九年级第一学期数学阶段性测试题

合集下载

太原市九年级上阶段性测评数学试题(一)含答案解析

太原市九年级上阶段性测评数学试题(一)含答案解析

太原市九年级上学期阶段性测评(一)数学一、选择题(本大题含10个小题,每小题2分,共20分)1.已知关于x的一元二次方程的一个根为1,则m的值为()A.2B.-2C.4D.-4【答案】A【解析】把x=1代入原方程可得,得m=22.如图,在菱形ABCD中,AB=5,∠B=60°,则对角线AC的长等于()A.8B.7C.6D.5【答案】D【解析】∵四边形ABCD是菱形,∴AB=BC,又∵∠B=60°,∴△ABC为等边三角形,∴AC=53.在一个不透明的盒子中,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中.不断重复以上操作过程,共摸了100次球,发现有20次摸到黑球,据此估计盒子中白球的个数为()A.12个B.16个C.20个D.30个【答案】B【解析】先算出盒子中黑球所占百分比,则,即共有20个球,则白球有个÷0=20%,则4÷20%=20,。

4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【答案】A【解析】把a=1,b=3,c=-2代入中,所以有两个不相等的实数根。

5.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿的长度为x尺,根据题意列出的方程是()【答案】C【解析】根据题意可得门框的高和宽分别是x-2和x-4,利用勾股定理可得6.小明、小颖、和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去.游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.关于这个游戏,下列判断正确的是()A.三个人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大【答案】D【解析】P(小明)=,P(小颖)=,P(小凡)=7.小明一家人在国庆间自驾汽车从家里出发到某著名旅游景点游玩.他在1:500000的地图上测得家所在的城市与旅游景点所在城市的图上距离为40cm,则这两城市的实际距离为()A.100kmB.200kmC.1000kmD.2000km【答案】B【解析】40cm=40×10-5km,1:500000=40×10-5:x,可得x=200km.8.小红利用一些花布的边角料,裁剪后装饰手工画.下面四个图案是她裁剪出的空心等边三角形、菱形、矩形、正方形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不一定相似的是()【答案】C【解析】等边三角形、菱形和正方形在保证各个角度对应相等的情况下,各个边长都相等,即使每条边都减少同样的长度,比例也仍相等,矩形则未必,可举具体数据来说明9.如图,以正方形ABCD的对角线AC为边作菱形AEFC,点E在边AB的延长线上,则∠FAE的度数为()A.15°B.22.5°C.30°D.37.5°【答案】B【解析】由图知,AC、AF分别为正方形ABCD和菱形AEFC的对角线,所以∠DAC=∠BAC=45°,∠FAE=∠FAC=12∠BAC=22.5°。

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题一、单选题1.下列2024年巴黎奥运会的运动图标中,不是中心对称图形的是( )A .B .C .D .2.若关于x 的方程()23210k x x -+-=是一元二次方程,则k 的取值范围是( )A .3k >B .3k ≠C .2k >D .2k ≥且3k ≠3.已知点P 在半径为r 的O e 内,且4OP =,则r 的值可能为( ) A .2B .3C .4D .54.如图,DAE ∠是O e 的内接四边形ABCD 的一个外角,若»BD的度数为112︒,则DAE ∠的度数是( )A .68︒B .66︒C .56︒D .112︒5.已知点F 是ABC V 的重心,连接AF 并延长交BC 于G 点,过点F 作BC 的平行线分别交AB 、AC 于D 点、E 点,则下列说法不正确的是( )A .DF EF =B .2AF FG =C .BG CG =D .:2:1ADE BDEC S S =V 四边形6.如图,等边三角形MNP 的边长为1,点M ,N 在O e 上,点P 在O e 内,O e 将MNP △绕点M 顺时针旋转,在旋转过程中得到两个结论:①当点P 第一次落在O e 上时,旋转角为30°;②当MP 第一次与O e 相切时,旋转角为60°,则结论正确的是( )A .①B .②C .①②D .均不正确二、填空题 7.若23x y =,则xy=. 8.已知一元二次方程260x kx ++=有一个根为1-,则方程的另一根为.9.在比例尺为1:5000的地图上,A 、B 两地间的图上距离为6cm ,则A ,B 两地间的实际距离是m .10.当m =时,代数式281m m -+有最大值.11.鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,P 是AB 的黄金分割点()AP BP >,若线段AB 的长为10cm ,则AP 的长为cm .12.如图,45AOB ∠=︒,点M 是射线OB 上一点,2OM =,以点M 为圆心,r 为半径作M e ,若M e 与射线OA 有两个公共点,则半径r 的取值范围是.13.某农场去年种植南瓜10亩,总产量为20000kg ,今年该农场扩大了种植面积,并引进新品,使产量增长到60000kg .已知今年种植面积的增长率是今年平均亩产量增长率的2倍,设今年平均亩产量的增长率为x ,则可列方程.(无需化简)14.如图,点D 、E 分别位于ABC V 边BC 、AB 上,AD 与CE 交于点F .已知点F 是AD 的中点,:1:4EF FC =,若3AE =,则BE 的长为.15.如图,一下水管道横截面为圆形,直径为20dm ,下雨前水面宽AB 为12dm .一场雨过后,水面宽变为16dm ,则水位上升dm .16.如图,在ABCD Y 中,3AB =,6BC =,60ABC ∠=︒.点P 沿着折线段B C D B ---运动,若点P 在运动的过程中,PAB V 的外心O 在ABCD Y 的边上,则符合条件的点P 有个.三、解答题 17.解下列方程: (1)()2252x x x -=-; (2)22670x x +-=. 18. 先化简,再求值:22323()21x x x x x x x x+--÷--+,其中x 满足2210x x --=. 19.已知关于x 的方程2221x mx m n -++=有两个不相等的实数根. (1)求n 的取值范围;(2)若n 为符合条件的最小整数,设方程的两根分别为1x 和2x ,求证:不论m 取何实数,12x x -是一个定值.20.如图,在平面直角坐标系中,OAB △的顶点坐标分别为()0,0O ,(2,1)A ,()1,2B .(1)画出将OAB △向左平移2个单位,再向上平移1个单位后得到的111O A B △;(2)以原点O 为位似中心,在y 轴的右侧画出OAB △的一个位似22OA B △,使它与OAB △的相似比为2:1;(3)判断111O A B △和22OA B △是否是位似图形(直接写结果),若是,请在图中标出位似中心点M ,并写出点M 的坐标.21.如图,在正方形ABCD 中,点E 在AD 上,点F 是CD 上,给出以下三个信息:①E 是AD 的中点,②ABE DEF △△∽,③点F 是CD 的四等分点.从以上信息中选择两个作为条件,另一个作为结论,组成一个真命题.(1)你选择的条件是;结论是;(填序号) (2)证明你构造的真命题.22. 某宾馆有100间标准房,当每间标准房房价为200元时,每天都客满.十一国庆期间,宾馆老板计划进行适当的提价.根据市场调查,当每间标准房房价在200280~元之间(含200元,280元)浮动时,每提高10元,日均入住房间数减少10间.在不考虑其他因素的前提下,设每间标准房价为x 元,日入住标准房房间数为y 间. (1)求y 与x 之间的函数关系式;(2)当标准房价定为多少元时,标准房日营业额为10400元. 23. 如图,AB 为O e 的直径,弦CD AB ⊥于点H ,(1)用没有刻度的直尺和圆规在射线BC 上确定一点E ,使得AEB DAB ∠=∠.(保留作图痕迹,不写作法).(2)在(1)的条件下,若O e2AD =,求CE 的长. 24.根据以下素材,探索解决问题.,说明:小陈同学PQ 离地面的距离测得在同一直25. 已知关于x 的方程()200x ax b b +=≠+与()200x cx d d ++=≠都有实数根,若这两个方程有且只有一个相同的根,且ab cd =,则称它们互为“友好方程”.如2320x x -+=与260x x +-=互为“友好方程”.(1)判断方程2210x x -+=与220x x -+=是否是互为“友好方程”?并说明理由; (2)若关于x 的方程2320x x m ++=与2230x m x -+=互为“友好方程”,求m 的值;(3)材料:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根1x ,2x 和系数a ,b ,c ,有如下关系: 12b x x a+=-, 12cx x a =.已知关于x 的方程①:220x ax b ++=和关于x 的方程②:220x ax b ++=,p 、q 分别是方程①和方程②的一个实数根,且p q ≠,0b ≠.若方程①和方程②是互为“友好方程”,且以p 为两个方程的相同的根,请用含a 的代数式分别表示p 和q . 26.【问题背景】已知点A 是半径为r 的O e 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O e 的切线l ,在直线l 上取点C ,使得CAE∠为锐角.【初步感知】(1)如图1,当20CAE∠=︒时,α=°;【问题探究】(2)以线段AC为对角线作矩形ABCD,使得边AD过点E,连接CE,对角线AC,BD相交于点F.①如图2,若AE DC=,求证:2AC r=②如图3,当43=AC r,23CE r=时,请仿照图2补全图形.(a)判断过点O、E、C三点能不能作一个圆,并说明理由;(b)探究AB与BC之间的数量关系,并写出探究过程.。

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

初三阶段性目标检测(一)数学试卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.一元二次方程x²=x 的根是( )A.x1=0,x2=1B.x1=0,x2=-1C.x1=x2=0D.x1=x2=12.一次函数y=(k-2)x+3的函数值y随x的增大而增大,则k 的取值范围是( )A.k>0B.k<0C.k>2D.k<23.如图,∠A=40°,∠B=55°,∠C=25°,则∠ADC的度数是( )A.115°B.120°C.125°D.130°4.函数y=x2-4x+3与x轴的交点有几个( )A.0个B.1个C.2个D.无法确定5.已知四边形ABCD是平行四边形,若AC⊥BD,要使得四边形ABCD是正方形,则需要添加条件( )A.AB=BCB.∠ABC=90°C.∠ADB=30°D.AC=AB6.如图,在△ABC中,∠C=90°,AC=6,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A.6B.8C.10D.137.学校组织音乐社团学生进行“青春旋律,你我飞翔”钢琴演奏比赛,全校共有18名同学进入决赛,他们的决赛成绩如下表:成绩(分)9.49.59.69.79.89.9人数324342则这些学生决赛成绩的中位数是( )A.9.75B.9.70C.9.65D.9.608.在体育选项报考前,某九年级学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=,由此可知该生此次实心球训练的成绩为( )A.6米B.10米C.12米D.15米9.已知二次函数y=ax²+(b-1)x+c+1的图象如图所示,则在同一坐标系中y 1=ax²+bx+1与y 2=x-c 的图象可能是( )35x 32x 1212++-10.如图,矩形ABCD 中,AB=8,AD=4,点E 、F 分别是AB 、DC 上的动点,EF//BC ,则 AF+CE 的最小值是( )A.8B.12C.8D.16二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:(+1)(-1)= 。

