物体分离的两个临界条件及应用
2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题
动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
弹簧连接物体的分离问题
弹簧连接物体的分离问题临界条件:①两物体仍然接触、但弹力为零;②速度和加速度相等。
情况1:弹簧与物体分离——弹簧原长时情况2:弹簧连接的B与固定的板C分离——B、C间弹力为零、弹簧拉力等于B重力向下分力1、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一个固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.(重力加速度为g)情况3:物块P与弹簧连接的M分离——P、M间弹力为零、P、M加速度相等2、一弹簧秤的秤盘质量M=1.5 kg,盘内放一物体P,物体P的质量m=10.5 kg,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图1—10—10所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动,已知在头0.2 s内F是变力,在0.2 s以后是恒力.求F的最小值和最大值各是多少?(g=10 m/s2)3、固定在水平面上的竖直轻弹簧,上端与质量为M的物块B相连,整个装置处于静止状态时,物块B位于P处,如图所示.另有一质量为m的物块C,从Q处自由下落,与B相碰撞后,立即具有相同的速度,然后B、C一起运动,将弹簧进一步压缩后,物块B、C被反弹.下列结论中正确的是()A.B、C反弹过程中,在P处物块C与B相分离B.B、C反弹过程中,在P处物C与B不分离C.C可能回到Q处D.C不可能回到Q处“弹簧与物块的分离”模型太原市第十二中学 姚维明模型建构:两个物体与弹簧组成的系统。
两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。
【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0 这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。
物体分离的两个临界条件及其应用
物体分离的两个临界条件及其应用
体分离的两个临界条件是指在物理系统中,当温度和压力达到特定值时,物质由固体、液体或气体三相转换。
这两个临界条件分别是:
液-气临界点:当温度和压力达到特定值时,液体会直接转换为气体。
这个临界点被称为临界点。
固-液临界点:当温度和压力达到特定值时,固体会直接转换为液体。
这个临界点被称为熔点。
这两个临界条件有着重要的应用,如工业生产中的蒸馏、分离、冷冻等过程,以及在医学上的液氮冷冻等。
工业生产中的蒸馏: 临界点的应用可以在工业上实现蒸馏过程,在高温高压下将液体直接转换为气体,再通过冷却将气体转化为液体,从而实现分离。
制冷行业: 制冷行业中也广泛使用了体分离的原理,通过改变压力来改变物质的相态,在冷冻过程中使用临界点来将液体直接转化为气体。
医学上的液氮冷冻: 液氮冷冻是一种常用的生物样品保存方法,它利用了氮气在-196摄氏度时的临界点将气体直接转化为固体,从而达到快速冷冻的目的。
油气勘探: 体分离的原理在油气勘探中也有着重要的应用,通过对油气层的温度和压力的控制来使油气脱离岩石并释放出来。
探讨两物体分离时的临界条件
B 刚要离 地时 弹簧伸 长量 为 X 有 : 。
k x 2一 2 。 g ②
的物 体 A 经 一 轻 质弹 簧 与 下
方地 面上 的质 量 为 。的物 体
B不再 上升 , 表示此 时 A和 C的速度 为零 , C
已降 到其 最低 点 。 由机 械 能守 恒 , 初始 状 态 相 与 比, 弹簧势 能 的增 加量 为 :
如 图 2 示 , 粒 子 从 0 点 处 无 初 速 注 入 两 所 设
磁场 中 的运 动 》 节 , 一 在介 绍 回旋 加 速器 的原 理
AE — 3 x g( 1+ X )一 1 x + X2 。 ( 2 g( 1 )
B相 连 , 弹簧 的劲度 系数 为 忌 ,
A、 B都 处 于 静 止 状 态 。 条 一
不 可伸 长 的轻 绳绕 过轻 滑 轮 ,
一
C换成 D 后 , B刚离地 时 弹簧势 能 的增 量 当 与前 一次 相 同 , 由能 量关 系得 :
1 1
端 连 物体 A, 一端 连一 轻 另 段绳 沿竖 直方 向 。 在 挂 钩 上 挂 一 质量 为 现
挂钩。 开始 时各 段 绳 都 处 于伸 直状 态 , 上 方 的 A
一
告( + ) +÷ 1 一( + ) 3 1 3 1 g
厶 厶
的物体 C并从 静止 状态 释放 , 已知它 恰好 能使 B 离 开地 面但 不继 续上 升 。 将 C换 成另 一个质 量 若
X, : 1有
.
