分式方程的应用2PPT教学课件

合集下载

第2课时分式方程的应用PPT课件

第2课时分式方程的应用PPT课件

PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/
3 6 2x
方程两边同乘6x,得
解得
2x x+x=1+.3 =6x.
检验:当x =1时,6x ≠0,x =1是原分式方程的解.
由上可知,若乙队单独工作1个月可以1完 成全部任务,对比甲队1个月完成任务的 3 ,
可知乙队施工速度快.
归纳小结 列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.
1
分析:甲队1个月完成总1工程的___3__,设乙队单独
施工1个月1 能完成总工程的 x ,那么甲队1 半个月完成总
6
2x
工程的____,乙队16 半21个x 月完成总工程____,两队半个
月完成总工程的

问题中的哪个等量关系
可以用来列方程?
1
解:设乙队单独施工1个月能完成总工程的 x , 记总工程量为1 1,1根据1工程 的1 实际进度,得
x =a是分式 方程的解 否
分式方程 整式方程
x =a
x =a 最简公分母是
否为零?

第06课时 分式方程及其应用PPT课件

第06课时 分式方程及其应用PPT课件

根据题意得:26a+35(200-a)=6280,
(2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购
解得:a=80.
买了多少条 A 型芯片?
答:购买了 80 条 A 型芯片.
+3
例 1 [2017·宁夏] 解方程:
-
4
-3 +3
=1.
[方法模型] 解分式方程时易出现的错误:
(1)漏乘没有分母的项;
(2)没有验根;
(3)去分母时,没有注意符号的变化.
解:去分母,得 x2+6x+9-4x+12=x2-9,
移项、合并同类项,得 2x=-30,
系数化为 1,得 x=-15,
)
B.4
=1 的解为 x=2,则 m
C.3
D.2
-1
=1 的解
为 x=2,∴x=2 满足关于 x 的分式方程
-3
-1
-3
=1,∴
2-1
=1,解得 m=4.故选 B.
高频考向探究
探究三 分式方程的应用
例 3 [2018·岳阳] 为落实党中央“长江大保护”新发展理念,我
市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然
完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化
面积比乙工程队完成 300 平方米的绿化面积少用 3 小时.乙工
程队每小时能完成多少平方米的绿化面积?
解:设乙工程队每小时能完成 x 平方米的
300 300
绿化面积.根据题意,得

-
2
=3.
解得 x=50.
经检验,x=50 是分式方程的解且符合题意.

分式方程(第二课时) 课件(共26张PPT) 初中数学人教版八年级上册

分式方程(第二课时)   课件(共26张PPT)  初中数学人教版八年级上册

方程两边同时乘以6x,得 2x+x+3=6x .解得 x=1.
检验:当x=1时,6x≠0.
所以原分式方程的解为 x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲 队1个月完成任务的 1 ,可知乙队的施工速度快.
3
探究新知
【问题2】某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为多少?
知识练习
解分式方程:(1) 7 1 x 1 ; (2) x 1 x 1 1.
x2 2x
x 1 x2 1
解:(1) 7 1 x 1 , x2 2x
解:(2) x 1 x 1 1, x 1 x2 1
去分母得: 7 x 2 1 x ,
去分母得: x 12 x 1 x2 1 ,
B.300
C.400
D.500
解析:设改造后每天生产的产品件数为 x,则改造前每天生产的
产品件数为 x 100 ,
根据题意,得: 600 400 , x x 100
解得: x 300 , 经检验 x 300 是分式方程的解,且符合题意, 答:改造后每天生产的产品件数 300.故选:B.
练习 3 A,B 两种机器人都被用来搬运化工原料,A 型机器人比 B
个月的工程量 = 总工程量(记为1).
1 3
+
1 6
1
+ 2x
探究新知
甲队施工1个月的工程量 + 甲队施工半个月的工程量 + 乙队施工半 个月的工程量 = 总工程量(记为1).
解:设乙队单独施工1个月能完成总工程的 根据工程的实际进度,得 1 1 1 1