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

2020-2021 学年第一学期九年级阶段性测评一、选择题(每小题2 分,共20 分)数学试卷1. 若a=c= 2(b +d≠0) ,则a +c是()b d b +dA. 1B. 2C.12D. 4 【考点】比例的性质【难度星级】★【答案】B【解析】a = 2b, c = 2d ,∴a +c=2b + 2d= 2 .b +d b +d2.将方程(x +1)(2x - 3) = 1 化成“ax2 +bx +c = 0 ”的形式,当a=2 时,则b,c 的值分别为()A. b =-1,c =-3 C. b =-1,c =-4B. b =-5,c =-3 D. b = 5,c =-4【考点】一元二次方程的一般式【难度星级】★【答案】C【解析】化为一般式得2x2 -x - 4 = 0 ,所以b =-1, c =-4 .3.矩形、菱形、正方形的对角线都具有的性质是()A.对角线相等B. 对角线相互平分C. 对角线相互垂直D. 对角线互相垂直平分【考点】特殊平行四边形对角线性质【难度星级】★【答案】B【解析】矩形,菱形,正方形均为平行四边形,所以对角线互相平分.4.如图,一组互相平行的直线a、b、c 分别与直线l1,l2 交于A、B、C、D、E、F,直线l1,l2 交于点O,则下列各式不正确的是()A.AB=DEBC EFB.AB=DEAC DFC.EF=DEBC ABD.OE=EBEF FC【考点】平行线分线段成比例定理【难度星级】★★【答案】D【解析】D 选项中OE=EB. OF FC5.一元二次方程x2 + 6x + 9 = 0 的根的情况是()A.有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根【考点】根的判别式【难度星级】★【答案】A【解析】∆= 62 - 4 ⨯1⨯ 9 = 0 ,所以有两个相等实根.6.小明要用如图两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时所指的颜色恰好配成紫色的概率为()A.1 6B.1 4C.1 3D.1 2【考点】概率统计【难度星级】★★【答案】C【解析】由列表或树状图可知,总共有6 种等可能的情况,其中能配成紫色(即一蓝一红)的情况有2种,所以P =2=1.6 37.配方法解方程x2 - 8x + 5 = 0 ,将其化为(x +a)2 =b 的形式,正确的是()A. (x + 4)2 = 11B. (x + 4)2 = 21C. (x - 8)2 =11D. (x - 4)2 = 11【考点】配方法【难度星级】★【答案】D【解析】x2- 8x + 5 = 0 ⇒x2- 8x +16 = 11 ⇒(x - 4)2= 11.8.如图,△ABC,点P 是AB 边上的一点,过P 作PD∥BC,PE∥AC,分别交AC、BC 于D、E,连接CP,若四边形CDPE 是菱形,则线段CP 应满足的条件是()A.CP 平分∠ACBB.CP⊥ABC.CP 是AB 边上的中线D.CP=AP【考点】菱形的判定【难度星级】★★【答案】A【解析】由题意知,四边形CDPE 为平行四边形;当CP 平分∠ACB 时,∠DCP =∠ECP =∠DPC ,所以DC =DP ;所以四边形CDPE 为菱形.9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2 米,宽为1 米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程()A. 90% ⨯ (2 +x)(1 +x) = 2 ⨯1 C. 90% ⨯ (2 - 2x)(1 - 2x) = 2 ⨯1 【考点】一元二次方程的面积问题【难度星级】★★【答案】B B. 90% ⨯ (2 + 2x)(1 + 2x) = 2 ⨯1 D. (2 + 2x)(1 + 2x) = 2 ⨯1⨯90%【解析】读懂题意,图案加上四周的白边才构成了宣传版面.10.如图,在矩形ABCD 内有一点F,FB 与FC 分别平分∠ABC 和∠BCD,点E 为矩形ABCD 外一点,连接BE、CE,现添加以下条件:①BE∥CF,CE∥BF;②BE=CE,BC=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF。

辽宁省大连市甘井子区2024-2025学年九年级上学期期中数学试题

辽宁省大连市甘井子区2024-2025学年九年级上学期期中数学试题

2024—2025学年度第一学期期中阶段性学习质量抽测九年级数学(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国古代数学的许多创新与发明都在世界上具有重要影响. 下列图形“杨辉三角”、“赵爽弦图”、“刘徽割圆术”、“中国七巧板”中,属于中心对称图形的是2. 用配方法解方程x²−6x +4=0, 下列配方正确的是A.(x −3)²=5B.(x +3)²=5C.(x −3)²=13D.(x +3)²=13A. 无实根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定5. 已知点A (x ₁, y ₁), B (x ₂, y ₂)都在反比例函数y =1x 的图象上.如果 x ₁<x ₂,且 x ₁x ₂>0,则y ₁,y ₂ 的大小关系是A.y ₁=y ₂B.y ₁<y ₂C.y ₁>y ₂D. 无法确定6. 关于二次函数y= (x+1) ²-4,下列结论不正确的是A. 开口向上B. x<0时, y 随x 的增大而减小C. 对称轴是直线x=-1D. 顶点坐标为 (-1, - 4)九年级数学 第1页 (共8页)3. 如图,根据二次函数y =x²+x−2 的图象,一元二次方程 x²+x−2=0的解是A.x₁=−1,x₂=−2B.x₁=−1,x₂=2C.x₁=1,x₂=−2D.x₁=1,x₂=24. 一元二次方程x²−8x +17=0根的情况是7. 如图,已知点A 的坐标为(-23,2),菱形ABCD 的对角线交于坐标原点O ,则点C 的坐标为A.(-2, 23) B.(−2, −23) C.(-23, -2) D.(23, −2)8.利用位似可以设计有立体感的美术字.如图,是某同学以点O 为位似中心,设计“MATH ”中字母“M ”美术字的一种方法.若AB=5,A'B'=3,则C 'D 'CD 的值为9.数学活动课上,小明为了测量学校旗杆的高度,在他脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆顶端C ,此时∠AEB=∠CED ,小明画出如图所示的示意图,并估计他的眼睛与地面的距离为1.5m ,同时测得BE=30cm ,BD=2.3m ,则旗杆的高度为A. 10mB. 11.5mC. 22.5mD. 40m10. 如图,取一根长100 cm 的匀质木杆,用细绳绑在木杆的中点O 并将其吊起来.在中点O 的左侧距离中点O10cm 处悬挂一个重量已知的物体,在中点O 右侧用一个弹簧测力计向下拉,使木杆处于水平状态.改变弹簧测力计与中点O 的距离L (单位:cm) , 观察弹簧测力计的示数F (单位: N)的变化, 发现: F (单位:N)是L(单位:cm) 的函数,部分数据对应如下:L/ cm…4939.224.519.614…F/N …2 2.5457..若弹簧测力计的示数F 为2.8N ,则弹簧测力计与中点O 的距离L 为A. 30.2cmB. 32.6cmC. 35cmD. 36cm 九年级数学 第2页 (共8页)25 B. 35 C. 23D. 53A.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 方程x²+x=0的根为 .的图象经过第一、三象限,则常数m的取值范围是 .12. 反比例函数y=m−5x13. 如图,在△ABC中,∠ABC=90°,将△ABC绕点A 逆时针旋转90°,得到△ADE,连接BD.若BC=3,AE=5,则线段BD的长为 .14. 小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD. 若物体AB的高为6cm,小孔O到物体和实像的水平距离OE,OF分别为8cm,6cm,则实像CD的高为 cm.15. 如图,在平面直角坐标系中,点A 的坐标是(0,−1),点M是x轴上一动点,连接AM,作线段AM的垂直平分线l₁,过点M作x轴的垂线l₂,记l₁,l₂的交点为P,改变点M的位置,可以得到相应的点P,设点P的坐标是(x,y) ,则y关于x的函数解析式为.三、解答题(本题共8小题,共75分. 解答应写出文字说明、演算步骤或推理过程)16. (每题5分, 共10分)用适当的方法解方程:(1)x²+10x=6;(2)x2−2x−1=0.4九年级数学第3页 (共8页)17. (本小题8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(−1,3),B(−3,4),C(−4,1).(1)以点O为对称中心,画出△ABC关于点O的对称图形△A₁B₁C₁;(2)以点O为旋转中心,将△ABC顺时针旋转90°得到△A₂B₂C₂,画出△A₂B₂C₂,并直接写出A₂的坐标 .蓄电池的电压为定值,使用蓄电池时,电流I(单位:A) 与电阻R (单位:Ω) 之间的函数关系如图所示.(1) 求这个函数的解析式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围?九年级数学第4页 (共8页)18. (本小题8分)19. (本小题8分)某商场销售一种商品,经市场调查发现,每件盈利20元,每星期可卖出300件.为吸引顾客,商场决定在“双十一”期间进行促销活动.若每件商品降价1元,每星期可多卖出20件.(1)为了实现该商品每星期3000元的销售利润,则每件需降价多少元?(2)该商品每星期的销售利润能否达到6200元? 如果能,求出每件盈利;如果不能,请说明理由.20. (本小题8分)如图,AB⊥BD于点B,CD⊥BD于点D,AB=2,BD=7,CD=6,点P从点 D 出发,沿DB方向以每秒3个单位长度的速度向终点B匀速运动,连接AP,CP,过点A 作AE‖CP 交DB的延长线于点 E,设点P 的运动时间为t秒.(1)当t=1时,求证:△ABP∼△PDC;(2)当t>1时,若△ABE与△ABP相似,求线段BE的长.21. (本小题8分)【发现问题】在2024年巴黎奥运会跳水女子双人10米跳台决赛中,中国选手陈芋汐和全红婵夺得金牌,跳水梦之队实现该项目七连冠.两位选手如同复制粘贴般上演“水花消失术”,令人叹为观止.我们把运动员从跳台上起跳、腾空到入水,近似看成是一条漂亮的抛物线.【提出问题】(1) 请把上表中x ,y 的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,画出小美运动的抛物线草图,并求出y 关于x 的函数解析式;【解决问题】(2) 双人10米跳台要求两位运动员同步完成动作.从数学的角度分析,至少要满足竖直距离的最大值及入水时入水点距跳台的水平距离分别相等.小美和小丽完成了一次双人10米跳台训练,小美的数据如上表中所示,小丽的竖直高度y 与水平距离x 近似满足函数关系 y =−5x²+35x −50.①用k ₁,k ₂分别表示小美,小丽在空中最高点的竖直距离,则k ₁ k ₂(填“>”“<”或“=”) ;②在距水面高5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则容易失误.小美和小丽在空中调整好入水姿势时,水平距离恰好都是435 米,她们本次训练是否会失误,请通过计算说明理由.在如图所示的平面直角坐标系中,如果将运动员从点A 处起跳后的运动路线看作是抛物线的一部分,从起跳到入水的过程中,她运动的竖直高度y (单位:m) 与水平距离x (单位:m) 之间有怎样的函数关系.【分析问题】小美完成一次试跳,记录仪记录了她运动时的竖直高度y 与水平距离x 的几组数据如下:水平距离x(m)33.64.2 4.85.2竖直高度y(m)1010211121565【问题背景】数学课上,我们以等腰直角三角形为背景,利用旋转的性质研究线段和角的关系.老师给出了下面的已知条件:在△ABC中,∠ABC=90°,B=CB,点D是△ABC边上的一动点,点P是△ABC外任意一点,过点D与点P作射线DP,将射线DP绕点D逆时针旋转90°得到射线DQ.【问题初探】(1) 如图1,点D与直角顶点B 重合,射线DP交边AC于点E,点F在射线 DQ上,且满足DE=DF,连接AF.求证:AF=CE,AF⊥CE.【问题深探】(2) 如图2, 点D在直角边AB上, 射线DP恰巧经过点C, 点F在射线DQ上,且满足DC=DF,连接AF.请直接写出AC,AD,AF之间的数量关系是 .【问题拓展】(3) 点D 在斜边AC上, 且(CD=kAD(0<k≤1), 射线DP 交边AB于点E, 射线DQ 交边CB于点 F.①如图3,当k=1,AE=4,CF=3时,求线段AC的长;2②如图4,连接BD, 请直接写出BE,BD, BF之间的数量关系 (用含k的代数式表示).抛物线y₁=−x²+b₁x+c₁与x轴交于点(−2,0),与y轴交于点 (0, 4) .(1) 求抛物线y₁的解析式;(2) 将抛物线y₁=−x²+b₁x+c₁顶点的横坐标加1,纵坐标不变,得到抛物线y₂=−x²+b₂x+c₂.①请直接写出b₂=,c₂=;②若点A,B为抛物线y₂上的点,横坐标分别为y₂−2,t,点A,B之间(包括端点)的函数图象称为图象M,设图象M的最高点与最低点的纵坐标分别为d₁,d₂,当d₁−d₂=2t+6时,求t的值;③点C为抛物线y₁上的任意一点,其横坐标为m,过点C作(y₁CD⊥x轴交抛物线y₂于点D,过点C作y轴的垂线交抛物线y₁于点E,过点D作y轴的垂线交抛物线y₂于点F,设以C,D,E,F为顶点的图形面积为S,y₂12<S<2当点C 在D的上方,以C,D,E,F为顶点的图形是四边形时,请直接写出此时m的取值范围 .。