前 面两 个条 件是 同学们 很容 易想 到 的 , 第 而
,
计 h三个条 件 往往 被大家 忽 略 , 但这 却是 实实 在在 的
k = 研1 xl g。
牛顿运动定律解题技巧
牛顿运动定律的解题技巧常用的方法:一、整体法★★:整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法.二、隔离法★★:隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.注:整体与隔离具有共同的加速度,根据牛二定律,分别建立关系式,再联合求解。
三、等效法:在一些物理问题中,一个过程的发展,一个状态的确定,往往是由多个因素决定的,若某量的作用与另一些量的作用相同,则它们可以互相替换,经过替换使原来不明显的规律变得明显简单。
这种用一些量代替另一些量的方法叫等效法,如分力与合力可以互相代替。
运用等效法的前提是等效。
四、极限法极限法是把某个物理量推向极端,即极大或极小,极左或极右,并依此做出科学的推理分析,从而给出判断或一般结论。
极限法在进行某些物理过程的分析时,具有独特作用,恰当运用极限法能提高解题效率,使问题化难为易,化繁为简思路灵活,判断准确。
五、作图法作图法是根据题意把抽象的复杂的物理过程有针对性的表示成物理图示或示意图,将物理问题化成一个几何问题,通过几何知识求解。
作图法的优点是直观形象,便于定性分析,也可定量计算。
六、图象法图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间关系变为几何关系求解。
对某些问题有独特的优势。
动力学的常见问题:TB TA B A 2解之得g m M m M a A 42sin +-=α,g m M m M a B 42sin 2+-=α 讨论:(1)当m M 2sin >α时,0>A a ,其方向与假设的正方向相同;(2)当m M 2sin =α时,0==B A a a ,两物体处于平衡状态;(3)当m M 2sin <α时,0<A a ,0<B a ,其方向与假设的正方向相反,即A 物体的加速度方向沿斜面向上,B 物体的加速度方向竖直向下。
高中物理临界值问题
高中物理临界值问题一、物理中不同的临界情况对应着不同的临界条件,现列表如下:临界情况临界条件速度达到最大值物体所受合力为零刚好不相撞两物体最终速度相等或者接触时速度相等刚好分离两物体仍然接触、弹力为零,原来一起运动的两物体分离时,不只弹力为零且速度和加速度相等粒子刚好飞出(飞不出)两个极板的匀强电场粒子运动轨迹与极板相切粒子刚好飞出(飞不出)磁场粒子运动轨迹与磁场边界相切物体刚好滑出(滑不出)小车物体滑到小车一端时与车的速度刚好相等刚好运动到某一点到达该点时的速度为零绳端物体刚好通过最高点物体运动到最高点时重力等于向心力,速度大小为杆端物体刚好通过最高点物体运动到最高点时速度为零圆形磁场区的半径最小磁场区是以公共弦为直径的圆使通电导线倾斜导轨上静止的最小磁感强度安培力平行于斜面两个物体的距离最近(远)速度相等绳系小球摆动,绳碰到(离开)钉子圆运动半径变化,拉力骤变刚好发生(不发生)全反射入射角等于临界角总之,解决物理临界问题要仔细题目,搞清已知条件,判断出临界状态的条件,才能解决问题。
二、例题分析1.中国女排享誉世界排坛,曾经取得辉煌的成就。
在某次比赛中,我国女排名将冯坤将排球从底线A点的正上方以某一速度水平发出,排球正好擦着球网落在对方底线的B点上,且AB平行于边界CD。
已知网高为h,球场的长度为s,不计空气阻力且排球可看成质点,则排球被发出时,击球点的高度H和水平初速度v分别为( )A.H=43h B.H=32h C.v=s3h3gh D.v=s4h6gh解析:选AD 由平抛知识可知12gt2=H,H-h=12g(t2)2得H=43h,A正确,B错误。
由vt=s,得v=s4h6gh,D正确,C错误。
2.如图所示,小车内有一质量为m的物块,一根弹簧与小车和物块相连,处于压缩状态且在弹性限度内。
弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ。
设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止。
