第九章半导体异质结结构.ppt

合集下载

半导体pn结异质结和异质结构ppt课件

半导体pn结异质结和异质结构ppt课件

“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
PN结的正向导电性
在PN结上外加一电压 ,如果P 型一边接正极 ,N型一边接负极,电流便 从P型一边流向N型一边,空穴和电子都向 界面运动,使空间电荷区变窄,甚至消失,
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
若干半导体杂质掺杂的一些考虑
杂质半导体ni,电子浓度n,空穴浓度p 之间的关系
n = ni e^(Ef-Ei)/kT, P = ni e^(Ei-Ef)/kT, ni^2 = n p Ei本征费米能级 Ef杂质费米能, 在n型半导体中,n>p,因此, Ef>Ei 在p型半导体中, p>n,因此, Ei>Ef
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
几个重要参数和概念 • 接触电位差:
由于空间电荷区存在电场,方向由N到P,因 此N区电位比P区高,用V表示,称作接触电位 差,它与半导体的类型(禁带宽度),杂质掺杂 浓度,环境温度等密切相关,一般为0.几V到 1.几V • 势垒高度:

半导体物理学第九章

半导体物理学第九章

GaAs/AlGaAs 异质结的电子能级结构
异质结的应用1
• 异质结的主要应用之一是形成量子阱。 它由两个异质结背对背相接形成的。 • 异质结的主要应用之二是形成超晶格。 它由异质结交替周期生长形成。超晶格 是Esaki和Tsu在1969年提出的。 • Esaki等提出的超晶格有两类:1)同质 调制掺杂;2)异质材料交替生长。 • 超晶格或多量子阱间的共振隧穿效应
异质结种类
• 种类: • ①反型异质结:导电类型相反的两种材料 制成的结,如:p-n Ge-Si,p-n GeGaAs,p-n Si-GaAs • ②同型异质结:导电类型相同的两种材料 制成的结,如:n-n Ge-Si,n-n GeGaAs,n-n Si-GaAs • 以上的符号,都把Eg小的材料放在前面。 异质结的禁带宽度可能相同,也可能不同, 我们主要讨论禁带宽度不同的情形。
Structures where the barriers are thick enough to prevent any overlapping of neighboring wavefunctions are referred to as MQW
tMQ
W
Structures with thin barriers that allow for overlapping of neighboring wavefunctions are referred to as superlattices
Multiquantum Wells (MQW)
AlGaAs GaAs Single quantum well Multiquantum well

ΔEc
Eg( AlGaAs)

GaAs
ΔEv

第九章半导体异质结课件

第九章半导体异质结课件

概述
由于电势的不连续以及禁带宽度的不一致,使得异质结界面附近的能 带产生突变,即产生了“尖峰” 、“凹口” (或下陷)一些与同质结不同的情 况,这些将严重地影响载流子的运动,使得异质结具有一些同质结所没有
的特性。
一、不考虑界面态
1、突变反型异质结
一个P型A材料和一个n型B材料形成的异质结。 A 、B两材料在未形成异质结前的热平衡能带图如下图所示:
Ⅲ- Ⅴ族氮化物: BN、GaN、InN、AlN 等六方晶系; 3、 Ⅱ- Ⅵ族半导体: CdTe、HgTe、ZnTe、ZnSe、CdS、ZnS、 CdS 等闪锌矿; 4、 Ⅱ- Ⅵ族半导体: PbTe、SnTe等NaCl结构(离子晶体); 5、氧化物半导体: ZnO。
三、异质结的生长技术
1.液相外延技术(LPE) 2.汽相外延技术(VPE) 3.金属有机化学汽相沉积技术(MOCVD) 4.分子束外延技术(MBE)
一、 异质PN结的高注入比特性
人们针对不同的异质结构,提出了多种异质结伏安特性的模型,如: 扩散模型、热电子发射模型、隧道模型、发射-复合模型、隧道-复合模型、 扩散-发射模型等等。
利用扩散模型可以获得异质PN结的电子电流密度Jn和空穴电流密度Jp 的表达式,将Jn和Jp取比值得到异质结的注入比。
(a1 ,a2分别为两种半导体晶体的晶格常数)
突变异质结交界面处的悬挂键密度△Ns为两种材料在交界面处的悬挂键密度 之差。即 △Ns = NS1 - NS2
二、 计入界面态的影响
以金刚石结构为例:
以(111)晶面为交界面时,其悬挂键密度为:
以(110)晶面为交界面时,其悬挂键密度为:
以(100)晶面为交界面时,其悬挂键密度为:
二、 计入界面态的影响