《分式方程的应用》PPT课件

《分式方程的应用》PPT课件

售额为10 000元; 若按八五折销售,则每月多卖出
20件,且月销售额还增加1 900元. 每件服装的原
价为多少元?
分析:本题中的主要等量关系为:按八五折销售这种服
装的数量一按原价销售这种服装的数量=20件.
解:设每件服装原价为x元.根据题意,得
10 000 1 900 10 000 20.
85%x
第十二章 分式和分式方程
分式方程的应用
-.
1 课堂讲解 建立分式方程的模型
列分式方程解应用题的步骤 列分式方程解应用题的常见类型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
小红和小丽分别将9 000字和7 500字的两篇文稿 录入计算机,所用时间相同. 已知两人每分钟录入计 算机字数的和是220字.两人每分钟各录入多少字?
(来自《点拨》)
知3-练
2 【中考·安顺】“母亲节”前夕,某商店根据市场 调查,用3 000元购进第一批盒装花,上市后很 快售完,接着又用5 000元购进第二批这种盒装 花.已知第二批所购花的盒数是第一批所购花 盒数的2倍,且每盒花的进价比第一批的进价少 5元.求第一批盒装花每盒的进价是多少元?
(来自《典中点》)
2.补充: 请完成《典中点》剩余部分习题
(1)利润问题:利润=售价-进价,利润率=
利润 进价
×100%;
(2)工程问题:工作量=工作效率×工作时间;
(3)行程问题:路程=速度×时间.
注意:列分式方程解应用题,往往与实数的运算或不等
式联合应用.
易错警示:列分式方程时易出现单位不统一的错误.
(来自《点拨》)
知3-讲
例3 某服装店销售一种服装.若按原价销售,则每月销

人教版数学八年级上册 15.3分式方程的应用 课件(共20张PPT)

人教版数学八年级上册 15.3分式方程的应用 课件(共20张PPT)

积极探索
例4—行程问题
某次列车平均提速 v km/h,用相同的时间,列车提速前 行驶s km,提速后比提速前多行驶50km,提速前列车的平均 速度为多少?
分 (1)小组合作:找出已知量和未知量并填写表格

时间 ( h ) 速度 ( km/h ) 路程 ( km )
提速前
s
x
x
提速后
s+50 x+v
【解一解】
某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个 项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲乙两 队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天 的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应 选择哪个工程队、应付工程队费用多少元?
我能【选一选】
我能【解一解】
品味成功
【填一填】
甲、乙两个小组进行植树活动,已知甲小组每小时比乙 小组多种6棵树,甲小组种90棵树所用的时间和乙小组种60棵 树所用时间相等,求甲、乙小组每小时各种多少棵树?如果 设乙小组每小时 种x棵树,根据题意可得方程为
60 90 x x+6
——————————————
B、 100 60
x + 30 x 30
D、
100 60 x 30 x + 30
品味成功
【解一解】
八年级学生去距学校10km的博物馆参观,一部分学生 骑自行车先走,过了20min后,其余学生乘汽车出发,结 果他们同时到达。已知汽车的速度是骑车学生速度的2倍, 求骑车学生的速度。
解:设骑车学生的速度为 x km∕h,则汽车的速度为2x km∕h,
教师寄语
北三家中学 张凤伟

【最新】浙教版七年级数学下册第五章《5.5分式方程(2)》公开课课件.ppt

【最新】浙教版七年级数学下册第五章《5.5分式方程(2)》公开课课件.ppt

数后,分数的值变为它的倒数,那么加上的
这个数是多少?
3 x 2
解 :设这个数为x,则可列方程 2 x 3 ,
3.某车间加工1200个零件,原来每天可加工x个,则 1200 需_____x ___天可加工完成;如果采用新工艺,工效是 原来的1.5倍,这样每天可以加工_1_._5_x_个,同样多的
头的距离,v表示明胶片(像)到镜头的距离,如果一
架照相机f已固定,那么就要依靠调整U、V来使成像
清晰。
如果用焦距f=35mm的相机拍摄离镜头的跳高
u=2m的花卉,成像清晰,那么拍摄时胶片到镜头的距
离v大约是多少?(精确到0.1mm)
变式:照相机成像应用了一个重要原理,即 1 1 1 f uv
(V≠f),问在f、v已知的情况下,怎样确定物体到镜头
每个月的用水量×水的单价=每个月的用水费. 今年的用水单价=去年用水单价×(1+1/3). 所以,首先要表示出小丽家这两个月的用水量. 每个月的用水量=水费/水的单价.
例题欣赏
解:设该市去年用水的价格为x元/m3,则今年 的水价为(1+1/3)x元/m3,根据题意得
30 (1 1)x
15 x
5
• 10、人的志向通常和他们的能力成正比例。2021/1/122021/1/122021/1/121/12/2021 9:56:46 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/122021/1/122021/1/12Jan-2112-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/122021/1/122021/1/12Tuesday, January 12, 2021 • 13、志不立,天下无可成之事。2021/1/122021/1/122021/1/122021/1/121/12/2021