临界问题(3 动力学)
在动力学中临界极值问题的处理解决临界问题,关键是找出临界条件。
一般有两种基本方法:①以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解。
物理量处于临界值时:①物理现象的变化面临突变性。
②对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点。
物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。
在高考命题中经常以压轴题的形式出现,一、解决动力学中临界极值问题的基本思路所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。
至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。
动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。
在解决临办极值问题注意以下几点:错误!未指定书签。
临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。
错误!未指定书签。
临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。
错误!未指定书签。
许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。
临界问题
绳中临界、极值问题
2如图所示质量为3㎏的球A用两根不可伸长的轻质 细线 BA 、 BC 连接在竖直墙上, AC 垂直于墙,现 在给A施加一个力F,图中的θ角均为60○,要使 两条细线都能绷直且 A 保持静止,求 F 的大小应 满足的条件。取g=10m/s2
10 3N F 20 3N
马鞍山中加双语学校 高一物理组
目标升华
点评:临界与极值问题关键在于临界条件的 分析,许多临界问题,题干中常用“恰好”、“最 大 ” 、 “ 至少 ” 、 “ 不相撞 ” 、 “ 不脱离 ” 等词 语对临界状态给出了明确的暗示,审题时,一定 要抓住这些特定的词语发掘其内含规律,找出临 界条件.
马鞍山中加双语学校 高一物理组
当堂诊学 以弹力为特征的临界问题
例1.在水平向右运动的小车上,有一倾角θ =370的光 滑斜面,质量为m的小球被平行于斜面的细绳系住而静 止于斜面上 ,如图所示。当小车以( 1 ) a1=g, (2) a2=2g 的加速度水平向右运动时,绳对小球的拉力及 斜面对小球的弹力各为多大?
马鞍山中加双语学校 高一物理组
上午10时36分47秒
如:1.相互挤压的物体脱离的临界条件是压力 减为零; 2.存在摩擦的物体产生相对滑动的临界条 件是静摩擦力取最大静摩擦力, 3 .弹簧上的弹力由斥力变为拉力的临界条 件为弹力为零 4.绳连接体临界条件伸直与松驰临界条件 是张力为零,拉断临界条件是张力为最大等。
F2
A
B
F1
马鞍山中加双语学校 高一物理组
解析 :由题意分析可得 两物体分离的临界条件是:两物体之间刚好无相互作 用的弹力,且此时两物体仍具有相同的加速度。
a
两物体分离的临界态特征例析
即木块所受到 的向右拉力 F ( > M+m) ct , goa时 球
将 离开 圆槽 。 二、 两物体相对运动
() 1若 一
g ≤ 一 z + ) , ( 2g B物块不会
在两物体分别处 于静 止或 直线运 动状 态且发 生相 对运动时 , 两物体分 离时的临界态 常常具有 一物体位于 另一物体的边 缘处 、 两物体速度相等的特征。
就要分离 。
分析:1开始状态, () 弹簧的弹力大小 F 嘲 + ) , 一( g 拉力刚作用时两物体 即将分离 , 两物体分 离且拉力最小
6 6 学教学参考 中旬 叭O 总第 期 ‘
【 4 接上题 , 图 4所示 , 例 】 如 若将水平力 F作用在
A 物块上 , 其他条件 同上 , 则水平 力 F满 足什 么条 件才
滑动摩擦力 , : 问 水平力 F满足什么条件时 , 才能把 B物
块从 A 物块下 面抽 出来?
