技术的发展,各种新型的驱动芯片层出不穷,为驱动电路的设计提供了更多的选择和设计思路,外围电路大大减少,使得MOSFET的驱动电路愈来愈简洁,.性能也获得到了很大地提高。
其中UCC27321就是一种外围电路简单,高效,快速的驱动芯片。
2UCC27321的功能和特点TI公司推出的新的MOSFET驱动芯片能输出9A的峰值电流,能够快速地驱动MOSFET 开关管,在10nF的负载下,其上升时间和下降时间的典型值仅为20ns。
工作电源为4—15V。
工作温度范围为-40℃—105℃。
图1给出了芯片的内部原理图,表1为输入、输出逻辑表。
表2为各个引脚的功能介绍。
UCC27321的ENBL是给设计者预留的引脚端,为高电平有效(见表1)。
在标准工业应用中,ENBL端经100K的上拉电阻接至高电平。
一般正常工作时可以悬空。
为求可靠,也可将其接至输入电源高电平,低电平时芯片不工作。
通过对ENBL的精心设置可以设计出可靠的保护电路。
UCC27321的输出端采用了独特的双极性晶体管图腾柱和双MOSFET图腾柱的并联结构,能在几百纳秒的时间内提供高达9A的峰值电流并使得有效电流源能在低电压下正常工作。
当输出电压小于双极性晶体管的饱和压降时,其输出阻抗为MOSFET的Ron。
当驱动电压过低或过冲时,输出级MOSFET的体二极管提供了一个小的阻抗。
这就使得在绝大多数情况下,无须在输出脚6、7与地之间额外地增加一个肖特基二极管。
UCC27321在MOSFET的弥勒高原效应转换期间能获得9A的峰值电流。
UCC27321内部独特的输出结构使得放电能力比充电能力要强的多。
充电时电流流经P沟道MOS,放电时电流流经N沟道MOS,这就使得这种芯片的驱动关断能力要比其导通能力强,对防止MOSFET的误导通是很有利的。
3功率MOSFET驱动电路的一般要求和最佳驱动特性:A、MOSFET管工作在高频时,必须注意以下两点[1]:①尽可能减少MOSFET各端点的连接线长度,特别是栅极引线。
MOS管驱动电路详解要点
MOS管驱动电路综述连载(一)邕时间:2009-07-06 8756次阅读【网友评论2条我要评论】收藏在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。
这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。
1、M OS管种类和结构MOSFE管是FET的一种(另一种是JFET,可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOST,所以通常提到NMO S或者PMO指的就是这两种。
至于为什么不使用耗尽型的MOS T,不建议刨根问底。
对于这两种增强型MOST,比较常用的是NMO S原因是导通电阻小,且容易制造。
所以开关电源和马达驱动的应用中,一般都用NMO S下面的介绍中,也多以NMO为主。
MOST的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。
寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOST原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS T中存在,在集成电路芯片内部通常是没有的。
2、M OSt导通特性导通的意思是作为开关,相当于开关闭合。
NMO的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS勺特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMO可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMO S3、M OSf关管损失不管是NMO还是PMOS导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导通过程
MOSFET的导通过程可分为如图4(即Figure4)所示的四个阶段。
第一个阶段:输入电容从0开始充电到Vth,在这个过程,栅极绝大部分电流都用来给电容CGS充电,也有很小的电流流过电容CGS。当电容CGS的电压增加到门的极限时,它的电压就会有稍微的减小。这个过程称为导通延迟,这是因为此时器件的漏极电流和漏极电压均未发生变化。