2024版年度分式方程的应用公开课精品课件

2024版年度分式方程的应用公开课精品课件
分式方程和不等式是数学建模中 的重要工具,可以帮助我们理解 和描述现实世界中的复杂关系。
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求

分式方程的应用PPT课件

分式方程的应用PPT课件

解: 设乙公司有x人,则甲公司有(1+20%)x人.
根据题意,得
30000 30000 20. x (1 20%)x
解这个方程,得
x=250.
经检验,x=250是所列方程的解.
答:甲公司有300人,乙公司有250人.
新知导入 课程讲授 随堂练习 课堂小结
分式方程的应用
例3 小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知
D.
s s 60 xv x
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
3
新知导入 课程讲授 随堂练习 课堂小结
1.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地
顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6
km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中
4.陶瓷的发展史是中华文明史的一个重要组成部分,中国作为四 大文明古国之一,为人类社会的进步和发展做出了卓越的贡献 ,其中陶瓷的发明和发展更具有独特的意义.景德镇某陶瓷厂接 到制作480件陶瓷的订单,为了尽快完成任务,该厂实际每天制 作的件数比原来每天多60%,结果提前10天完成任务,原来每 天制作_1_8____件.
划提高了25%,结果提前30天完成了这一任务.设实际工作时每天
绿化的面积为x万平方米,则下面所列方程中正确的是( B )
A.
60 x
1
60
25%x
30
B. 1 25%x 60 30
60
x
C.
1
60
25%x
60 x
30
D. 60 60 1 25% 30
x
x
新知导入 课程讲授 随堂练习 课堂小结

冀教版数学八年级上课件:12.5 分式方程的应用(第2课时)

冀教版数学八年级上课件:12.5  分式方程的应用(第2课时)

据题意得: 2000 2000 700 -20
x
0.9x
解得x=50. 经检验,x=50是所列方程的解且符合题意. 答:该种纪念品4月份的销售价格是50元/件.
张师傅卖月饼,现在每天卖的斤数是原来的2 倍,1000斤月饼比原来少卖5天.原来、现在每天各 卖多少斤?
原来 现在
总量(斤) 日销售量(斤)
为1.5x万千克,根据题意列方程为 ( A )
A. 36 36 9 20
x
1.5 x
C. 36 9 36 20
1.5 x
x
B. 36 36 20 x 1.5x
D. 36 36 9 20
x
1.5 x
解析:根据题意可得等量关系:原计划种植的亩数-改 良后种植的亩数=20亩,列出方程 . 36 36 9 20
检测反馈
1.(2015·遂宁中考)遂宁市某生态示范园计划种植一批 核桃,原计划总产量达36万千克,为了满足市场需求,现 决定改良核桃品种,改良后平均每亩产量是原计划的1.5 倍,总产量比原计划增加了9万千克,种植亩数减少了20 亩,则原计划和改良后平均每亩产量各是多少万千克?设 原计划每亩平均产量为x万千克,则改良后平均每亩产量
(4)如何列出分式方程?
(5)解这个方程,并检验,作答。
活动一:一起探究
学习新知
今年父亲的年龄是儿子年龄的3倍,5年后父亲的年 龄与儿子的年龄的比是22∶9.求父亲和儿子今年的 年龄各是多少. 思考:上述问题中有哪些等量关系?
题目中有两个等量关系: 1.今年父亲的年龄=今年儿子的年龄×3; 2. 5年后父亲的年龄 = 22
解:设每件服装原价为x元,根据题意,
得 10000 1900 10000 20

分式方程第2课时分式方程的应用课件(共29张PPT)