分析 : 要把 B物块 从 A 物块 下 面抽 出来 , 应 有 则 a <n 。考虑临界状 态 , B两 物块速 度相 等 , A A、 加速 度 相等 , B间的作用 力为最 大静摩 擦力 , 以最大加 速 A、 A 度运 动。对 A物块 : △ 1 g F 一 m1 =mlA 口,
【 3 A、 两 物 块 例 】 B
叠放在水 平桌 面 上 , 图 3 如 所示 , B问的动摩擦 因数 A、
为 , B与地面 问的动摩擦
因数为 zA、 , B的质量分别
图 3
为优 、 , 水平力 F作用在 B上 , 设最大静摩 擦力等 于 解得 ::2 5 。 . S 【 2 如 图 2所 示 , B两 物 例 】 A、 块, 质量分别 为 、 , 叠放 在一 起放
弹簧作用下物体之间相互分离的条件
1 弹簧作用下物体之间相互分离的条件轻质弹簧作用下相互接触的两个物体(其中一个物体与弹簧的一端相连)分离的临界条件是:两个物体仍保持接触、且加速度相同,但没有弹力作用.据此易知弹簧可能处于原长、伸长或压缩状态.现逐一介绍.1. 物体分离时,弹簧恢复原长【例1】 如图1所示,一根原长为L 的轻质弹簧,下端固定在水平桌面上,上端固定一个质量为m 的物体A ,A 静止时弹簧的压缩量为ΔL 1,在A 上再放一个质量也是m 的物体B ,待A 、B 静止后,在B 上施加一个竖直向下的力F ,使弹簧再缩短ΔL 2(ΔL 2>2ΔL 1).这时弹簧的弹性势能为E P .突然撤去力F ,则B 脱离A 向上飞出的瞬间,弹簧的长度应为____________,这时B 的速度为___________.分析:确定A 、B 分离时弹簧的状态是解题关键.因为A 、B 即将分离时有:AB N =0,且A B a a =, ①B a g =,向下 ②A A Am g k x a m ±⋅∆=,向下 ③ 弹簧伸长时取“+”,压缩时取“-” 图1解①-③得:0x ∆=,即A 、B 分离时,弹簧恢复原长. (特殊地:当0A a =时,弹簧处于压缩状态,A 、B 尚未分离.)解答:由上述分析知A 、B 分离时,弹簧恢复原长,弹簧的长度为L.设A 、B 分离时的共同速度为v ,从撤去F 到A 、B 将要分离的过程中,由机械能守恒定律得:21212(2)2P E v mg l l =+∆+∆(2m )解得v =2. 物体分离时,弹簧处于压缩状态【例2】如图2所示,物体A 静止在台秤的秤盘B 上,A 的质量为10.5,A m kg =B 的质量为 1.5B m kg =,弹簧质量不计,劲度系数800k =N/m.现给A 施加一个竖直向上的力F ,使它向上做匀加速直线运动,已知力F 在开始的t =0.2s 内是变力,此后是恒力,求F 的最小值和最大值各是多少?分析:确定A 、B 分离时弹簧的状态是解题关键.因为A 、B 即将分离时有:AB N =0,且A B a a =, ① 图2。
物体分离的两个临界条件及应用
物体分离的两个临界条件及应用在解答两个相互接触的物体分离的问题时,不少同学利用“物体速度相同”的条件进行分析得出错误的结论。
此类问题应根据具体情况,利用“相互作用力为零”或“物体加速度相同” 的临界条件进行分析。
下面结合例题讲解,希望大家能认识其中的错误,掌握方法。
一.利用“相互作用力为零”的临界条件例1.如图1所示,木块A、B的质量分别为m1、m2,紧挨着并排放在光滑的水平面上,A 与B的接触面垂直于图中纸面且与水平面成召角,A与B间的接触面光滑。
现施加一个水平力F于A,使A、B 一起向右运动,且A、B不发生相对运动,求F的最大值。
图1解析:A、B 一起向右做匀加速运动,F越大,加速度a越大,水平面对A的弹力用幽越小。
A、B不发生相对运动的临界条件是:^ =°,此时木块A受到重力次启、B对A的弹力靖和水平力F三个力的作用。
根据牛顿第二定律有F - Fw sm & =F = + %)口由以上三式可得,F的最大值为册(阻]+%)gtan日例2.如图2所示,质量m = 2kg的小球用细绳拴在倾角&=3T的斜面上,欧1"'求:(1)当斜面以堆二知/妒的加速度向右运动时,绳子拉力的大小;(2)当斜面以的=矣冷的加速度向右运动时,绳子拉力的大小。
图2解析:当斜面对小球的弹力恰好为零时,小球向右运动的加速度为据=眨"二131W ' (1)丐匚目,小球仍在斜面上,根据牛顿第二定律,有L河8 + F次展二咋代入数据解之得丹二河⑵,小球离开斜面,设绳子与水平方向的夹角为%则^CC,m =™代入数据,解之得丹= 例3.如图3所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一物体P处于静止状态。