初中九年级数学上册测试卷(前三章)

初中九年级数学上册测试卷(前三章)

九年数学阶段测试一一、选择题(每小题3分,共24分)1a 的取值范围是( ) A 5a ≥ B 7a ≤ C 5a ≥或B 7a ≤ D 57a ≤≤ 2=m 的取值范围是( ) A m >3或m <12B 0<m <3C m ≥12D m >3 3、下列方程中有两个不相等的实数根的是( )A 238x x =-B 25100x x ++=C 271470x x -+=D 2753x x x -=-+ 4、下列图形中不是轴对称图形但是中心对称图形的是( ) A 等边三角形 B 矩形 C 菱形 D 平行四边形5、如图所示,⊙O 中弦AB 垂直于直径CD 于E ,则下列结论:①弧AD=弧BD ②弧AC=弧BC ③AE=BE ④EO=ED ,其中正确的有( ) A ①②③④ B ①②③ C ②③④ D ①④第一题5题第一题8题A6、已知要使2235x x --的值等于4-6x 的值,则x 应为( ) A32-或-3 B 、32或-3 C32-或3 D 32或37、半径分别是5和8的两个圆的圆心距是d ,若3<d ≤13,则这两个圆的位置关系是( )A 相交B 相切C 内切或相交D 外切或相交8、如图所示,在Rt △ABC 中,∠ACB=90°,AC =6,AB =10.CD 是斜边上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则P 与⊙O 的位置关系是( )A 点P 在⊙O 内B 点P 在⊙O 上C 点P 在⊙O 外D 不能确定 二、填空题(每小题3分,共24分)9、相交两圆的公共弦长为16cm ,若两圆的半径分别是10cm 和17cm ,则这两个圆的圆心距是 。

10、在△ABC 中,∠A =80°,O 是△ABC 的内心,则∠BOC 等于 度。

11、已知12,x x 是方程2310xx -+=两个根,则212412110x x -+=的值为 .12、已知关于x 的一元二次方程()222110m x m x +-+=有两个不相等的实数根,则m 的取值范围是 。

2024年青岛版六三制新九年级数学上册阶段测试试卷976

2024年青岛版六三制新九年级数学上册阶段测试试卷976

2024年青岛版六三制新九年级数学上册阶段测试试卷976考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、二次函数y=ax2+bx+c的图象如图所示,那么下列四个结论:①a<0;②a+b+c>0;③b2-4ac>0;④>0中,正确的结论有()A. 1个B. 2个C. 3个D. 4个2、【题文】如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽为24cm,则截面上有油部分油面高(单位:cm)等于()A. 8cmB. 9cmC. 10cmD. 11cm3、下列几何体中,主视图是三角形的是()A.B.C.D.4、在计算样本方差的公式中,表示()A. 样本容量B. 样本平均数C. 样本方差D. 样本标准差5、如图,已知矩形纸片ABCD,AD=2,AB=以A为圆心,AD的长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1B.C.D.评卷人得分二、填空题(共5题,共10分)6、如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,且S△ABC=24,那么S四边形ANME-S△DMN=.7、(2009•赤峰)如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是个.8、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度为____m .(≈1.7)9、有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成形.10、如图,Rt△ABC中在AC边上取点O画圆使⊙O经过A、B两点,下列结论中:①②③以O为圆心,以OC为半径的圆与AB相切;④延长BC交⊙O与D,则A、B、D是以OA为半径的⊙O的三等分点.正确的序号是(多填或错填不给分,少填或漏填酌情给分).评卷人得分三、判断题(共5题,共10分)11、收入-2000元表示支出2000元.()12、如果A、B两点之间的距离是一个单位长度,那么这两点表示的数一定是两个相邻的整数()13、定理不一定有逆定理14、在同圆中,优弧一定比劣弧长..(判断对错)15、一条直线有无数条平行线.()评卷人得分四、其他(共4题,共16分)16、某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有家商家参加了交易会.17、有1个人得了H1N1流感,经过两轮传染共有81人感染,则每轮传染中平均一人传染人.18、参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,设共有x家公司参加商品交易会,则可列方程为.19、有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x人,那么可列方程为.评卷人得分五、综合题(共1题,共3分)20、已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G;抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O;E、F、A;①求证:DE=m-;②直接写出FC2的值(用a,m的代数式表示)参考答案一、选择题(共5题,共10分)1、B【分析】【分析】观察图象得到:开口向下,与x轴有两个公共点,对称轴在y轴的右侧,根据二次函数y=ax2+bx+c(a≠0)的图象与系数的关系分别进行判断即可.【解析】【解答】解:抛物线的开口向下,则a<0,所以①正确;坐标系中没有数据,不能确定x=1的位置,其对应的函数值a+b+c不能确定正负,所以②错误;抛物线与x轴有两个交点,则△=b2-4ac >0,所以③正确;抛物线的对称轴在y轴的右侧,则x=- >0,而a<0,则b>0;所以④错误.故选B.2、A【分析】【解析】分析:根据垂径定理;易知AC;BC的长;连接OA,根据勾股定理即可求出OC的长,进而可求出CD的值.解答:解:如图;连接OA;根据垂径定理;得AC=BC=12cm;Rt△OAC中;OA=13cm,AC=12cm;根据勾股定理;得:OC==5cm;∴CD=OD-OC=8cm;故选A.【解析】【答案】A3、A【分析】解:A主视图是三角形;故选项正确;B;主视图是长方形;故选项错误;C;主视图是中间有1条实心线的长方形;故选项错误;D;主视图是圆形;故选项错误.故选:A.分别得到几何体中的主视图;找到其中是三角形即为所求.此题主要考查了简单几何体的三视图,根据已知得出几何体的三视图是解决问题的关键.【解析】A4、B【分析】【分析】根据方差的定义直接求解,判定正确选项.【解析】【解答】解:一组数据中;各数据与它们的平均数的差的平方叫做方差,所以x表示样本平均数.故选B.5、C【分析】cos∠BAE=∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:π,∴圆锥的底面半径为π÷2π=.故选C.【解析】【答案】C二、填空题(共5题,共10分)6、略【分析】∵DE是△ABC的中位线;∴DE∥BC,DE=BC;∴△ADE∽△ABC;∴S△ADE=S△ABC=6.连接AM.∵M是DE的中点;∴S△ADM=S△ADE=3.∵DE∥BC,DM=BC;∴DN=BN;∴DN=BD=AD.∴S△DNM=S△ADM=1;∴S四边形ANME=S△ADE-S△DNM=6-1=5;∴S四边形ANME-S△DMN=5-1=4.故答案为4.【解析】【答案】连接AM,由于DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,且DE= BC.由M是DE中点,可知DM= BC,在△BCN中,利用平行线分线段成比例定理,可得DN= BD,即DN= AD,于是S△DMN= S△ADM,而S△ADM= S△ADE= S△ABC=3,那么S四边形ANME也可求;两者面积之差也就可求.7、略【分析】综合主视图和俯视图;底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.【解析】【答案】主视图;俯视图是分别从物体正面、上面看;所得到的图形.8、32.4【分析】【解答】解:如图;过点B作BE⊥CD于点E;根据题意;∠DBE=45°,∠CBE=30°.∵AB⊥AC;CD⊥AC;∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=∴BE=CE•cot30°=12× =12 .在Rt△BDE中;由∠DBE=45°;得DE=BE=12 .∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.故答案为:32.4m.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.9、略【分析】【分析】根据旋转的性质,知该四边形的对角线互相平分,再根据对角线互相平分的四边形是平行四边形,得该四边形是平行四边形.【解析】【解答】解:其中一个三角形绕公共顶点旋转180°后与另一个重合;则四边形的对角线互相平分;则该四边形是平行四边形.故答案为:平行四边形.10、略【分析】试题分析:连接OB,∵OA=OB,则∠OBA=∠A=30°,则∠OBC=30°,则OB=2OC,即OA=2OC,∴①正确、②错误;过点O作OE⊥AB,∵OB平分∠ABC,则OC=OE,即以O为圆心,以OC为半径的圆与AB相切,∴③正确;延长之后可得∠B=∠BAD=∠ADB=60°,即A、B、D为三等分点,∴④正确.考点:圆的性质.【解析】【答案】①、③、④三、判断题(共5题,共10分)11、√【分析】【分析】在一对具有相反意义的量中,其中一个为正,则另一个就用负表示.【解析】【解答】解:“正”和“负”相对;收入-2000元即表示支出2000元.故答案为:√.12、×【分析】【分析】根据题意,可通过举反例的方法即可得出答案.【解析】【解答】解:根据题意:可设A点位1.1;B点为2.1;A;B两点之间的距离是一个单位长度;但这两点表示的数不是两个相邻的整数.故答案为:×.13、√【分析】【解析】试题分析:可以任意举出一个反例即可判断.“对顶角相等”是定理,但“相等的角是对顶角” 是错误的,不是逆定理,故本题正确.考点:定理,逆定理【解析】【答案】对14、√【分析】【分析】同圆中,优弧是大于半圆的弧,而劣弧是小于半圆的弧.【解析】【解答】解:在同圆中;优弧一定比劣弧长,说法正确;故答案为:√.15、√【分析】【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线即可作出判断.【解析】【解答】解:由平行线的定义可知;一条直线有无数条平行线是正确的.故答案为:√.四、其他(共4题,共16分)16、略【分析】【分析】如果设有x家商家参加交易会,因此每个商家要签订的合同有(x-1)份,由于“每两家之间都签订了一份合同”,因此总合同数可表示为:x(x-1),再根据题意列出方程即可.【解析】【解答】解:设有x家商家参加交易会;根据题意列出方程得;x(x-1)=36;解得x=9或-8(舍去)则x=9;答:共有9家商家参加了交易会.17、略【分析】【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,又知经过两轮传染共有81人被感染,以经过两轮传染后被传染的人数相等的等量关系,列出方程求解.【解析】【解答】解:设每轮传染中平均一人传染x人;则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染;由题意得:x(x+1)+x+1=81;即:x1=8,x2=-10(不符合题意舍去)所以,每轮平均一人传染8人.18、略【分析】【分析】本题可根据每两家签订一份合同,共x家参与可知签订的合同数为:x(x-1),然后根据已知条件等于45即可列出方程.【解析】【解答】解:依题意得签订的合同数为1+2+3+ +x-1;∴x(x-1)=45.故填空答案:x(x-1)=45.19、略【分析】【分析】如果设每轮传染中平均每人传染了x人,那么第一轮传染中有x人被传染,第二轮则有x (x+1)人被传染,已知“共有121人患了流感”,那么即可列方程.【解析】【解答】解:设每轮传染中平均每人传染了x人;则第一轮传染中有x人被传染;第二轮则有x(x+1)人被传染;又知:共有121人患了流感;∴可列方程:1+x+x(x+1)=121.故答案为:1+x+x(x+1)=121.五、综合题(共1题,共3分)20、略【分析】【分析】(1)连接BC;EC、FG;如图1,只需证到DC=CF,BG=BF,然后运用三角形的中位线定理即可解决问题;(2)由图可知OA的中垂线是抛物线C1与⊙B公共的对称轴,故抛物线C1与⊙B除点O和点A 外唯一交点为C,然后把A、C的坐标代入抛物线的解析式,消去m,就可求出b的值;(3)①连接AE,如图2,设点E的坐标为(x,y),则OH=x,EH=-y,AH=OA-OH=m-x.易证△OHE∽△EHA,从而可得EH2=OH•AH,则有(-y)2=x(m-x).由点A在抛物线上可得m=-,从而得到y2=x(- -x)=- (ax2+bx)=- y,求得y=- ,即EH= .然后根据垂径定理可得GH=EH= ,即可证到结论;②只需运用割线定理即可解决问题.【解析】【解答】解:(1)连接BC、EC、FG,如图1.∵点C为劣弧EF的中点;∴EC=FC;∴∠CEF=∠CFE.∵DE⊥EF;即∠DEF=90°;∴∠DEC+∠CEF=90°;∠EDF+∠DFE=90°;∴∠DEC=∠EDF;∴CE=CD;∴CD=CF.∵∠GEF=180°-∠DEF=90°;∴GF是⊙B的直径;即BG=BF;根据三角形中位线定理可得DG=2BC=OA=m;(2)由图可知:OA的中垂线是抛物线C1与⊙B公共的对称轴;若抛物线C1与⊙B除点O和点A外有且只有一个交点;则该交点必在OA的中垂线上;即点C.∵A(m,0),C(,- );∴;由①得m1=0(舍去),m2=- ;把m=- 代入②并整理得:b2+2b=0;解得:b1=0(舍去),b2=-2.∴b的值为-2.(3)①证明:连接AE;如图2.设点E的坐标为(x,y),则OH=x;EH=-y,AH=OA-OH=m-x.∵EF∥OA;DG⊥EF,∴DG⊥OA;∴∠OHE=∠EHA=90°.∵OA是⊙B的直径;∴∠OEA=90°;∴∠OEH=∠EAH=90°-∠HEA;∴△OHE∽△EHA;∴= ,即EH2=OH•AH;∴(-y)2=x(m-x).∵点A(m,0)在抛物线y=ax2+bx上;∴am2+bm=0.∵m≠0,∴m=- ;∴y2=x(- -x)=- (ax2+bx)=- y.∵y≠0,∴y=- ,即EH= .∵直径OA⊥EG,∴GH=EH= ;∴DE=DG-EH-GH=m- ;②根据割线定理可得:DE•DG=DC•DF;∴(m- )•m=CF•2CF;∴FC2= (m- )•m= - .。

