理论力学(郝桐生第三版)课后答案

合集下载

理论力学(郝桐生)第三版第3单元课件

理论力学(郝桐生)第三版第3单元课件
教学目标
掌握力的概念和性质,学会计算合力和分力,理解物体的平衡条件和力矩平衡,熟悉牛顿运 动定律
力的概念
1 力的定义
力是物体之间相互作用的 结果,具有大小、方向和 作用点
2 力的性质
力可以改变物体的状态, 使物体加速度或改变物体 的形状
3 力的测量力的测量单位是牛 Nhomakorabea(N), 可以使用弹簧秤或动态力 计进行测量
平衡的种类
稳定平衡、不稳定平衡和中立平 衡
平衡的分析方法
可以使用力的平衡条件和力矩的 平衡条件进行分析
力矩与力矩平衡
1
力矩的定义
力矩是力对物体产生旋转效果的物理量,
力矩的计算
2
等于力的大小乘以力臂的长度
可以使用力矩的定义公式或右手法则进
行计算
3
力矩平衡的条件
力矩平衡时,合外力矩等于零,物体处 于平衡状态
力的合成与分解
1
合力与分力的概念
合力是多个力的结果,分力是一个力分解为多个力的结果
2
合力与分力的性质
合力等于多个力的矢量和,分力等于一个力在不同方向上的分解力
3
合力与分力的计算方法
合力计算可以使用几何法或分解法,分力计算可以使用三角函数或平衡方程
物体的平衡
平衡条件
物体处于平衡状态时,合外力和 合外力矩都为零
牛顿运动定律
第一定律
物体静止或匀速运动时,合外力等于零
第二定律
物体加速度与合外力成正比,与物体质量成反比
理论力学(郝桐生)第三版 第3单元课件
欢迎来到理论力学(郝桐生)课件!本课件介绍教材信息、主要内容和教学目标, 以及力的概念、力的合成与分解,物体的平衡,力矩与力矩平衡,牛顿运动 定律。

理论力学课后的习题及答案解析...doc

理论力学课后的习题及答案解析...doc

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。

其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。

其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

理论力学第三版课后答案第8章

理论力学第三版课后答案第8章
后者代入(1)可解出地面对杆的摩擦力 Fm = f s FN = 10.5 N
(9)
代入式(3)得 aCx = 1.03m/s 2 ,将其与式(9)第 1 式代入式(7)可解出端 B 加速度
aB = 2.65m/s 2
aB 为正,表明原假定正确,端 B 的确向左滑动。

后 答


ww w
.k hd
aw .
8-5C 质量为 m 半径为 R 的半圆柱体在图示位置静止释放。 图中,点 C 为质心, OC =
洪嘉振等《理论力学》第 3 版习题详解
2
1 R 5 R R J C = mR 2 + m( ) 2 + m( ) 2 + m( ) 2 = mR 2 4 2 2 4 4
系统惯性力系的主矩方向如图 8-1Cb 所示,其大小为为
M * = J Cα =
5 mR 2α 4

后 答


ww w
.k hd
aw .
可解得此瞬时质心速度为
vC = gl
由于杆作瞬时平移,故有点 B 的速度
vB = v A = vC = gl
r (2)对于连体基 A − e 1 ,定义该基的角加速度的正向如图 8-4Cb 不所示。基点 A 作圆 周运动,令其加速度为

T − T0 = mg xC0 − xC
后 答
(
1 2 mvC 。由动能定理 2
r r r r r r 其中 a1C = aC = aCx + aCy , a1etC = a A , a1eωC = lω12 = 0 , a1eαC = lα1 。上式变为