《半导体物理学》【ch09】 半导体异质结构 教学课件

《半导体物理学》【ch09】 半导体异质结构 教学课件

半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图 在以上所用的符号中, 一般都把禁带宽度较小的半导体材料写在前面。 研究异质结的特性时, 异质结的能带图起着重要的作用。在不考虑两种半导体交界面处的界面态 的情况下,任何异质结的能带图都取决于形成异质结的两种半导体的电子亲和能、禁带宽度及功 函数, 但是其中的功函数是随杂质浓度的不同而变化的。 异质结也可以分为突变型异质结和缓变型异质结两种。如果从一种半导体材料向另一种半导体材 料的过渡只发生于几个原子距离范围内,则称为突变型异质结。如果发生于几个扩散长度范围内, 则称为缓变型异质结。由于对于后者的研究工作不多,了解很少,因此下面以突变型异质结为例 来讨论异质结的能带图。
集成电路科学与工程系列教材
第九章
半导体异质结构
半导体物理学
半导体异质结构
导入
第6 章讨论的pn 结是由导电类型相反的同一种半导体单晶材料组成的,通常也称为同质结,而 由两种不同的半导体单晶材料组成的结则称为异质结。虽然早在1951 年就已经提出了异质结的 概念, 并进行了一定的理论分析工作,但是由于工艺技术存在困难, 一直没有实际制成异质结。 自1957 年克罗默指出由导电类型相反的两种不同的半导体单晶材料制成的异质结比同质结具有 更高的注入效率之后,异质结的研究才比较广泛地受到重视。
半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图
半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图 (2 )突变同型异质结的能带图 图9-4(a)为均是n 型的两种不同的半导体材料形成m 异质结之前的平衡能带图;图9-4(b)为形成 异质结之后的平衡能带图。当这两种半导体材料紧密接触形成异质结时, 因为禁带宽度大的n 型 半导体的费米能级比禁带宽度小的n 型半导体的费米能级高,所以电子将从前者向后者流动。结 果在禁带宽度小的n 型半导体一边形成了电子的积累层,而另一边形成了耗尽层。这种情况和反 型异质结不同。对于反型异质结,两种半导体材料的交界面两边都成为耗尽层;而在同型异质结 中,一般必有一边成为积累层。式(9-4)、式( 9-5)和式( 9-6)在这种异质结中同样适用。 图9 5 为pp 异质结在热平衡状态时的平衡能带图,其情况与nn 异质结类似。

第九章半导体异质结结构

第九章半导体异质结结构
第九章半导体异质结 结构
汇报人:XX
目录
• 异质结基本概念与特性 • 异质结制备技术与方法 • 异质结器件物理基础 • 异质结在光电器件中应用 • 异质结在微纳电子器件中应用 • 异质结性能优化与未来发展趋势
01
异质结基本概念与特性
异质结定义及分类
定义
由两种或两种以上不同半导体材料组 成的结,称为异质结。
异质结界面态与缺陷
界面态
异质结界面处存在悬挂键、界面电荷等界面态,对异质结的电学性能和稳定性 产生重要影响。
缺陷
异质结在制备过程中可能引入位错、层错等缺陷,影响异质结的晶体质量和电 学性能。
典型异质结材料及性质
Si-Ge异质结
具有高迁移率、低噪声等优点,广泛应用于高速 、高频电子器件。
GaAs-AlGaAs异质结
异质结发光二极管原理
通过异质结的能带结构和载流子限制作用,实现电子 和空穴的复合发光。
常见异质结发光二极管结构
如GaN基异质结发光二极管、量子点/有机物异质结发 光二极管等,具有高亮度、高色纯度等优点。
光电探测器中的异质结结构
异质结光电探测器原理
利用异质结的能带结构和内建电场,实现光 信号到电信号的转换。
和选择性。
MEMS器件
03
将异质结结构与MEMS技术相结合,实现微型化、集成化的生
物传感器件。
其他微纳电子器件中的异质结应用
光电探测器
利用异质结的能带结构和光电效应,实现高性能的光电转换。
太阳能电池
通过设计异质结的能级匹配和光吸收特性,提高太阳能电池的转 换效率。
热电转换器件
利用异质结的热电效应,实现热能和电能之间的转换。
04
异质结在光电器件中应用