九年级第一学期阶段性质量检测数学试卷(含答案)

九年级第一学期阶段性质量检测数学试卷(含答案)

九年级第一学期阶段性质量检测数学试卷一、选择题1.下列计算正确的是A .532=+ B .632=⋅ C .48=D .3)3(2-=-2.已知012=-++b a ,那么2008)(b a +的值为A .-1B .1C .20083D .20083-3.用配方法解方程0242=+-x x ,下列配方正确的是A .2)2(2=-xB .2)2(2=+xC .2)2(2-=-xD .6)2(2=-x4.已知关于x 的一元二次方程x m x 22=-有两个不相等的实数根,则m 的取值范围是A .1->mB .1-<mC .0≥mD . 0<m5.如下图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45°后,B 点的坐标为A .(2,2)B .(0,22)C .(22,0)D .(0,2)6.如下图是一个旋转对称图形,以O 为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合A .60°B .90°C .120°D .180°7.如下图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是A .1.5B .2C .2.5D .38.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如下图所示,为配到与原来大小一样的圆形玻璃,小明应从这四块碎片中带到商店去的一块玻璃片应该是A .第①块B .第②块C .第③块D .第④块9.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为A .3B .2C .22D .3210.圆心都在y 轴上的两圆相交于A 、B ,若A (2,2),那么B 点的坐标为A .(-2,2)B .(2,-2)C .(-2,-2)D .(2,2)二、填空题11.计算:=-⋅+20082007)32()32(___________。

2022-2023学年九年级数学上学期第一次阶段性检测卷及答案(人教版)

2022-2023学年九年级数学上学期第一次阶段性检测卷及答案(人教版)

2022-2023学年九年级阶段性检测卷数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第二十一章、第二十二章。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

1.下列关于x 的方程中,一定是一元二次方程的为()A .2ax bx c ++=B .()2243x x =+-C .2350x x+-=D .()340x x -=2.一元二次方程()()230x x -+=化为一般形式后,常数项为().A .6B .6-C .1D .1-3.在下列给出的函数中,y 随x 的增大而减小的是()A .y =3x ﹣2B .y =﹣x 2C .y =3x (x >0)D .y =1x-(x <0)4.一元二次方程)220x x -=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定5.已知m 是一元二次方程2310x x --=的一个根,则2392022m m -++的值为()A .2022B .2021C .2020D .20196.用配方法解方程2410x x -=+,变形正确的是()A .()225x +=B .()245x +=C .()221x +=D .()241x +=7.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a ≠0)的图象可能是()A .B .C .D .8.若222(5)64x y +-=,则22x y +等于()A .13B .13或3-C .3-D .以上都不对9.若矩形的长和宽是方程42x -12x +3=0的两个根,则该矩形的周长和面积分别为()A .3和34B .34和3C .34和6D .6和3410.2021年7月来,新冠病毒的变异毒株“德尔塔”病毒影响全国人民的生活,有研究表明,“德尔塔”病毒具有较强的传染性,当一个人感染了“德尔塔”病毒后,在没有防控的情况下,经过两轮传染后共有25人感染,那么,每轮传染中平均一个人传染了()A .3人B .4人C .5人D .6人11.若点(12-,y 1)、(13-,y 2)、(1,y 3)都在二次函数y =﹣x 2﹣1的图象上,则()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 212.(2022·四川绵阳中考真题)如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为()A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题:本题共6小题,共18分。

2022-2023学年人教版九年级数学上册阶段性训练试卷

2022-2023学年人教版九年级数学上册阶段性训练试卷

九年级上学期数学阶段性训练试卷学号:姓名:一、选择题(3'×10=30')1.将一元二次方程2x 2-1=3x 化成一般形式后,二次项系数和一次项系数分别是( )A .2,-1B .2,0C .2,3D .2,-32.一元二次方程x 2-4x -1=0配方后正确的是( )A .(x +2)2=3B .(x +2)2=5C .(x -2)2=3D .(x -2)2=53.若关于x 的一元二次方程x 2+23x +m =0有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤34.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干、小分支的总数是91.设每个支干长出x 个分支,则可列方程为( )A. 9112=++x xB.9112=+)(xC.912=+x xD.9112=+x5.抛物线221x y =经过平移得到抛物线3)6(212+-=x y ,平移过程正确的是( ) A.先向左平移6个单位,再向上平移3个单位 B.先向左平移6个单位,再向下平移3个单位C.先向右平移6个单位,再向上平移3个单位D.先向右平移6个单位,再向下平移3个单位6.m ,n 是方程x 2+x =4的两个实数根,则2n 2-mn -2m 的值是( )A .16B .14C .10D .67.有一个人患了感冒,经过两轮传染后总共传染了64人,按照这样的传染速度,经过三轮后患了感冒的人数为( )A .596B .428C .512D .6048.已知实数x 满足(x 2-x )2-4(x 2-x )-12=0,则x 2-x 的值为( )A .-2B .-2或6C .6D .129.已知点A (15y ,)、B (22-y ,)、C (32y ,)在二次函数()232+-=x y 的图象上,则321,y y y ,的大小关系为( )A.231y y y <<B. 312y y y <<C.123y y y <<D.213y y y <<10.a ,b 是方程x 2-3x -5=0的两根,则2a 3-6a 2+b 2+7b +1的值是( )A .-25B .-24C .35D .36二、填空题(3'×6=18')11.关于x 的方程(a -3)x |a-1|+x -1=0是一元二次方程,则a 的值是.12.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可列方程为.13.国家实施“精准扶贫”政策以来贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是.14.已知二次函数y =2(x -m )2,当x >3时,y 随x 的增大而增大,则m 的取值范围是.15.如图,在正方形ABCD 中,AD =1,将△ABD 绕点B 顺时针旋转45°得到△A ’BD ’,此时A ’D ’与CD 交于点E ,则DE 的长度为 .16.如图,在△ABC 中,AB =AC =5,BC =54,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为.二、解答题(72')17. 用指定方法解下列方程(4'+4')(1)0942=--x x (配方法)(2)010522=++x x (公式法)18. 用适当方法解下列方程(4'+4')(1)104)52(-=-x x x (2)x x x 8216812-=+-19. (6')如图,在△ABC 中,AB =AC =2√3,∠BAC =120°,点D ,E 都在边BC 上,∠DAE =60°,若BD =2CE ,求DE 的长.20. (6')(1)已知关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根a ,b . 求a a +1-1b +1的值.(6')(2)如图,四边形ABCD 的两条对角线AC 、BD 所成的锐角为60°,AC+BD=10.求四边形ABCD 面积的最大值。