后 答
r x : aCx = − aωA + a1eαC cos θ

理论力学第三版课后答案第3章

理论力学第三版课后答案第3章

r 由式(1)在 τ 向的坐标式,可得点 B 的速度 r τ : vB = vO + rω = 2rω
aw .
re vω B r vO
r n
(1)
co
τ
r
m
固定圆弧纯滚动由点 O′ 到点O,有 AD = AD′ ,即 r (φ + θ ) = Rθ ,得 rφ = (R − r )θ ,两边对时


ww w
r 公共基 e 的坐标式为 rA = rB + A1 ρBA ,展开,考虑到图
r x2 r x3
r y3
C
3-2Ca 有

θ3

0 ⎛ xA ⎞ ⎛ ⎞ ⎛ cos φ1 ⎜ ⎜y ⎟ ⎟=⎜ ⎜ l sin (α − φ )⎟ ⎟+⎜ ⎜ 1 ⎠ ⎝ sin φ1 ⎝ A⎠ ⎝
− sin φ1 ⎞⎛ l cos α ⎞ ⎟⎜ ⎟ ⎜ ⎟ cos φ1 ⎟ ⎠⎝ 0 ⎠
aw .
r y2
B
r r 连体基 e 2 相对于与连体基 e 1 的位形为
r y
co
A
(1)
m
r y1 r x1
φ1 α
r r r r (2)对于连体基 e 1 ,由图 3-2Ca 有 rA = rB + ρ BA 在
.k hd
ρ = (0 − l sin α ) , θ 3 =
1 C T
π
2
−α
(2)
洪嘉振等《理论力学》第 3 版习题详解
1
3-1C 试确定图示各机构中刚体 B2 的位形和它们相对于公共基的方向余弦阵。
r y
r y r y
C b
B2