分式方程第2课时分式方程的应用课件(共29张PPT)
当堂练习
当堂反馈
即学即用
1.甲、乙两人同时从A 地出发,骑自行车行30 km到B 地,甲比乙每小时少骑3 km,结果乙早到40分钟,若设乙每小时走x km,则可列方程( )
A.
B.
C.
D.
D
2.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的______倍.
归纳总结
例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?
表格法分析如下:
工作时间(月)
工作效率
工作总量(1)
甲队
乙队
等量关系:
甲队完成的工作总量+乙队完成的工作总量=“1”
设乙单独完成这项工程需要x天.
一、列分式方程解决工程问题
方程两边都乘以6x,得
解得 x=1.
检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,而甲队单独施工需3个月才可以完成全部任务,所以乙队的施工速度快.
想一想:本题的等量关系还可以怎么找?
甲队单独完成的工作总量+两队合作完成的工作总量=“1”
80x+160 -80x+160=x2 -4.
4.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:
同学们,请求出篮球和排球的单价各是多少元?
解:设排球的单价为x元,则篮球的单价为(x+60)元,根据题意,列方程得
解得x=100.经检验,x=100是原方程的根,当x=100时,x+60=160.

初中数学华东师大版八年级下册1第2课时分式方程的应用课件

初中数学华东师大版八年级下册1第2课时分式方程的应用课件

工作时间、工作效率、工作量
(1)工作量=工作效率×工作时间; (2)工作效率=工作量/工作时间;
如何运用这些关系 解决实际问题呢?
(3)工作时间=工作量/工作效率.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
例1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的
三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
5.智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是 200千米/时,未来还将提速,在相同的时间内,列车现阶段行驶300千米, 提速后列车比现阶段多行驶450千米,问列车平均提速多少千米/小时?
解:设列车平均提速x千米/小时, 依题意得: 300 300 450 200 200 x 解得 x=300. 经检验,x=300是所列方程的解,
D. 300 300 5 x2 x
学习目标
概念剖析
典型例题
当堂检测
课堂总结
2.某圾处理厂日处理垃圾3600吨,实施垃圾分类后,每小时垃圾的处理量
比本来提高20%,这样日处理同样多的垃圾就少用3h.若设实施垃圾分类 前每小时垃圾的处理量为x吨,则可列方程_3_6_x0_0____3____x(_1_3_6_02_00_%_)___.
第16章 分 式 16.3 可化为一元一次方程的分式方程
第2课时 分式方程的应用
学习目标
概念剖析
典型例题
当堂检测
课堂总结
1.会分析题意找出等量关系,会列出分式方程解决实际问题. (重点)
2.能结合实际问题的情境对分式方程的解进行检验.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先 走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽 车的速度是自行车的3倍,求两车的速度。
分析:设自行车的速度是x千米/时,汽车的速度请是审3题x千分米析/时题 请列找方出程请可 的根据题意填写速度、时间、路程之间的关系表意
等量关系
分析:请完成下列填空: (1)设乙型挖土机单独挖这块地需要x天,那么它1天挖土量是
1
这块地的___x____;
(2)甲型挖土机1天挖土量是
1
这块地的___8___;
(3)两台挖土机合挖,1天挖土
1
量是202这0/1块0/13地的__2___.
1 1 1 x8 2
8
例 题 欣 赏
2020/10/13
千米/时,列车提速后行使 (x+50)千米
所用的时间为s s 50小时, x xv
9
例 题 欣 赏
2020/10/13
例4;从2004年5月起某列车平均
提速v千米/时,用相同的时间,列车
提速前行使s千米,提速后比提速前多
行使50千米,提速前列车的平均速度
为多少?
解设列车提速前行使 的速度为 x 千米
分式方程的应用
2020/10/13
1
例题3:
两个工程队共同参与一项筑路工程,甲队单施工 1个月完成总工程的三分之一,这时增加了乙队, 两队又共同工作了半个月,总工程全部完成。哪 个的施工队速度快?
分析:甲队1个月完成总工程的
1 3
,设乙队
如果单独施工1个月能完成总工程的
1 x
,那么甲
队 程半的个月21x 完,成两总队工半程个的月完16成总,工乙程队的完成16 总21x 工。
速度(千米/时) 路程(千米) 时间(时)
自行车
x
汽车
3x
15
15 x
15
15 3x
农 机C 厂 2020/10/13
B