江苏省江阴市文林中学2023-2024学年九年级上学期10月阶段性测试数学试卷(含解析)

江苏省江阴市文林中学2023-2024学年九年级上学期10月阶段性测试数学试卷(含解析)

初三数学阶段性测评卷班级姓名学号一、选择题(本大题共4个小题,每小题5分,共20分)1.下列方程是一元二次方程的是 A.B.C.D.2.下列方程中,没有实数根的是 A.B.C.D.3.若,相似比为,则与的周长比为 A.B.C.D.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B.C.D.1二、填空题(本大题共5小题,每小题4分,共20分)5.若,则 .6.若、是方程的两实根,则的值等于 .7.已知、是方程的两个实数根,则的值为 .8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 (只填序号).第4题图第8题图第9题图9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .三、解答题(本大题共6小题,共60分)()20x x+=320x x-=10xy-=212xx+=()220x x-=2210x x--=2210x x-+=2220x x-+=ABC DEF∆∆∽1:2ABC∆DEF∆()2:11:24:11:4ABCDY AC BD O3AD=5AB=AB E 25BE AB=OE BC F BF()233456234x y z==≠3x yz+=1x2x2330x x+-=1221x xx x+αβ2210x x+-=23ααβ++ABC∆P AB ACP B∠=∠APC ACB∠=∠2AC AP AB=⋅AB CP AP CB⋅=⋅APC∆ACB∆ABCDY E F AD CD EC EF BD H G ::DG GH HB=10.(12分)用指定方法解下列一元二次方程(1)(直接开平方法) (2)(配方法)(3)(公式法) (4)(因式分解法)11.(8分)已知线段a 、b 、c,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.12.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 人,请将两幅统计图补充完整;(2)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?13.(10分)如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:23(21)120x --=22470x x --=210x x +-=22(21)0x x --=543c b a ==bb a +A B C D E x A 10090≤≤x B 9080<≤x C 8070<≤x D 7060<≤x E 60)x <(1)△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求EF的长.14.(10分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?15.(12分)【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值是 .AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆参考答案与试题解析一.选择题(共4小题)1.下列方程是一元二次方程的是 A .B .C .D .【分析】利用一元二次方程的定义,逐一分析各选项中的方程,即可得出结论.【解答】解:.方程是一元二次方程,选项符合题意;.方程是一元三次方程,选项不符合题意;.方程是二元二次方程,选项不符合题意;.方程是分式方程,选项不符合题意.故选:.【点评】本题考查了一元二次方程的定义,牢记“只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程”是解题的关键.2.下列方程中,没有实数根的是 A .B .C .D .【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个相等的实数根,所以选项错误;、△,方程没有实数根,所以选项正确.故选:.【点评】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.3.若,相似比为,则与的周长比为 A .B .C .D .【分析】根据相似三角形的周长的比等于相似比得出.()20x x +=320x x -=10xy -=212x x +=A 20x x +=A B 320x x -=B C 10xy -=C D 212x x +=D A ()220x x -=2210x x --=2210x x -+=2220x x -+=A 2(2)41040=--⨯⨯=>A B 2(2)41(1)80=--⨯⨯-=>B C 2(2)4110=--⨯⨯=C D 2(2)41240=--⨯⨯=-<D D 20(0)ax bx c a ++=≠24b ac =-0>0=0<ABC DEF ∆∆∽1:2ABC ∆DEF ∆()2:11:24:11:4【解答】解:,与的相似比为,与的周长比为.故选:.【点评】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B .C .D .1【分析】首先作辅助线:取的中点,连接,由平行四边形的性质与三角形中位线的性质,即可求得:与的值,利用相似三角形的对应边成比例即可求得的值.【解答】解:取的中点,连接,四边形是平行四边形,,,,,,,,,,,,,,故选:.ABC DEF ∆∆Q ∽ABC ∆DEF ∆1:2ABC ∴∆DEF ∆1:2B ABCD Y AC BD O 3AD =5AB =AB E 25BE AB =OE BC F BF ()233456AB M OM EFB EOM ∆∆∽OM BF AB M OM Q ABCD //AD BC ∴OB OD =////OM AD BC ∴1133222OM AD ==⨯=EFB EOM ∴∆∆∽∴BF BE OM EM=5AB =Q 25BE AB =2BE ∴=52BM =59222EM ∴=+=∴23922BF =23BF ∴=A【点评】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.二.填空题(共5小题)5.若,则 .【分析】设,则,,,再代入即可解答.【解答】解:设,则,,,.故答案为:.【点评】本题考查了比例的性质,解决本题的关键是设,求出,,.6.若、是方程的两实根,则的值等于 .【分析】根据一元二次方程的根与系数的关系得到,,然后变形原代数式为原式,再代值计算即可.【解答】解:、是方程的两实根,,.原式.故答案为:.【点评】本题考查了一元二次方程的根与系数的关系:若方程两根为,,则,.7.已知、是方程的两个实数根,则的值为 .0234x y z ==≠3x y z +=114234x y z a ===2x a =3y a =4z a =234x y z a ===2x a =3y a =4z a =3291111444x y a a a z a ++===114234x y z a ===2x a =3y a =4z a =1x 2x 2330x x +-=1221x x x x +5-20ax bx c ++=123x x +=-123x x =-g 2221212121212()2x x x x x x x x x x ++-==g g 1x Q 2x 2330x x +-=123x x ∴+=-123x x =-g ∴2221212121212()29653x x x x x x x x x x ++-+====--g g 5-20ax bx c ++=1x 2x 12b x x a +=-12c x x a=g αβ2210x x +-=23ααβ++1-【分析】根据方程的根的定义,以及根与系数之间的关系,即可得到,,根据即可求解.【解答】解:,是方程的两个实数根,,..故答案为:.【点评】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.也考查了一元二次方程根的定义.8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 ①,②,③ (只填序号).【分析】本题主要应用两三角形相似的判定定理,做题即可.【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③.【点评】考查对相似三角形的判定方法的掌握情况.9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .【分析】连接交于,根据相似三角形的判定与性质以及三角形中位线定理进行解答即可.【解答】解:连接交于,如图所示:2210αα+-=2αβ+=-2232ααβαααβ++=+++αQ β2210x x +-=2210αα∴+-=2αβ+=-221αα∴+=2232121ααβαααβ∴++=+++=-=-1-1x 2x 20(0)ax bx c a ++=≠12b x x a +=-12c x x a=ABC ∆P AB ACP B ∠=∠APC ACB ∠=∠2AC AP AB =⋅AB CP AP CB ⋅=⋅APC ∆ACB ∆ABCD Y E F AD CD EC EF BD H G ::DG GH HB =3:1:8AC BD O AC BD O四边形是平行四边形,,,,,,,点、分别是边、的中点,,是的中位线,,,,,是的中位线,,,,,,,,;故答案为:.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理、平行四边形的性质等知识;熟练掌握平行四边形的性质和三角形中位线定理,证明三角形相似是解题的关键.三.解答题(共6小题)10.用指定方法解下列一元二次方程(1)(直接开平方法)(2)(配方法)(3)(公式法)(4)(因式分解法)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;Q ABCD OA OC ∴=OB OD =AD BC =//AD BC BCH DEH ∴∆∆∽∴DH DE HB BC=Q E F AD CD 2BC AD DE ∴==EF ACD ∆∴12DH DE HB BC ==//EF AC 12EF AC OA OC ===DG OG ∴=EG AOD ∆EGH COH ∆∆∽1122EG OA OC ∴==12GH EG OH OC ==2OH GH ∴=3DG OG GH ==6OB OD GH ==8HB GH ∴=::3:1:8DG GH HB ∴=3:1:823(21)120x --=22470x x --=210x x +-=22(21)0x x --=(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【解答】解:(1),移项,得,两边都除以3,得,两边开平方,得,移项,得,解得:,;(2),两边都除以2,得,移项,得,配方,得,即,解得:,即(3),这里,,,,,解得:;(4),方程左边因式分解,得,即,解得:,.【点评】此题考查了解一元二次方程因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.23(21)120x --=23(21)12x -=2(21)4x -=212x -=±212x =±132x =212x =-22470x x --=27202x x --=2722x x -=29212x x -+=29(1)2x -=1x -=11x =21x =210x x +-=1a =1b =1c =-224141(1)5b ac -=-⨯⨯-=Q x ∴=1x =2x =22(21)0x x --=(21)(21)0x x x x -+--=(31)(1)0x x --=113x =21x =-11.已知线段a 、b 、c ,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.【分析】设a =3k ,b =4k ,c =5k .(1)代入计算即可;(2)构建方程求出k 即可.【解答】解:设===k ,则a =3k ,b =4k ,c =5k ,(1)==;(2)∵a +b +c =60,∴3k +4k +5k =60,∴k =5,∴a =15,b =20,c =25.【点评】此题主要考查了比例的性质,根据已知得出a =3k ,b =4k ,c =5k 进而得出k 的值是解题关键.12.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在 组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?A B C D E x A 90100x ……B 8090x <…C 7080x <…D 6070x <…E 60)x <【分析】(1)根据组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得组和组所占的百分比.根据本次调查的总人数和组所占的百分比可以求得组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:(人,故答案为:400;所占的百分比为:,所占的百分比为:,组的人数为:,补全的统计图如图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在组内,故答案为:;(3)(人,答:估计该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.13.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:(1)△ABE ∽△DEF ;(2)若AB =6,AE =9,DE =2,求EF的长.E B C B B 4010%400÷=)A 100400100%25%÷⨯=C 80400100%20%÷⨯=B 40030%120⨯=B B 1200(25%30%)660⨯+=)【分析】(1)先判断出∠A=∠D=90°,进而得出∠ABE+∠AEB=90°,再判断出∠AEB+∠DEF=90°,得出∠ABE=∠DEF,即可得出结论;(2)先根据相似三角形的性质求出DF的长,再由勾股定理即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)解:∵△ABE∽△DEF,AB=6,AE=9,DE=2,∴=,即=,解得DF=3,∵四边形ABCD为矩形,∴∠D=90°,由勾股定理得:EF===.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.14.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【分析】(1)设每次下降的百分率为,根据相等关系列出方程,可求每次下降的百分率;x(2)设涨价元,根据总盈余每千克盈余数量,可列方程,可求解.【解答】解:(1)设每次下降的百分率为根据题意得:解得:,(不合题意舍去)答:每次下降(2)设涨价元解得:,(不合题意舍去)答:每千克应涨价5元.【点评】本题考查了一元二次方程的应用,找到题目中的相等关系,列出方程是本题的关键.15.【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 2.7 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值y (08)y <…=⨯x250(1)32x -=10.2x =2 1.8x =20%y (08)y <…6000(10)(50020)y y =+-15y =210y =AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆是 .【分析】(1),,,,,即可求得;(2),,,,同理,,即可证明;(3)过点作以所在直线为对称轴的对称点,交于点,易得,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,根据勾股定理即可求出进而求出作答.【解答】(1)解:,,又,,,即,,故答案为:2.7;(2)证明:,,,,,,同理,,ABCD Y //AD BC //EF AD ////AD EF BC AE GO EB OH =OH ABCD Y //AD BC ODG OBC ∆∆∽OD GO OB CO =OBE ODC ∆∆∽OD OC OB OE=GO OC CO OE =C AD C 'AD M GC GC '=//EF BC E F AB CD MN GBC ∆12MNG BCG C C ∆∆=BC 'AD G BCG ∆BCC '∆MNG C ∆ABCD QY //AD BC ∴//EF AD Q ////AD EF BC ∴∴AE GO EB OH=2 1.83OH = 2.7OH ∴=ABCD QY //AD BC ∴ADB CBD ∴∠=∠DGO OCB ∠=∠ODG OBC ∴∆∆∽∴OD GO OB CO=OBE ODC ∆∆∽∴OD OC OB OE=;(3)解:过点作以所在直线为对称轴的对称点,交于点,易得,如图,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,,,,,,在中,,,.【点评】本题考查平行四边形的性质,中位线,平行线的性质,三角形等综合问题,解题的关键是对将军饮马问题的灵活运用.∴GO OC CO OE=C AD C 'AD M GC GC '=//EF BC Q E F AB CD MN ∴GBC ∆11()22MNG BCG C MN MG GN BC BG GC C ∆∆∴=++=++=BC 'AD G BCG ∆60ABC ∠=︒Q 90BCC '∠=︒30DCM ∴∠=︒cos304CM CD =⋅︒==2CC CM '∴==Rt BCC '∆BC '===111()6)3222MNG BCG C C BC BC ∆∆'∴==+=+=+3+。