第九章 半导体异质结

第九章 半导体异质结

显然,这些悬挂键对半导体起补偿作用。
二、计入界面态的影响
1、界面态密度较小
无论是施主态还是受主态,都不影响异质结能带的基本形状和结构。 以PN异质结为例
Ec1 Eg1 ΔEc
Ec2
设:窄带区的空间电荷为Q1
宽带区的空间电荷为Q2 界面态上电荷为QIS
Ev1 ΔEv Eg2
Ev2 x1 x0 x2
x
δ1 ΔEv
B
Eg2
Ev2
下标为1的参数为禁带宽度小的半导体材料的物理参数; 下标为2的参数为禁带宽度大的半导体材料的物理参数。
一、不考虑界面态
形成异质结时,由于n型半导体(B材料)的费米能级高于P型半导体(A材
料),因此电子从n型半导体流向P型半导体,直到两块半导体具有统一的费米 能级。
由于电子与空穴的流动,在n型和P型半导体的交界面附近形成空了间电荷
二、计入界面态的影响
以金刚石结构为例:
以(111)晶面为交界面时,其悬挂键密度为:
4 a2 a1 N S 2 2 3 a1 a2
2
2
以(110)晶面为交界面时,其悬挂键密度为:
4 a2 a1 N S 2 2 2 a1 a2
2
2
以(100)晶面为交界面时,其悬挂键密度为:
第 九 章
半导体异质结的组成与生长
第九章 Part 1 9.1 半导体异质结的一般性质 9.2 半导体异质结的能带结构
9.3 异质PN结的注入特性
9.4 理想突变异质结的伏安特性
9.1 半导体异质结的一般性质
由两种不同的半导体单晶材料形成的PN结称为异质结。 1951年由Gubanov首先提出了异质结的概念; 1957年克罗默得到了“导电类型相反的两种不同的半导 体单晶材料制成的异质结,比同质结具有更高的注入效率。

半导体物理异质结解析PPT课件

半导体物理异质结解析PPT课件
第13页/共30页
界面量子阱中二维电子气的势阱和状态密度
第14页/共30页
电子的能量:
二维电子气的状态密度
k空间原胞的面积:
k空间k-k+dk圆环的面积: E-k关系: 状态密度:
第15页/共30页
低维半导体材料及其状态密度
Bulk
QW
QD
3D
2D
0D
DD((EE))
DD((EE))
D(E)
E
• qVD = qVD1 + qVD2 = EF2 - EF1 = W1 - W2
半导体物理学
第7章 金第属4页和/半共导30体页的接触
SCNU 光电学院
4
突变反型异质结的能带特征
• n型半导体的能带弯曲量为qV2,且导带底在交界面处形成一个向
上的“尖峰”。
• p型半导体的能带弯曲量为qV1,且导带底在交界面处形成一个向
第2页/共30页
pn结的能带图
qVD E Fn EFp
第3页/共30页
突变反型异质结的能带图
• 形成异质结时电子从n型半导体流向p型半导体,空穴的流动方向相反。
• 达到平衡时,两块半导体具有统一的费米能级。
• 在异质结界面的两边形成空间电荷区,产生内建电场和附加电势能,使 空间电荷区中的能带发生弯曲。
EE
EE
Modification of density of states by confining carriers
第16页/共30页
双异质结间的单量子阱结构
第17页/共30页
双异质结间的单量子阱结构
势阱形状: 波函数分离变量: 波函数分离变量: 薛定谔方程:
第18页/共30页