此外,有必要突出强调下,尤其是在电源应用上,MOSFET本身具有阻抗特性。MOSFET漏源端的电压降和流经半导体的电流成线性关系。这种线性关系,以MOSFET的RDS(on)表现出来,即导通阻抗。对于一个给定的栅源电压和温度的器件,其导通阻抗是恒定的。和p-n结-2.2mV/℃的温度系数相反,MOSFET有一个正的温度系数,约为0.7% /℃到1%/℃。MOSFET的这一正温度系数使得它成为在大功率电源应用的并联工作(由于使用一个器件是不实际或不可能的)上的理想选择。由于MOSFET较好的温度系数,并联的管子通常是均分电流。电流的均分是自动实现的,这是因为它的温度系数作为一个缓慢的负反馈系统。当电流较大时设备温度将会升高,但是不要忘记源漏极间的电压是不变的,温度升高将会使源漏极间电阻变大,增大的电阻又会使电流减小,因此管子的温度又会下降。最后,会达到一个动态平衡,并联的管子都通过相同的电流。在电流分配中,源漏极导通电阻的初始值和有不同温度特性的结电阻在均分电流时将会引起较大的误差,最高可达30%。
很明显,栅极阈值电压也是一个临界特性。有必要注意一下,在器件资料表中VTH(开启电压)的值是指在25℃,而且在漏极电流很小的情况下,电流典型值是250uA。因此,它并不等同于被大家公认的栅极开关波形的Miller平坦区。关于开启电压VTH的另一个很少提到的是约为-7mV/℃的温度系数,在MOSFET逻辑电平栅极电路驱动中它有着尤为重要的意义,它的开启电压VTH比在正常的测试条件下已经变低了。由于MOS FET工作在较高的温度,栅极驱动设计必须中适当的考虑到在截止时较低的开启电压,dv/dt免疫能力的计算见附录A和F。场效应晶体管的跨导是线性工作区中小信号的增益。有必要指出在管子每次导通或截止时,都要必须经过线性工作区,此时的电流取决于栅源电压。正向跨导gfs,反映了漏极电流和栅源电压之间的小信号关系,具体关系如下:
高速MOS驱动电路设计和应用指南
摘要
本篇论文的主要目的是来论证一种为高速开关应用而设计高性能栅极驱动电路的系统研究方法。它是对“一站买齐”主题信息的收集,用来解决设计中最常见的挑战。因此,各级的电力电子工程师对它都应该感兴趣。
对最流行电路解决方案和他们的性能进行了分析,这包括寄生部分的影响、瞬态的和极限的工作情况。整篇文章开始于对MOSFET技术和开关工作的概述,随后进行简单的讨论然后再到复杂问题的分析。仔细描述了设计过程中关于接地和高边栅极驱动电路、AC耦合和变压器隔离的解决方案。其中一个章节专门来解决同步整流器应用中栅极驱动对MOSFET的要求。
本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET的要求。
场效应晶体管技术
双极晶体管和场效应晶体管有着相同的工作原理。从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。从这点看,S-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。与双极结型晶体管相比,MOSFET在数字技术应用和功率应用上的普及和发展得益于它的两个优点。优点之一就是在高频率开关应用中MOSFET使用比较方便。MOSFET更加容易被驱动,这是因为它的控制极和电流传导区是隔离开的,因此不需要一个持续的电流来控制。一旦MOSFET导通后,它的驱动电流几乎为0。另外,在MOSFET中,控制电荷的积累和存留时间也大大的减小了。这基本解决了设计中导通电压降(和多余的控制电荷成反比)和关断时间之间的矛盾。因此,MOSFET技术以其更加简单的、高效的驱动电路使它比晶体管设备具有更大的经济效益。
当栅极电压达到开启电压时,MOSFET处于微导通状态。在第二个阶段,栅极电压从Vth上升到Miller平坦区,即VGS,Miller。这是器件的线性工作区,电流和栅极电压成正比。在栅极的一侧,电流如第一阶段一样流入电容CGS和CGD,电容VGS的的电压将会不断升高。在器件的输出端,漏极电流也不断变大,但是漏源电压基本不变,保持先前水平(VDS,OFF)。这从图3的原理图可以看出来。当所有电流都流入MOSFET而且二极管完全截止(pn结能承受反向电压)后,漏极电压必须保持在输出电压水平。