理论力学第三版课后习题答案

理论力学第三版课后习题答案

目录第一章质点力学 (2)第二章质点组力学 (56)第三章刚体力学 (74)第四章转动参考系 (105)第五章分析力学 (115)第一章 质点力学1.1 由题可知示意图如题1.1.1图:{{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得11021at t s v +=再由此式得()()2121122t t t t t t s a +-=证明完毕.1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1.2.1图.题1.2.1图设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过⎪⎭⎫ ⎝⎛+2110t 小时经过灯塔任意时刻A 船的坐标()t t x A 15150--=,0=A yB 船坐标0=B x ,⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛+-=t t y B 15211150则AB 船间距离的平方()()222B A B A y y x x d -+-=即()2021515t t d -=201521115⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++t t()20202211225225675900450⎪⎭⎫ ⎝⎛++++-=t t tt t2d 对时间t 求导()()67590090002+-=t t dtd d AB 船相距最近,即()02=dtdd ,所以h t t 430=- 即午后45分钟时两船相距最近最近距离22min231543154315⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫ ⎝⎛⨯=s km1.3 解 ()1如题1.3.2图第1.3题图y题1.3.2图由题分析可知,点C 的坐标为⎩⎨⎧=+=ψψϕsin cos cos a y a r x 又由于在∆AOB 中,有ϕψsin 2sin ar =(正弦定理)所以ry r a 2sin 2sin ==ψϕ联立以上各式运用1cos sin 22=+ϕϕ由此可得rya x r a x 22cos cos --=-=ψϕ得12422222222=---++r y a x y a x r y 得22222223y a x r a x y -=-++化简整理可得()()2222222234r a y x y a x -++=-此即为C 点的轨道方程.(2)要求C 点的速度,分别求导⎪⎪⎩⎪⎪⎨⎧=--=2cos sin cos 2cos sin ϕωψψϕωϕωr y r r x 其中ϕω = 又因为ψϕsin 2sin a r =对两边分别求导 故有ψϕωψcos 2cos a r =所以22y x V +=4cos sin cos 2cos sin 2222ϕωψψϕωϕωr r r +⎪⎪⎭⎫ ⎝⎛--= ()ψϕψϕϕψω++=sin cos sin 4cos cos 22r1.4 解 如题1.4.1图所示,A BOCLxθd 第1.4题图OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量22x d OC v +=⨯=⊥ωωC 点速度dx d d v v v 222sec sec cos +====⊥⊥ωθωθθ 又因为ωθ= 所以C点加速度 θθθω ⋅⋅⋅⋅==tan sec sec 2d dt dv a ()2222222tan sec 2d x d x d +==ωθθω1.5 解 由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 由加速度的微分形式我们可知dtdv a =代入得dtT t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫ ⎝⎛-=002sin 1π可得 :D Ttc Tct v ++=2cos2ππ(D 为常数)代入初始条件:0=t 时,0=v ,故c TD π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos2T t T t c v ππ 又因为dtds v =所以=ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ1.6 解 由题可知质点的位矢速度r λ=//v ①沿垂直于位矢速度μθ=⊥v又因为 r r λ== //v , 即r rλ=μθθ==⊥r v 即rμθθ= ()()j i v a θ r dtd r dt d dt d +==(取位矢方向i ,垂直位矢方向j ) 所以()j i i i θ r rdtd r i dt r d r dt d +=+=()dtd r dt d r dt dr r dt d j j j j θθθθ ++=i j j 2r r r θθθ -+= 故()()j i a θθθ r r r r22++-= 即 沿位矢方向加速度()2θ r ra -= 垂直位矢方向加速度()θθr r a 2+=⊥ 对③求导r rr 2λλ== 对④求导θμμθθr rr +-=2⎪⎭⎫⎝⎛+=λμμθr 把③④⑦⑧代入⑤⑥式中可得rr a 222//θμλ-= ⎪⎭⎫ ⎝⎛+=⊥r a μλμθ1.7 解 由题可知⎩⎨⎧==θθsin cos r y r x ①②对①求导θθθ sin cos r r x-= ③ 对③求导2 ④对②求导θθθcos sin r r y+=⑤ 对⑤求导θθθθθθθsin cos cos 2sin 2 r r r ry -++=⑥ 对于加速度a ,我们有如下关系见题1.7.1图题1.7.1图即⎩⎨⎧+=+=θθθθθθcos sin sin cos a a y a a x r r⑦--⑧ 对⑦⑧俩式分别作如下处理:⑦θcos ⨯,⑧θsin ⨯ 即得⎩⎨⎧+=-=θθθθθθθθθθcos sin sin sin cos sin cos cos a a y a a x r r⑨--⑩ ⑨+⑩得θθsin cos yx a r += ⑾ 把④⑥代入 ⑾得2θr r a r -= 同理可得θθθ r r a 2+= 1.8解 以焦点F 为坐标原点,运动如题1.8.1图所示]题1.8.1图则M 点坐标⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= )又因为()()221cos 111e a e e a r -+-=θ即()rer e a --=21cos θ 所以()()2222222221211cos 1sin e r e ar r e a --+--=-=θθ故有()2222224222sin 1ωθωr e a r e v +-=()2224221ea r e -=ω()()]1211[2222222e r e ar r ea --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω 即()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)1.9证 质点作平面运动,设速度表达式为j i v y x v v +=令为位矢与轴正向的夹角,所以dt d v dt dv dt d v dt dv dt d y y x x j j i i v a +++==j i ⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv 所以[]j i a ⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x yy x v dt dv v dt dv ()j i y x v v +⋅ θθ y x y y y x x x v v dt dv v v v dt dv v ++-=dtdv v dt dv v y yxx += 又因为速率保持为常数,即C C v v y x ,22=+为常数对等式两边求导022=+dtdv v dt dv v y y xx所以0=⋅v a即速度矢量与加速度矢量正交.1.10解 由题可知运动轨迹如题1.10.1图所示,题1.10.1图则质点切向加速度dtdv a t =法向加速度ρ2n v a =,而且有关系式ρ2v 2k dt dv -= ①又因为()232y 1y 1'+''=ρ②2px y 2=所以yp y =' ③ 32yp y -='' ④ 联立①②③④2322322y p 1y p 2kv dtdv⎪⎪⎭⎫ ⎝⎛+-= ⑤又dydv ydt dy dy dv dt dv =⋅=把2px y 2=两边对时间求导得pyy x= 又因为222y xv += 所以22221py v y+= ⑥ 把⑥代入⑤23223222122121⎪⎪⎭⎫ ⎝⎛+⋅-=⋅⎪⎪⎭⎫ ⎝⎛+y p y p kv dydvp y v既可化为222py dykp v dv +-= 对等式两边积分222py dykp v dv p p vu+-=⎰⎰- 所以πk ue v -=1.11解 由题可知速度和加速度有关系如图1.11.1所示题1.11.1图⎪⎪⎩⎪⎪⎨⎧====ααcos sin 2a dt dv a a r v a t n 两式相比得dtdvr v ⋅=ααcos 1sin 2 即2cot 1vdv dt r =α 对等式两边分别积分200cot 1v dv dt rv v t⎰⎰=α 即αcot 11rtv v -=此即质点的速度随时间而变化的规律.1.12证 由题1.11可知质点运动有关系式⎪⎪⎩⎪⎪⎨⎧==ααcos sin 2a dtdv a r v ①② 所以 ωθθθd dv dt d d dv dt dv =⋅=,联立①②,有ααωθcos sin 2r v d dv = 又因为r v ω=所以 θαd vdv cot =,对等式两边分别积分,利用初始条件0=t 时,0θθ=()αθθcot 00-=e v v1.13 证(a )当00=v ,即空气相对地面上静止的,有牵相绝v v v +=.式中绝v 质点相对静止参考系的绝对速度, 相v 指向点运动参考系的速度, 牵v 指运动参考系相对静止参考系的速度.可知飞机相对地面参考系速度:绝v =v ',即飞机在舰作匀速直线运动.所以飞机来回飞行的总时间v l t '=20. (b )假定空气速度向东,则当飞机向东飞行时速度01v v v +'=飞行时间1v v lt +'=当飞机向西飞行时速度0v v v v v -'=+=牵相飞行时间2v v lt -'=故来回飞行时间021v v l t t t +'=+=0v v l -'+222v v lv -''= 即2200220112v v t v v v lt '-='-'= 同理可证,当空气速度向西时,来回飞行时间2201v v t t '-=(c )假定空气速度向北.由速度矢量关系如题1.13.1图v 题1.13.1图v v v '+=0绝202v v v -'= 所以来回飞行的总时间222vv l t -'=2200220112v vt v v v l '-='-'=同理可证空气速度向南时,来回飞行总时间仍为2201v v t t '-=1.14解 正方形如题1.14.1图。