2024年中图版九年级数学上册阶段测试试卷81

2024年中图版九年级数学上册阶段测试试卷81

2024年中图版九年级数学上册阶段测试试卷81考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、如图,AB∥CD,∠CDE=140°,则∠A的度数为()A. 40°B. 50°C. 60°D. 140°2、甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的,乙箱内没有红球,丙箱内的红球占丙箱内球数的.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.B.C.D.3、已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是()A. 外离B. 外切C. 相交D. 内切4、科学家测得肥皂泡的厚度约为0.0000007米,用科学记数法表示为()A. 0.7×l0−6米B. 0.7×l0−7米C. 7×l0−7米D. 7×l0−6米5、如图,一种花边是由弓形组成的,的半径为5,弦AB为8,则弓形的高CD为()A. 2B.C. 3D.6、为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是8D. 平均数是10评卷人得分二、填空题(共6题,共12分)7、为了给某区初一新生订做校服;某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲;图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了____名学生;(2)在被调查的学生中,身高在1.55~1.65m的有____人,在1.75m及以上的有____人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的____%,在1.75m及以上的学生占被调查人数的____%;(4)如果今年该区初一新生有3200人;请你估计身高在1.65~1.75m的学生有多少人.8、已知|a+4|+=0,则a-b=____.9、【题文】已知-2是方程的一个根,则的值是____;10、(2009秋•青浦区期中)如图,小丽的身高为1.6米,她沿着树影BA由B向A走去,当走到C点时,发现自己影子的顶端正好与树影子的顶端重合,此时,恰好D、E、A三点在同一直线上,测得BC=4.2米,CA=0.8米,树高为____米.11、如图所示,在正方形ABCD的边BC的延长线上取一点E,使CE=CA,连接AE交CD于F,则∠AFD=_________。

人教版九年级数学上册阶段性检测试卷.docx

人教版九年级数学上册阶段性检测试卷.docx

初中数学试卷马鸣风萧萧九年级阶段性检测数学试卷一.选择(3分×12=36分)1.一定为一元二次方程的是( )A.x 2+x3-2=0; B.ax 2-bx+c=0;C.(x+2)(x-5)=x 2;D.3x 2=-1 2.要使分式4452-+-x x x 的值为0,则x 应该等于( )A 、4或1B 、4C 、1D 、4-或1-3.下列一元二次方程中,有两个不相等的实数根的是 ( )A. 2x 2–4x+2=0B.x 2+2x= –1C.3x 2+3x+1=0D.x 2+2x=14.若(a+1)21ax ++3ax –2=0是关于x 的一元二次方程,则a 值为( )A.-1B.1C.0D.±15.方程 2x 2–3x+1=0 用配方法解时正确的配方是( )A.(x –43)2=161 B.(x –43)2=81 C.(x –23)2=161 D.(x+43)2=1616.方程x 2–4x – m 2=0根的情况是( )A.一定有两不等实数根B. 一定有两相等实数根C. 一定无实数根D.根的情况不确定7.关于方程.y 2+y+1=0的说法正确的是( )A 两实根之和为–1 B.两实根之积为1 C.两实根之和为1 D.无实数根8.当已知A(-2,y 1),B(–1,y 2),C(–5,y 3)在抛物线y=2132x x π---上,则y 1,y 2,y 3之间的大小关系是( )A. y 1<y 2<y 3B.y 2<y 1<y 3C.y 2=y 3<y 1D.y 3<y 2<y 19.已知抛物线y=ax 2+bx+c 经过原点和第二、三、四象限,则A.a>0,b<0,c=0B.a<0,b<0,c=0C.a>0,b=c=0D.a<0,b>0,c=010.根据下列表格中的二次函数y=ax 2+bx+c (a≠0,a 、b 、c 为常数)的自变量x 与函数y 的对应值,判断ax 2+bx+c=0的一个解x 的取值范围为( )x 1.43 1.44 1.45 1.46 y=ax 2+bx+c–0.095–0.0460.0030.052A .1.40<x <1.43B .1.43<x <1.44C .1.44<x <1.45D .1.45<x <1.4611.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的序号是( )①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大. A.① B.①② C.①③④ D.①②③④12.在同一坐标系下,函数y=m(x –1)与y=mx 2+mx+m 的图象只可能是( )二.填空(3分×6=18分)13.一元二次方程2430x x --=的二次项系数是____,一次项系数是_____,常数项是____ 14.已知m 是方程2330x x --=的一个根,那么代数式23______m m -= 15.方程2x 2=x 的解是__________________. 16.抛物线y=x 2+4x+1的顶点坐标为_____________Oxy COxy DOxyBOxy A17.将抛物线y=(x–1)24先向右平移2个单位,再向上平移2个单位,得到的抛物线的表达式是_____________18.19.如图,是由若干盆花组成的形如正多边形的图案,每条边(包括两个顶点)有n (n >2)盆花,每个图案中花盆总数为S ,按此规律推断S 与n (n≥3)的关系式是:____________________三.解答题20.解方程(3分×3=9分):(1) 2x 2–7x+3=0 (2)3(x –1)2 =2(1–x) (3) 5y 2–2y –1=021.(7分)已知关于x 的一元二次方程()0433422=-++++k k x x k 的一个根为0. 求k 的值及另一个根.22.(8分)某工厂一月份生产电视机1万台,第一季度共生产电视机3.31万台,求二月,三月份生产电视机的平均增长率是多少?23.(10分)已知关于x 的一元二次方程m 2x 2+2(m+1)x+1=0.(1)当m 为何值时,方程有两实根?(2)设此方程两不等两根为x 1、x 2,若x 1x 2=4,求m 的值.24.(10分)百货商店服装柜在销售中发现:某童装每天可卖20件,每件盈利40元。

浙江省联盟校2024—2025学年上学期九年级期中阶段性评数学试题(含答案)

浙江省联盟校2024—2025学年上学期九年级期中阶段性评数学试题(含答案)