图2b可以非常好的展示MOSFET的dv/dt引发的击穿特性。它主要展现了两种击穿机制,即诱发寄生晶体管(所有的管子均有)的导通和dv/dt根据栅极阻抗诱发沟道导通。现代的功率MOSFET由于生产工艺的提高减小了基极和发射极的电阻,因此,实际上对dv/dt诱发寄生npn晶体管导通是有免疫的。必须指出的是,寄生性双极晶体管还扮演着另一个重要的角色。它的基集结就是有名的MOSFET的体二极管。
由于电容CGD和CGS是和电压有关的,因此只有把测试条件列出来时,那些资料中的数据才是有效的。对于一个确定的应用,有关的平均电容值必须由计算得来,而计算是基于建立于实际电压所需要的电荷。对于大多数的功率MOSFET来说,下面公式将会十分有用:
下一个将要谈及的重要的参数是栅极网格阻抗,Rg,I。这个寄生阻抗描述了器件内部栅极信号分配与阻抗之间的联系。在高速开关应用中它的重要性尤为突出,因为它介于驱动和器件输入电容之间,直接影响MOSFET的开关时间和dv/dt能力。在工业生产中已经意识到这个问题,实际中的高速MOSFET器件如RF MOSFET在栅极信号分配中使用金属栅极用来代替高阻抗的硅栅极。在资料表中阻抗Rg,I并没有指明,但在实际的应用中它可能是器件一个十分重要的特性。在这篇文章的后面,附录A4展示了通过使用阻抗电桥采用一种典型的测量装置来确定栅极内部阻抗值。
因此,MOSFET在线性区的最大电流公式为:
变换VGS,Miller平坦区电压可近似写成漏极电流的函数:
其他重要的参数如LD---漏极电感和Ls---源极电感在开关性能中也有显著的限制。典型的LD和Ls值会在器件资料单中列出,而且他们的值主要和器件的封装类型有关。它们的影响通常可以和外部寄生元件(通常和布局和外电路因素如漏电感、检测电阻等等)一同分析。
进入导通过程的第三个阶段,栅极电压(VGS,Miller)已经足够使漏极电流全部通过,而且整流二极管处于完全截止状态。现在允许漏极电压下降。在器件漏极电压下降过程中,栅源电压保持不变。这就是栅极电压波形的Miller平坦区。从驱动得到的可用的所有栅极电流通过电容CGD放电,这将加快漏源电压变化。而漏极电流几乎不变,这是由于此刻它受外部电路(即直流电流源)限制。
完整的,外部系列栅极电阻和MOSFET的输出阻抗在高速栅极驱动设计中是决定性的因素,因为它们在开关速度和最终开关损耗上有着深远的意义。
开关应用
现在,所有的角色都讨论完了,让我们来研究下MOSFET的真实开关行为。为了更好的理解其基本过程,电路中的寄生电感将会被忽略掉。随后,它们在基本工作中各自的影响将会单独的分析。此外,下面的说明和钳位感应开关有关,这因为大多数被用于电源模式的MOSFET晶体管和高速门驱动电路工作于那个模式。
另外,文章中还有一些一步一步的参数分析设计实例。
简介
MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。
器件类型
几乎所有的MOSFET制造厂商都有制造最佳管子的独特制造技术,但所有这些在市场上的管子都可分为基本的三类,如图1所示。
双扩散型晶体管在1970年开始应用于电源方面并在以后的时间里不断的发展。使用多晶硅闸门结构和自动调整过程,使高密度的集成和电容迅速的减小成为可能。
下一个重大的进步是在功率MOSFET器件上V沟槽技术或者称为沟渠技术,使集成度进一步的提高。更好的性能和更高的集成度并不是由你随便就能得来的,这是因为这将导致MOS器件沟渠更难制造。
在这里第三个器件类型是横向功率MOSFET。该器件的电压、电流是受限制的,这是由于其对芯片形状的低效利用。然而,他们能在低电压应用上提供很大的效益,如在微型电源或在隔离转换同步整流器中。由于横向功率MOSFET有着相当小的电容,因此他们的开关速度可以很快而且栅极驱动损耗也比较小。
场效应晶体管模型
有很多的模型来说明MOSFET如何工作,然而找到正确的适合的模型是比较困难的。大多数MOSFET制造商为他们的器件提供普通或者军用(Spice and/orSaber)模型,但是这些模型很少告诉使用者在实际使用中的陷阱。他们甚至很少提供在使用中最常见的最普通问题的解决方案。一个真正有用的MOSFET模型会从应用的角度描述器件所有重要的性质,这使得其模型可能会相当复杂。另一方面,如果我们把模型限制在某一问题领域,那么我们可以得到十分简单并有意义的MOSFET模型。在图2中第一个模型是基于MOSFET器件的实际结构,它主要用于直流的分析。它表示出了沟道阻抗和JFET(相当于外延层的阻抗)。外延层的厚度(决定外延层的阻抗)是器件额定电压的函数,而高电压的MOSFET需要一个厚的外延层。