理论力学第三版课后习题答案

理论力学第三版课后习题答案

理论力学第三版课后习题答案【篇一:理论力学教程思考题答案第三版.doc】2r?.。

这表示质点的径向与横向运动在相互影响,它们一起才?2,a??rar??r??r?能完整地描述质点的运动变化情况1.3答:内禀方程中,an是由于速度方向的改变产生的,在空间曲线中,由于a恒位于密切面内,速度v总是沿轨迹的切线方向,而an垂直于v指向曲线凹陷一方,故an总是沿助法线方向。

质点沿空间曲线运动时,ab?0,fb?0z何与牛顿运动定律不矛盾。

因质点除受作用力f,还受到被动的约反作用力r,二者在副法线方向的分量成平衡力fb?rb?0,故ab?0符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若fb与rb大小不等,ab就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来ab所在的方位,又有了新的副法线,在新的副法线上仍满足fb?rb?0即ab?0。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

1.4答:质点在直线运动中只有a?而无an,质点的匀速曲线运动中只有an而无a?;质点作变速运动时即有at又有an。

1.5而dr即反应位矢r大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,dtdrdr?j而dr?r?i?r??。

在直线运动中,?r只表示r大小的改变。

如在极坐标系中,dtdtdt规定了直线的正方向后,drdrdrdr。

且的正负可表示的指向,二者都可表示质点dtdtdtdt的运动速度;在曲线运动中drdrdrdr?,且也表示不了的指向,二者完全不同。

dtdtdtdtdvdv表示质点运动速度的大小,方向的改变是加速度矢量,而只是质点运动速度大小dtdtdvdvaan,而?a?。

dtdt的改变。

在直线运动中规定了直线的正方向后,二者都可表示质点运动的加速度;在曲线运动中,二者不同,1.6答:不论人是静止投篮还是运动投篮,球对地的方向总应指向篮筐,其速度合成如题1.6v球对人v人对地题1-6图图所示,故人以速度v向球网前进时应向高于篮筐的方向投出。

理论力学课后习题及答案解析..