联盟校2024学年第一学期九年级期中阶段性评价考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟.2.全卷分为卷I (选择题)和卷Ⅱ(非选择题)两部分,全部在答题卡上作答,卷I 的答案必须用2B 铅笔填涂;卷II 的答案必须用黑色字迹的钢笔或签字笔写在“答题卡”相应位置上.3.请用黑色字迹的钢笔或签字笔在“答题卡”上先填写姓名和准考证号.4.作图时,请使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.卷I说明:本卷共1大题,10小题.请用2B 铅笔在“答题卡”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本大题有10小题,每小题3分,共30分)1.下列函数中,是二次函数的是( )A. B. C. D.2.下列说法正确的是( )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.下列现象不是旋转的是( )A.飞速旋转的电风扇 B.坐电梯从1楼到10楼C.言言在荡秋千D.关上教室门4.已知,,是抛物线上的点,则( )A. B. C. D.5.给出下列说法:①半径相等的圆是等圆;②长度相等的弧是等弧;③以2cm 长为半径的圆有无数个;④平面上任意三点能确定一个圆.其中正确的有( )A.②④B.①③C.①③④D.①②③④6.已知二次函数的部分自变量和函数的对应值表如下:x-2-12y 0012则下列各点在函数图象上的是( )2y x =()1y ax x =-21y x =-()221y x x =-+()11,y -()22,y -()34,y -24y x x n =--+123y y y <<321y y y <<213y y y >>231y y y >>()20y ax bx c a =++≠3232-578A. B. C. D.7.任意抛掷一枚均匀的骰子两次,记两次朝上的点数的和为m ,则下列m 的值中,概率最大的是( )A.5B.6C.7D.88.抛物线的图象如图所示,根据图象可知,抛物线的函数表达式可能是( )A. B.C. D.9.如图,在中,,,,P 为边BC 上的一点,以P为圆心,长为半径作圆,则当点C 在圆内,点A 在圆外时,线段CP 的取值范围为( )B. C. D.10.如图1,在矩形ABCD 中,P 为边AD 上一点,连结BP ,将矩形沿BP 折叠,记与矩形重叠部分的面积为S ,设AP 的长为x ,S 关于x 的函数图象如图2所示,则下列说法错误的是( )13,24⎛⎫-- ⎪⎝⎭()4,12-31,2⎛⎫ ⎪⎝⎭3,44⎛⎫ ⎪⎝⎭22y x x =--211222y x x =--+()()12y x x =-+22y x x =-++Rt ABC △90C ∠=︒3AC =4BC =7272CP <<702CP <<35CP <<1522CP <<A PB '△图1图2A.当,S 为关于x 的一次函数B.,C.当,S 为关于x 的二次函数D.图象过点卷Ⅱ说明:本卷共2大题,14小题.请用黑色字迹的钢笔或者签字笔将答案写在“答题卡”相应的位置上.二、填空题(本大题有6小题,每小题3分,共18分)11.写出一个开口向下,并经过原点的二次函数:____________________.12.如图1,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m ,宽为4m 的矩形将不规则图案围起来,然后在适当位置随机地朝矩形区域内扔小球,并记录小球落在不规则图案内的次数,将若干次有效试验的结果绘制成了如图2所示的折线统计图.若每次投掷,小球落在矩形内每个点的可能性相同,由此他可以估计不规则图案的面积为_____________.图1 图213.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是___________.14.如图,MN 是的直径,,点A 在上,,B 为的中点,P 是直径MN 上一动点,则的最小值是_____________.01x ≤≤2a =12b =1x a ≤≤313,224⎛⎫⎪⎝⎭2m 22y x =O 6MN =O 30AMN ∠=︒ AN PA PB +15.已知二次函数的值恒大于0,则m 的取值范围是__________.16.如图,在每个小正方形的边长均为1的网格图中,一段圆弧经过格点A ,B ,C ,格点A ,D 的连线交圆弧于点E ,则AE 的长为____________.三、解答题(本大题有8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本题满分8分)请利用骰子设计一个双人游戏,要求游戏对两人公平,并说明游戏公平的理由.18.(本题满分8分)已知函数的图象经过点.(1)求这个函数的表达式.(2)当时,求x 的取值范围.19.(本题满分8分)如图,有甲、乙两个完全相同的转盘均被分成A ,B 两个区域,甲转盘中A 区域的圆心角是120°,乙转盘中A 区域的圆心角是90°,自由转动转盘(如果指针指向区域分界线则重新转动).甲 乙(1)转动甲转盘一次,求指针指向A 区域的概率.(2)自由转动两个转盘各一次,利用列表或画树状图的方法,求两个转盘指针同时指向B 区域的概率.20.(本题满分8分)已知某二次函数的部分自变量和函数的值如下表:x -4-3-2-10y-133(1)请画出该函数的图象.(2)请写出以上函数的性质.(不少于两条)21.(本题满分8分)如图,的直径AB 垂直弦CD 于点E ,F 是圆上一点,D 是的中点,连结CF 交OB 于点G ,连结BC .()2223y x m x m =-+++21y x bx =+-()3,22y ≥3272O BF(1)求证:.(2)若,,求CD 的长.22.(本题满分10分)某学校操场使用羽毛球发球机进行辅助训练,假设发球机每次发球的运动轨迹是抛物线,在第一次发球时,球与发球机的水平距离为x (米)(),离地面的高度为y (米),y 与x 的对应数据如下表所示.x (米)00.41 1.6···y (米)22.162.252.16···(1)球经发球机发出后,最高点离地面________米;求y 关于x 的函数表达式.(2)发球机在地面的位置不动,调整发球口后,在第二次发球时,y 与x ()之间满足函数关系.①为确保在米高度时能接到球,求球拍的接球位置与发球机的水平距离.②通过计算判断第一、二次发出的球在飞行过程中,当两球与发球机的水平距离相同时,两球的高度差能否超过1米.23.(本题满分10分)如图1,抛物线经过点,,并交x 轴于点E ,F (点F 在点E 的右边).图1图2(1)求该抛物线的函数表达式.(2)如图2,为y 轴上一动点,点D 的坐标为,过三点P ,E ,F 作抛物线,连结BD .GE BE =6AG =4BG =0x ≥0x ≥2113882y x x =-++5421:C y x bx c =++()0,3A -()4,5B ()0,P t ()0,32C①当抛物线的顶点落在线段BD 上时,求此时t 的值.②当抛物线与线段BD 只有一个交点时,直接写出t 的取值范围.24.(本题满分12分)如图,已知AB 为半圆O 的直径,C 为半圆O 上一点,连结AC ,作点O 关于AC 的对称点,直线交半圆O 于点D.图1图2(1)求证:.(2)若点与点D 重合,求此时的度数.(3)如图2,过点C 作,交直线AD 于点F ,判断点D 能否为的中点.若能,求出此时的值;若不能,请说明理由.2C 2C O 'AO '//CO AO 'O 'AOC ∠CF AD ⊥FO 'ACAO联盟校2024学年第一学期九年级期中阶段性评价答案一、选择题(本大题有10小题,每小题3分,共30分)1-5:ABBCB6-10:BCDAC二、填空题(本大题有6小题,每小题3分,共18分)11.(答案不唯一)12.713.14.15.三、解答题(本大题有8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:投掷骰子,当朝上一面的数字小于等于3时甲胜;反之乙胜.(4分)此时,则此游戏对双方公平.(答案不唯一,符合题意即可)(4分)18.解:(1)将代入,得,解得.∴.(4分)(2)或.(4分,每个2分)19.解:(1).(2分)(2)将甲转盘中的B 区域平均分成两份,分别记为,,将乙转盘中的B 区域平均分成三份,分别记为,,,(1分)则两个转盘指针指向区域的所有可能性可列表如下:甲乙A AAA2y x =-()2223y x =--22m -<<+()()12P P ==甲胜乙胜()3,221y x bx =+-22331b =+-2b =-221y x x =--1x ≤-3x ≥()13P A =指针指向区域1B 2B 1B 2B 3B 1B 2B 3B 1AB 2AB 3AB(3分)所以.(2分)20.解:(1)如图所示:(4分)(2)当时,y取得最大值;当时,y 随x 的增大而减小.(4分)(每个2分,答案不唯一)21.(1)证明:∵D 是的中点,∴.(1分)∵,∴,∴,(1分)∴.(1分)∵,∴.(1分)(2)解:如图,连结OC ,∵,,∴,∴,(1分)∴.由(1)知,1B 1B A 11B B 12B B 13B B 2B 2B A21B B 22B B 23B B ()61122P B ==指针指向区域1x =-721x ≥- BFECG ECB ∠=∠CD AB ⊥90CEG CEB ∠=∠=︒CGE CBE ∠=∠CG CB =CE BG ⊥EG EB =6AG =4BG =6410AB =+=152OC CB AB ===541OG OB BG =-=-=122GE BE BG ===∴(1分)∴.(1分)∵直径,∴.(1分)22.解:(1)2.25∵顶点坐标为,设抛物线的表达式为,当时,,代入得,∴.故y 关于x 的函数表达式为.(3分)(2)①令,即,解得,(舍去),故球拍的接球位置与发球机的水平距离为2米.(3分)②两球的高度差为.(2分)∵,123OE OG GE =+=+=4CE ==AB CD ⊥2248CD CE ==⨯=()1,2.25()21 2.25y a x =-+0x =2y = 2.252a +=0.25a =-()22110.251 2.25242y x x x =--+=-++54y =211358824x x -++=12x =21x =-221211113242882y y x x x x ⎛⎫-=-++--++ ⎪⎝⎭2131882x x =-++213258232x ⎛⎫=--+⎪⎝⎭18a =-∴在时,有最大高度差米,(1分)∴两球的高度差不能超过1米.(1分)23.解:(1)把,代入,得解得∴.(3分)(2)①在中,令,解得,.设,把,代入,解得,,∴.把代入,得.(2分)设的函数表达式为,把,代入,解得,∴.∵点P 在抛物线上,∴.把代入,得.(2分)②,或.(3分)24.(1)证明:∵点O ,关于AC 对称,∴,,,∴,.又∵,∴,∴.(4分)(2)解:连结,若点与点D 重合,则,∴为等边三角形,32x =2532()0,3A -()4,5B 2y x bx c =++35164c b c =-⎧⎨=++⎩3,2,c b =-⎧⎨=-⎩223y x x =--223y x x =--0y =11x =-23x =BD y kx n =+()4,5B ()0,3D 12k =3n =132BD y x =+1x =72y =2C ()()13y a x x =+-1x =72y =78a =-()()7138y x x =-+-2C 0x =218t =3t >3t ≤-t =O 'AO AO '=CO CO '=AC AC =AOC AO C '≅△△O CA OCA '∠=∠OA OC =CAO OCA O CA '∠=∠=∠//CO AO 'OO 'O 'OO OC O C ''==OCO '△∴.同理,,∴.(4分)(3)解:能.如图,过点O 作,由(1)知,∴四边形为菱形,∴.∵,∴.∵,∴四边形HOCF 为矩形,∴,∴,∴.(4分)∵D 为的中点,∴.∵,∴,∴.不妨设,则,∴.(4分)60OO C '∠=︒60AOO '∠=︒120AOC ∠=︒OH AF ⊥AO AO CO CO ''===AOCO '//CO AO 'OH AF ⊥OH OC ⊥CF AD ⊥OH CF =Rt AOH Rt O CF '≅△△AH O F '=O F '22AH O D DF '==OH AF ⊥AH HD =222AH HO O D DF ''===2222AH HO O D DF ''====3AO AO O C ''===CF ==AC ==AC AO =。

陕西省延安市富县2024-2025学年九年级上学期阶段性学习效果评估数学试卷(一)(无答案)

陕西省延安市富县2024-2025学年九年级上学期阶段性学习效果评估数学试卷(一)(无答案)