地 自行车先走 2 时
时 到12
3
例1:农机厂到距工厂15千米的向阳村检修农机,一部分人骑自
行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,
已知汽车的速度是自行车的3倍,求两车的速度。
则提速前它行驶s千米所用的时间为小时,提速后
列运车行的(平s+均5速0)度千为米(所x+用v的)时千间米为∕小时sx,5v0提小速时后。它 根据行驶的等量关系,得:
s x
s 50 xv
方程两边同乘以x(x+v),得:
s(x+v)=x(s+50)
解得:
x
sv 50
检验:由于v,s都是正数,x s v 是原方程的解。
汽车所用的时间=自行车所用时间-
2 3

解:设自行车的速度为x千米/时,那么汽车的速度是3x千米/时,
依题意得:
15 15 2 3x x 3
设元时单位 一定要准确
即: 5 15 2 x x3
15=45-2x 2x=30
得到结果记 住要检验。
x=15
2020/10/1经3 检验,15是原方程的根 由x=15得3x=45
2(x+3)+x2=x(x+3)
解得:
x=6
检验:x=6时x(x+3)≠0,x=6是原方程的解。
答:规定日期是6天。
练习:P37练习1
2020/10/13
4
例题4:
从2004年5月起某列车平均提速v千米∕小时,用相同 的时间,列车提速前行驶s千米,提速后比提速前多行 驶50千米,提速前列车的平均速度为多少?
2020/10/13
2
解:设乙队如果单独施工1个月能完成总工程的
1 x
根据工程的实际进度,得:
11 1 1
3 6 2x
方程两边同乘以6x,得:
2x x 3 6x
解得:
x=1
检验:x=1时6x≠0,x=1是原方程的解。
由以上可知,若乙队单独工作一个月可以完成全部任务, 对比甲队1个月完成任务的,可知乙队施工速度快。
分析:这里的字母v、s表示已知数据,设提速前列 车的平均速度为x千米∕小时,先考虑下面的空:
提速后列车的平均速度为 (x+v)千米s∕小时, 提速前列车行驶s千米所用的时间为 x 小时,
提速后列车运行(s+50)千米所用的时间为
s 50
x v 小时。
2020/10/13
5
解:设提速前这次列车的平均速度为x千米∕小时,
sv 50
时x(x+v)≠0,
50
sv
答:提速前列车的平均速度为
2020/10/13
50
千米/小时
6
总结:列分式方程解应用题的方法和步骤如下:
1:审题分析题意 2:设未知数 3:根据题意找相等关系,列出方程;
4:解方程,并验根(对解分式方程尤为 重要)
5:写答案
2020/10/13
7
重庆市政府打算把一块荒地建成公园,动用了一台 甲型挖土机,4天挖完了这块地的一半。后又加一台乙 型挖土机,两台挖土机一起挖,结果1天就挖完了这块 地的另一半。乙型挖土机单独挖这块地需要几天?
例4;从2004年5月起某列车平均 提速v千米/时,用相同的时间,列车 提速前行使s千米,提速后比提速前多 行使50千米,提速前列车的平均速度 为多少?
分析:这里的字母表示已知数据v,s, 提速前列车的平均速度x千米/时
列车提速前行使
s s 50
s千米所用的年时间为
x 小x时,v列车提速后的平均速度为x v
13
答:自行车的速度是15千米/时,汽车的速度是45千米/时
利率 售价 成本 成本
答:乙队的速度快。
2020/10/13
3
练习:某工程队需要在规定日期内完成。若甲队单独做 正好按时完成;若乙队单独做,超过规定日期三天 才能完成。现由甲、乙合作两天,余下工程由乙队 单独做,恰好按期完成,问规定日期是多少天?
解;设规定日期是x天,根据题意,得:
2 x
x x
3
1
方程两边同乘以x(x+3),得:
设敌军的速度为X千米/时
路程
速度
时间
敌军 24
x
24/x
我军 30
1.5 x
30/1.5x
30Km
我军

敌军
24Km
? 等量关系: 我军的时间= 敌军的时间 –
48 60
解:设敌军的速度为X千米/时,则我军为1.5X千米/时。
2020/10由/13 题意得方程:
30 24 48
1.5X X
60
11
/时,根据行使的时间的等量关系,得
s s 50 x xv
解得
x sv
经 检验:方程的解
x sv 答:提速前列车的速度为
千米/时
50
10
我部队到某桥头阻击敌人,出发时敌军离桥头24Km,我部队 离桥头30Km,我部队急行军速度是敌人的1.5倍,结果比敌人提 前48分钟到达,求我部队急行军的速度。
相关文档
最新文档