理论力学课后习题及答案解析..

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。

其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。

其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

理论力学教程思考题第三版.doc

理论力学教程思考题第三版.doc

第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。

在的极限情况,二者一致,在匀速直线运动中二者也一致的。

1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。

事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。

这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。

质点沿空间曲线运动时,z 何与牛顿运动定律不矛盾。

因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。

1.5答:即反应位矢大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而只表示大小的改变。

如在极坐标系中,而。

在直线运动中,规定了直线的正方向后,。

且的正负可表示的指向,二者都可表示质点t t t ∆+→t ∆0→∆t r V θV r a r r V θa θθ r r +θV θV r V 2θr -r V θV θr 2θr r a r -=.2θθθ r r a +=n a a v n a v n a 0,0≠=b b F a F R 0=+b b R F 0=b a b b R F 与b a b a 00==+b b b a R F 即n a a 而无ττa a n 而无n t a a 又有dt d r r dtdr r j i r θ r r dt d +=r dt dr =dt d dt dr r =dt dr dt d r的运动速度;在曲线运动中,且也表示不了的指向,二者完全不同。

理论力学课后习题答案Word版

理论力学课后习题答案Word版
整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为worБайду номын сангаас格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式整理为word格式友情提示
理论力学
第二章:
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生【篇一:理论力学a72】txt>课程编号: 070000140英文名称: theoretical mechanics适用专业:力学、机械类专业等学分数: 4.5 学时数: 72学时执笔者:王钦亭审核人:批准人:编写日期: 2013年6月一、课程性质与目的理论力学是工科高等院校机械、土建等专业本科生的一门重要的技术基础课。

它是各门力学课的基础,并在工程技术领域有着广泛的应用。

本课程的任务是使学生掌握物体机械运动的一般规律和研究方法,为学习有关的后续课程打好力学基础;使学生初步学会应用理论力学的理论和方法,分析、解决一些简单的工程实际问题;培养学生的逻辑思维能力和基本工程素质,同时培养学生的创新精神和辩证唯物主义世界观。

二、课程教学的主要内容及学时分配本课程主要讲述物体机械运动的一般规律,包括静力学、运动学和动力学三个主要部分。

本课程的难点是某些较为复杂的动力学系统问题。

重点是力学分析方法的训练和基本工程素质的培养。

静力学(24学时)第一章静力学公理及物体的受力分析(4学时)知识要点:静力学公理及推论;常见约束及约束反力的表示方法,物体受力分析与受力图的画法。

目标要求:理解5个静力学公理及2个推论,并注意它们各自的应用条件;掌握常见约束的性质和约束反力,能够对简单物体进行受力分析,掌握受力图的画法。

采用课堂教学,4学时。

第二章平面汇交力系与平面力偶系(4学时)目标要求:掌握求解平面汇交力系(包括力系合成和平衡问题的求解)的几何法;能熟练计算力的投影、力对点之矩;能够正确地理解合力矩定理和平面力偶等效定理;能够熟练应用平面汇交力系的解析法或平面力偶系的平衡方程求解简单的工程实际问题。

采用课堂教学,4学时。

第三章平面任意力系(8学时)知识要点:用解析方法研究平面任意力系的合成与平衡;讨论平面任意力系的合成结果与平衡条件;应用平面任意力系的平衡方程求解简单的工程实际问题。

(完整word版)理论力学教程思考题答案第三版.doc

(完整word版)理论力学教程思考题答案第三版.doc

第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。

在的极限情况,二者一致,在匀速直线运动中二者也一致的。

1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。

事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。

这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。

质点沿空间曲线运动时,z 何与牛顿运动定律不矛盾。

因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。

1.5答:即反应位矢大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而只表示大小的改变。

如在极坐标系中,而。

在直线运动中,规定了直线的正方向后,。

且的正负可表示的指向,二者都可表示质点t t t ∆+→t ∆0→∆t r V θV r a r &&r V θa θθ&&&r r +θV θV r V 2θ&r -r V θV θ&&r 2θ&&&r r a r -=.2θθθ&&&&r r a +=n a a v n a v n a 0,0≠=b b F a F R 0=+b b R F 0=b a b b R F 与b a b a 00==+b b b a R F 即n a a 而无ττa a n 而无n t a a 又有dt d r r dtdr r j i r θ&&r r dt d +=r dt dr &=dt d dt dr r =dt dr dt d r的运动速度;在曲线运动中,且也表示不了的指向,二者完全不同。