2024—2025学年度第一学期阶段性学习效果评估九年级数学(一)注意事项:本试卷分第一部分(选择题)和第二部分(非选择题)两部分,满分120分,考试时间120分钟.请将第一部分的答案填写在题后相应的答题栏内.第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.一元二次方程的二次项系数、一次项系数、常数项分别是( )A .B .C .D .2.抛物线的顶点坐标是( )A .B .C .D .3.若关于x 的方程是一元二次方程,则m 的值是( )A .0B .C .1D .4.将抛物线先向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的表达式是( )A .B .C .D .5.用配方法解一元二次方程,配方后得到的方程是( )A .B .C .D .6.已知关于x 的方程有实数根,则k 的取值范围是( )A .且B .C .D .且7.已知是方程的两个根,则的值为( )A .B .C .2024D .20258.如图,二次函数的图象与x 轴相交于两点,则以下结论:①;②对称轴为;③;④.其中正确的个数为( )23410x x --=3,4,1--3,4,13,4,1-3,1,4--23(1)2y x =--(1,2)-(1,2)-(1,2)(1,2)--21(1)450m m xx +++-=1-1±2(2)1y x =-+2(2)y x =-2(1)2y x =-+2(4)2y x =-+22y x =+28100x x -+=2(8)54x +=2(8)54x -=2(4)6x +=2(4)6x -=2230kx x -+=13k -…0k ≠13k -…13k …13k …0k ≠,αβ220240x x -+=22ααβ--2025-2024-2(0)y ax bx c a =++≠(1,0),(2,0)A B -0ac <1x =20a c +=0a b c ++>A .1B .2C .3D .4第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.方程化为一元二次方程的一般形式是_______.10.一个三角形的两边长分别为3和5,其第三边是方程的根,则此三角形的周长为_______.11.若是一元二次方程的两个实数根,则的值为_______.12.初三某班同学互赠纪念卡片,若每两个同学均互赠一张,最终赠送卡片共1892张,设全班共有x 人,根据题意,可列方程为_______.13.如图,抛物线的对称轴为直线,将抛物线向上平移5个单位长度得到抛物线,则图中的两条抛物线、直线与y 轴所围成的图形(阴影部分)的面积为_______.三、解答题(共13小题,计81分,解答题应写出过程)14.(本题满分5分)解下列方程:(1)(配方法);(2)(公式法).15.(本题满分5分)已知抛物线,经过三点,求这条抛物线的表达式.16.(本题满分5分)“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,3月份售出150个,5月份售出216个,求该品牌头盔月销售量的平均增长率.17.(本题满分5分)(3)(2)0x x +-=213400x x -+=12,x x 260x x --=1211x x +21:4C y x x =-x a =1C 2C x a =24210x x --=2250x x --=2y ax bx c =++(1,0),(0,3),(2,3)--已知关于x 的一元二次方程.(1)求证:对于任意实数k ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求k 的值及方程的另一个根.18.(本题满分5分)已知抛物线.求证:不论k 为任何实数,抛物线与x 轴总有两个交点.19.(本题满分5分)如图是某停车场的平面示意图,停车场外围的长为30米,宽为19米,若停车位总占地面积为390平方米,停车场内车道的宽都相等,求车过的宽.20.(本题满分5分)已知是关于x 的二次函数.(1)若函数图象有最低点,求k 的值;(2)判断点是否在(1)中的函数图象上.21.(本题满分6分)如图,在中,,点Q 从点A 开始沿边向点B 以的速度移动,点P 从点B 开始沿边向点C 以的速度移动.如果分别从两点出发,那么几秒后,的面积等于22.(本题满分7分)已知函数.(1)求该函数图象的开口方向;(2)求该函数图象的对称轴和顶点坐标;(3)当x 取何值时,y 随x的增大而增大?2292020x x k ++-=22y x kx k =++-27(2)k k y x -=+(P ABC V 90,5B AB ∠=︒=AB 1cm/s BC 2cm /s P Q 、B A 、PBQ V 24cm 243y x x =-+-23.(本题满分7分)已知关于x 的一元二次方程,其中分别为三边的长.(1)如果是方程的根,试判断的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断的形状,并说明理由.24.(本题满分8分)已知二次函数.(1)写出该二次函数图象的对称轴及顶点坐标,再描点画图;(2)结合函数图象,求一元二次方程的解;(3)结合函数图象,直接写出时x 的取值范围.25.(本题满分8分)如果关于x 的一元二次方程有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程的两个根是,则方程是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:① ;②;(2)已知关于x 的方程(m 是常数)是“邻根方程”,求m 的值.26.(本题满分10分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,则商场平均每天可售出衬衫_______件,每天获得的利润为_______元;(2)若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?(3)商场每天要获得利润有可能达到1400元吗?若能,请求出此时每件衬衫的利润;若不能,请说明理由.2()2()0a c x bx a c --++=a b c 、、ABC V 1x =ABC V ABC V 223y x x =--2230x x --=0y <20(0)ax bx c a ++=≠20x x +=120,1x x ==-20x x +=260x x --=2210x -+=2(1)0x m x m ---=。

九年级第一学期 数学(上册 )10月份 阶段性 测试 及答案

九年级第一学期 数学(上册 )10月份 阶段性 测试 及答案

九年级第一学期数学(上册)10月份阶段性测试及答案(范围:第一章《特殊平行四边形》、第二章《一元二次方程》、第三章《概率的进一步认识》)【内容:第一章《特殊平行四边形》、第二章《一元二次方程》、第三章《概率的进一步认识》】一、选择题(本大题共有10个小题,每小题3分,共30分)1.不透明的盒子中有两张卡片,上面分别印有北京2022年冬奥会相关图案(如图所示),除图案外两张卡片无其他差别.从中随机摸出一张卡片,记录其图案,放回并摇匀,再从中随机摸出一张卡片,记录其图案,那么两次记录的图案是甲的概率是()A.12B.13C.14D.16【答案】C2.已知方程x2+kx-6=0的一个根是2,则它的另一个根为()A.1 B.-2 C.3 D.-3 【答案】D3.如图,正方形ABCD的面积是()A.5 B.25 C.7 D.10【答案】B4.方程x2-4x-5=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判定【答案】A5.某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.19【答案】B6.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCD【答案】C7.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.15 C.12或15 D.17或11【答案】B8.如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60° D.AB=AF【答案】B9.现有4张卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是()A.16B.18C.110D.112【答案】A10.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC n O n 的面积为( )A .1()2nB .5×+11()2nC .5×1()2nD .5×11()2n −【答案】C二、填空题(本大题共有6个小题,每小题3分,共18分)11.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是 .【答案】1312.若一元二次方程210x x −−=的两根分别为1x 、2x ,则1211x x += . 【答案】1−13.如图,在菱形ABCD 中,点A 在x 轴上,点C 的坐标为(4,4),点D 的坐标为(0,2),【答案】(8,2)14时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级第一学期数学阶段性测试题
一、单项选择题(下列各题的四个选项中,只有一个是符合题意要求的,请将正确答案写在题后的答题卡内;计10小题,每小题4分,共40分)
1.下列各式中,一定是二次根式的是 【 】
A .4-
B .1-x
C .32a D.32+x
2.下列图形中,既是轴对称,又是中心对称的图形是【 】
3.把b
b 1-的根号外的因式移到根号内的结果是 【 】 A 、b - B 、b --
C 、b
D 、b - 4.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是 【 】
A .012=+x
B .012=-+x x
C .0322=++x x D. 01442=+-x x
5.若()()
822222=-++b a b a ,则=+22b a 【 】 A .-2 B. 4 C.4或-2 D .-4或2
6.如右图所示的Rt △ABC 向右翻滚,下列说法正确的有 【 】
(1)①→②是旋转(2)①→③是平移
(3)①→④是平移(4)②→③是旋转
A. 1种
B. 2种
C. 3种
D. 4种
7.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,
则∠AOD 等于 【 】
A .64°
B .48°
C .32°
D .76°
7题 8题
8.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于【 】.
A .37°
B .74°
C .54°
D .64°
9. 若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),
E A D C B 则此圆的半径为
【 】
A .2b a +
B .2b a -
C .2
2b a b a -+或 D .b a b a -+或 10. 下列命题正确的是 【 】
A .相等的圆心角所对的弦相等
B .等弦所对的弧相等
C .等弧所对的弦相等
D .垂直于弦的直线平分弦
11.在一幅长80cm ,宽50cm 的矩形北京奥运风景画的四周镶一条
金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面
积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是
【 】
A 、x 2+130x -1400=0
B 、x 2+65x -350=0
C 、x 2-130x -1400=0
D 、x 2-65x -350=0
12. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是【 】
A 、1
B 、2
C 、3
D 、不能确定
二、填空题(本大题共6小题,每小题3分,共18分) 13.、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 。

14.符号“f ”表示一种运算,它对一些数的运算结果如下:
()()()()() ,34,23,12,011====f f f f
() ,5)5
1
(,4)41(,3)31(,2)21(2====f f f f
利用以上规律计算:()=-)20091(2009f f _____________________. 15.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 。

16.如图,P 为⊙O 的弦AB 上的点,P A =6,PB =2,⊙O 的半径为5,则OP =______.
17.如果关于x 的一元二次方程()01122
2=++-x k x k 有两个不相等的实数根,那么 k 的取值范围是 .
18.如图,⊙O 的弦AB 垂直于AC ,AB =6cm ,AC =4cm ,则⊙O 的半
径等于______cm .
三、解答题(本大题共5小题,共66分)
19.(20分)计算:
(1)()2)31(21243
122++⋅-- (2)
第11题1180.545022
-
(3)解方程x 2+5=3(x +l)
(4)解方程(3x +2)2-4=0
20、化简:32x 9+64x –2x x 1并将你所喜欢的x 值代人化简结果进行计算.
20.(8分)先化简1
21111122+-+÷--+x x x x x ,然后从1,1,13--中选取一个你认为合适..的数作为 x 的值代入求值.
21.已知:如图,AB 是⊙O 的直径,弦CD 交AB 于E 点,BE =1,AE =5,∠AEC =30°,求CD 的长.
22.已知:如图,A ,B 是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =80°,B 是的中点.
(1) 在CD 上求作一点P ,使得AP +PB 最短;
(2)若CD=4cm,求AP+PB的最小值.
23.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?
24.小亮家想利用房屋侧面的一面墙(足够长),再砌三面墙,围成一个矩形猪圈,现在已备
足可以砌12米长的墙的材料.
m的矩形猪圈,你能够教他们怎么围吗?
(1)如果小亮家想围成面积为162
m的矩形猪圈,你认为可能吗?说明理由,请帮小亮(2)如果小亮家想围成面积为202
设计一套方案使猪圈面积最大?
1.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上
一点,连结AF交⊙O于M.
求证:∠AMD=∠FMC.
20.(10分)
21.(12分)22.(12分)
23.(14分)。

相关文档
最新文档