P的质量m = 12kg,弹簧的劲度系数把二的软 3。
现在给p 施加一个竖直向上的拉力F,使P从静止开始向上做匀加速直线运动。
已知在开始内F是变力,在后F是恒力,& = 1°*',则F的最小值是N,最大值是N。
连接体问题——高考物理热点模型(解析版)
连接体问题模型概述1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.常见类型①物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度②轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.③轻杆连接体:轻杆平动时,连接体具有相同的平动速度和加速度.④弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.方法:整体法与隔离法,正确选取研究对象是解题的关键.①整体法:若连接体内各物体具有相同的加速度,且不需要求系统内各物体之间的作用力,则可以把它们看作一个整体,根据牛顿第二定律,已知合外力则可求出加速度,已知加速度则可求出合外力.②隔离法:若连接体内各物体的加速度不相同,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.4.力的“分配”地面光滑两物块在力F 作用下一起运动,系统的加速度与每个物块的加速度相同,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 弹=m 2m 1+m 2F ,若作用于m 2上,则F 弹=m 1m 1+m 2F 。
此“分配”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且无论物体系统处于平面、斜面还是竖直方向,此“分配”都成立。
5.关联速度连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
下面三图中A 、B 两物体速度和加速度大小相等,方向不同。
关联速度连接体做加速运动时,由于加速度的方向不同,一般分别选取研究对象,对两物体分别列牛顿第二定律方程,用隔离法求解加速度及相互作用力。
超级经典实用的临界问题和极值问题(吐血整理)
如图3—51所示,把长方体切成质量分别为m和M的 两部分,切面与底面的夹角为θ长方体置于光滑的 水平地面,设切面亦光滑,问至少用多大的水平力 推m,m才相对M滑动?
如图1所示,质量均为M的两个木块A、B在水平力F 的作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。
临界问题和极值问题
一、临界状态
在物体的运动状态发生变化的过程中,往往 达到某一特定的状态时,有关物理量将发生 变化,此状态即为临界状态,相应物理量的 值为临界值。【讨论相互作用的物体是否会 发生相对滑动,相互接触的物体是否会分离 等问题就是临界问题】 注意:题目中出现“最大、刚好、恰好、最 小”等词语时,常有临界问题。
F
A
ห้องสมุดไป่ตู้
B 60°
图1
1、在水平向右运动的小车上,有一倾角θ=370的光 滑斜面,质量为 m 的小球被平行于斜面的细绳系住 而静止于斜面上,如图所示。当小车以(1)a1=g, (2) a2=2g 的加速度水平向右运动时,绳对小球的拉 力及斜面对小球的弹力各为多大?
a
θ
二、动力学中常见的临界问题
1、接触的两物体发生脱离(分离)临界条件: 弹力FN=0; 2、两相对静止的物体发生相对滑动的临界条 件:静摩擦力达到最大值,即f=fMax; 3、绳子断裂和松弛的临界条件:(1)断裂 的临界条件:绳子受的拉力达到它能承受拉 力的最大值;(2)松弛临界条件:绳子受的 拉力为零,即FT=0
4、加速度达到最大和最小的临界条件:物体 受到变化的合外力作用,加速度不断变化, 当所受合外力最大时,加速度最大;合外力 最小时,加速度最小; 5、速度最大或最小的临界条件:加速度为零, 即a=0
临界问题
临界条件及应用方法解读当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。
解答临界问题的关键是找临界条件。
许多临界问题,题目中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘内含规律,找出临界条件。