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生【篇一:理论力学a72】txt>课程编号: 070000140英文名称: theoretical mechanics适用专业:力学、机械类专业等学分数: 4.5 学时数: 72学时执笔者:王钦亭审核人:批准人:编写日期: 2013年6月一、课程性质与目的理论力学是工科高等院校机械、土建等专业本科生的一门重要的技术基础课。

它是各门力学课的基础,并在工程技术领域有着广泛的应用。

本课程的任务是使学生掌握物体机械运动的一般规律和研究方法,为学习有关的后续课程打好力学基础;使学生初步学会应用理论力学的理论和方法,分析、解决一些简单的工程实际问题;培养学生的逻辑思维能力和基本工程素质,同时培养学生的创新精神和辩证唯物主义世界观。

二、课程教学的主要内容及学时分配本课程主要讲述物体机械运动的一般规律,包括静力学、运动学和动力学三个主要部分。

本课程的难点是某些较为复杂的动力学系统问题。

重点是力学分析方法的训练和基本工程素质的培养。

静力学(24学时)第一章静力学公理及物体的受力分析(4学时)知识要点:静力学公理及推论;常见约束及约束反力的表示方法,物体受力分析与受力图的画法。

目标要求:理解5个静力学公理及2个推论,并注意它们各自的应用条件;掌握常见约束的性质和约束反力,能够对简单物体进行受力分析,掌握受力图的画法。

采用课堂教学,4学时。

第二章平面汇交力系与平面力偶系(4学时)目标要求:掌握求解平面汇交力系(包括力系合成和平衡问题的求解)的几何法;能熟练计算力的投影、力对点之矩;能够正确地理解合力矩定理和平面力偶等效定理;能够熟练应用平面汇交力系的解析法或平面力偶系的平衡方程求解简单的工程实际问题。

采用课堂教学,4学时。

第三章平面任意力系(8学时)知识要点:用解析方法研究平面任意力系的合成与平衡;讨论平面任意力系的合成结果与平衡条件;应用平面任意力系的平衡方程求解简单的工程实际问题。

理论力学习题答案-第三版

理论力学习题答案-第三版

a=
2 2 2 dv & = 2 dω 2 sec 2 θ tan θ = 2ω x d + x = ωd ⋅ 2 sec θ ⋅ sec θ ⋅ tan ⋅ θ dt d2
(
)
1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:
πt ⎞ a = c⎛ ⎜1 − sin ⎟ 2T ⎠ ⎝
-5-
y A r ϕ
a
ψ
C
a
B x
O
第 1 .3 题 图
y
A

ω ϕ O
r
C •
a
ψ B
x
题1.3.2图
由题分析可知,点 C 的坐标为 ⎧ x = r cos ϕ + a cos ψ ⎨ ⎩ y = a sin ψ 又由于在 ∆ AOB 中,有
r 2a = sin ψ sin ϕ
sin ϕ =
(正弦定理)所以
L
A d θ Oห้องสมุดไป่ตู้
第1.4题 图
x C
B
OL 绕 O 点以匀角速度转动, C 在 AB 上滑动,因此 C 点有一个垂直杆的速度分

v ⊥ = ω × OC = ω d 2 + x 2 C 点速度 v= v⊥ d 2 + x2 = v ⊥ sec θ = ωd sec 2 θ = ω cos θ d
& = ω 所以 C 点加速度 又因为 θ
(
) (
)
2
rω cos ϕ ⎧& x = − r ω sin ϕ − sin ψ ⎪ ⎪ 2 cos ψ ⎨ rω cos ϕ ⎪y &= ⎪ ⎩ 2
其中
ω =ϕ &
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档