中学物理中的常见的临界问题和相应临界条件有:1.两接触物体脱离与不脱离的临界条件是相互作用力为零.2.绳子断与不断的临界条件为作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件为绳子的拉力等于零.3.靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为摩擦力达到最大.4.某一方向速度最大和最小的条件是该方向加速度为零.5.一个物体在另一个物体表面能否滑落的临界条件是滑到端点时速度相同,6.物体返回的临界条件是速度为零.7.电路中最大电流的临界条件是各个用电器的实际电流均等于额定电流.8.在有界磁场中做匀速圆周运动带电粒子能否射出磁场的临界条件是粒子运动到磁场边界时速度与磁场边界相切.9.光的反射与折射现象中,当光从光密介质射向光疏介质时,发生全反射的临界条件是入射角等于临界角.例题分析一、平衡中的临界问题平衡问题的临界状态是指物体的所处的平衡状态将要被破坏而尚未被破坏的状态。
这类问题称为临界问题。
解临界问题的基本方法是假设推理法。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件。
解此类问题要特别注意可能出现的多种情况。
【例题1】一质量为m的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。
现将长木板的一端缓慢抬起,要使物体始终保持静止,木板与水平地面间的夹角θ不能超过多少?设最大静摩擦力等于滑动摩擦力。
探讨两物体分离时的临界条件
探讨两物体分离时的临界条件作者:李先全来源:《物理教学探讨》2008年第17期临界条件是高中物理高考和竞赛中经常涉及的问题,它往往与连接体问题密不可分。
通常,两物体分离时的临界条件必需同时满足三大条件:第一,物体间刚好无相互作用力;第二,两个物体的速度(或在垂直与接触面方向上的分速度)相等;第三,两个物体的加速度(或在垂直与接触面方向上的分加速度)相等。
前面两个条件是同学们很容易想到的,而第三个条件往往被大家忽略,但这却是实实在在的条件。
例1 (2005年全国卷第24题)如图1所示,质量为的物体A经一轻质弹簧与下方地面上的质量为的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。
现在挂钩上挂一质量为的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。
若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g。
分析结合分离时的三大临界条件,B刚要离开地面时,B和地之间无相互作用力;B和地的速度相同,都为零;B和地的加速度也相同,都为零,所以B与地分离时处于平衡状态。
解答开始时,A、B静止,设弹簧压缩量为,有:。
①挂C并释放后,C向下运动,A向上运动,设B刚要离地时弹簧伸长量为有:。
②B不再上升,表示此时A和C的速度为零,C已降到其最低点。
由机械能守恒,与初始状态相比,弹簧势能的增加量为:-。
③C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能量关系得:-ΔE。
④由③、④式得:。
⑤由①、②、⑤式得。
⑥例2 (湖南省高中物理竞赛试题)如图2(a)所示,长为L的轻杆上端有一个质量为m 的小球A,杆用铰链固定在C点,并处于竖直位置;小球与质量为M的光滑立方体木块B相接触,水平面是光滑的,由于微小的扰动而使轻杆向右倾倒,试问:如果当杆与水平面成30°角时,A、B刚好相分离,那么A、B的质量之比M/m为多少?这时立方体的速度为多少?分析由于水平面是光滑的,当杆向右倾倒时,杆必然推着B向右运动,使木块获得向右的速度;当B运动到一定位置时,小球A和木块B开始分离,显然A、B分离满足一定的条件。
微专题23 圆周运动的其他临界问题
微专题23 圆周运动的其他临界问题【核心要点提示】五种典型临界条件(1)物体离开接触面的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.(5)物块与弹簧脱离的临界条件:弹力F N =0,速度相等,加速度相等【微专题训练】【例题】在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRh LB. gRh dC. gRL hD. gRd h 【解析】考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d,解得汽车转弯时的车速v = gRh d,B 对. 【答案】B【变式】(2018·辽宁师大附中高三上学期期末)如图所示,水平转台上有一个质量为m 的小物块。
用长为L 的轻细绳将物块连接在通过转台中心的转轴上。
细绳与竖直转轴的夹角为θ,系统静止时细绳绷直但张力为零。
物块与转台间动摩擦因数为μ(μ<tan θ),设最大静摩擦力等于滑动摩擦力。
当物块随转台由静止开始缓慢加速转动且未离开转台的过程中 ( CD )A .物块受转台的静摩擦力方向始终指向转轴B .至绳中出现拉力时,转台对物块做的功为μmgL sin θ2C .物块能在转台上随转台一起转动的最大角速度为g L cos θ D .细绳对物块拉力的瞬时功率始终为零[解析] 由题可知,物体做加速圆周运动,所以开始时物体受到的摩擦力必定有一部分的分力沿轨迹的切线方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物体分离的两个临界条件及应用
在解答两个相互接触的物体分离的问题时,不少同学利用“物体速度相同”的条件进行分析得出错误的结论。
此类问题应根据具体情况,利用“相互作用力为零”或“物体加速度相同”的临界条件进行分析。
下面结合例题讲解,希望大家能认识其中的错误,掌握方法。
一. 利用“相互作用力为零”的临界条件
例1. 如图1所示,木块A、B的质量分别为m1、m2,紧挨着并排放在光滑的水平面上,A与
B的接触面垂直于图中纸面且与水平面成角,A与B间的接触面光滑。
现施加一个水平力F于A,使A、B一起向右运动,且A、B不发生相对运动,求F的最大值。
图1
解析:A、B一起向右做匀加速运动,F越大,加速度a越大,水平面对A的弹力越小。
A、B不发生相对运动的临界条件是:,此时木块A受到重力、B对A的弹力
和水平力F三个力的作用。
根据牛顿第二定律有
由以上三式可得,F的最大值为
例2. 如图2所示,质量m=2kg的小球用细绳拴在倾角的斜面上,,求:
(1)当斜面以的加速度向右运动时,绳子拉力的大小;
(2)当斜面以的加速度向右运动时,绳子拉力的大小。
图2
解析:当斜面对小球的弹力恰好为零时,小球向右运动的加速度为。
(1),小球仍在斜面上,根据牛顿第二定律,有
代入数据解之得
(2),小球离开斜面,设绳子与水平方向的夹角为,则
代入数据,解之得
例3. 如图3所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一物体P处于静止状态。
P的质量m=12kg,弹簧的劲度系数。
现在给P施加一个竖直向上的拉力F,使P从静止开始向上做匀加速直线运动。
已知在开始内F是变力,在后F是恒力,
,则F的最小值是____________N,最大值是_________N。
图3
解析:P向上做匀加速直线运动,受到的合力为恒力。
之前,秤盘对物体的支持力F N逐渐减小;之后,物体离开秤盘。
设P处于静止状态时,弹簧被压缩的长度为x,则
代入数据,解之得
根据牛顿第二定律,有
所以
开始时,F有最小值
脱离时,,F有最大值
例4. 如图4所示,两细绳与水平的车顶面的夹角为和,物体的质量为m。
当小车以大小为2g的加速度向右匀加速运动时,绳1和绳2的张力大小分别为多少?
图4
解析:本题的关键在于绳1的张力不是总存在的,它的有无和大小与车运动的加速度大小有关。
当车的加速度大到一定值时,物体会“飘”起来而导致绳1松驰,没有张力,假设绳1的张力刚好为零时,有
所以
因为车的加速度,所以物块已“飘”起来,则绳1和绳2的张力大小分别为:
二. 利用“加速度相同”的临界条件
例5. 如图5所示,在劲度系数为k的弹簧下端挂有质量为m的物体,开始用托盘托住物体,使弹簧保持原长,然后托盘以加速度a匀加速下降(a<g),求经过多长时间托盘与物体分离。
图5
解析:当托盘以a匀加速下降时,托盘与物体具有相同的加速度,在下降过程中,物体所受的弹力逐渐增大,支持力逐渐减小,在托盘与物体分离时,支持力为零。
设弹簧的伸长量为x,以物体为研究对象,根据牛顿第二定律,有
所以
再由运动学公式,有
即
故托盘与物体分离所经历的时间为:
例6. 如图6所示,光滑水平面上放置紧靠一起的A、B两个物体,,,推力F A作用于A上,拉力作用于B上,、大小均随时间而变化,其规律分别为
,,问从t=0开始,到A、B相互脱离为止,A、B的共同位移是多少?
图6
解析:先假设A、B间无弹力,则A受到的合外力为,B受到的合外力为。
在t=0时,,,此时A、B加速度分别为:
则有
,说明A、B间有挤压,A、B间实际上存在弹力。
随着t的增大,减小,增大,但只要,两者总有挤压。
当F A对A独自产生的加速度与F B对B独自产生的加速度相等时,这种挤压消失,A、B开始脱离,有
即
解之得
A、B共同运动时,加速度大小为:
A、B的共同位移为:。