第九章金属半导体和半导体异质结ppt课件

第九章金属半导体和半导体异质结ppt课件
V b i B 0 (Байду номын сангаасE C E F )F B B 0 n
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
• 外加电压后,金属和半导体的费米能级不再相同, 二者之差等于外加电压引起的电势能之差。
m>s
两个方向都存在 电子流动的势垒
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
金属中的电子向半导体中运动存在势垒B0 叫做肖特基势垒。
B0=m-
半导体导带中的电子向金属中移动存在势 垒Vbi ,Vbi就是半导体内的内建电势
整流接触
欧姆接触
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
7.1 金属和半导体接触及其能带图
金属一边的势垒高度:
E( C 界面) EFM Wm ns EFM EV (界面)
(EC EV)(Ec (界面) EFM)
• 金属一边的势垒不随外加电压而变,即:B0不变。 • 半导体一边,加正偏,势垒降低为Vbi-Va • 反偏势垒变高为:Vbi+VR
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
正偏
反偏
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识

第九章半导体异质结结构

第九章半导体异质结结构

第九章半导体异质结结构第九章介绍了半导体异质结结构。

半导体异质结由两种或多种不同的半导体材料组成,具有不同的能带结构和能带差。

半导体异质结具有许多特殊的物理性质和应用。

在异质结中,由于不同材料的特性差异,电子在结界面上会积聚形成电子气,形成能带弯曲现象。

这种能带弯曲会产生一些二维电子气体性质,如高电子迁移率、量子阱、量子井和量子点等。

半导体异质结结构常用的材料有Si/GaAs、GaAs/AlAs等。

这些异质结结构的制备都需要使用分子束外延(MBE)、金属有机气相沉积(MOCVD)等高精度的制备技术。

半导体异质结结构的性质和应用包括以下几个方面:1.能带偏移和势垒形成:两种不同半导体材料的相邻能带会发生偏移,从而形成一个势垒。

这个势垒可以用来限制电子和空穴的运动方向,实现电子和空穴的分离和控制,从而用于制备二极管、太阳能电池等器件。

2.量子阱和量子井:通过在半导体异质结中形成非常薄的势垒层,可以限制电子和空穴在其中一方向上的运动,形成二维或零维电子气体。

这些二维和零维电子气体被称为量子阱和量子井,具有特殊的量子效应,如量子谐振子,可以制备激光器、光电器件等。

3.量子点:在半导体异质结界面上形成三维限制的势垒结构,可以限制电子和空穴在三个方向上的运动,形成零维的量子点结构。

量子点具有量子限制效应,能够实现对电子和光的精确控制,广泛应用于激光器、光电转换器等领域。

4.型谱学研究:通过在半导体异质结中引入不同材料,可以实现特定能带结构的调控。

通过对其吸收光谱、光致发光谱、拉曼散射谱进行研究,可以了解材料的能带结构和物理性质,为半导体器件的制备和应用提供基础。

半导体异质结结构在工业和科研领域有着广泛的应用。

例如,激光器是典型的半导体异质结结构应用。

利用半导体异质结导致的能带差,可以在激光器中实现可控的电子和空穴注入和互相复合,从而产生激光输出。

激光器广泛应用于通信、医疗、显示和材料加工等领域。

此外,半导体异质结结构还在半导体光电转换器件中得到应用。

半导体异质结构讲解课件

半导体异质结构讲解课件
p10:p区多子浓度
n20:n区多子浓度
若n20和p10在同一数量级,则
EC J n exp kT
,
EV J p exp kT
对窄禁带p型和宽禁带n型的异质结
EC, EV>0, 且>>kT
Jn >> Jp
高势垒尖峰情形异质pn结 正向偏压时 由n区注入p区的电子电流密度
2Eg/3 Eg/ 3
EF
2Eg/3 Eg/ 3
N型
P型
表面能级密度大的半导体能带图
巴丁极限:具有金刚石结构的晶体的表面能级 密度在1013cm-2以上时,在表面处的 费米能级位于禁带宽度的约1/3处。 N型半导体,悬挂键起受主作用, 表面处的能带向上弯曲 p型半导体,悬挂键起施主作用, 表面处的能带向下弯曲
2 N D 2VD VD1 1 N A1 2 N D 2
VD 2
1 N A1VD 1 N A1 2 N D 2
VD1 2 N D 2 VD 2 1 N A1
若在异质结上加外电压V, 将上述公式中的 VD, VD1, VD2 分别用(VD-V), (VD1-V1) 及 (VD2-V2) 代替即可。
1/ 2
若m1*=m2*, 则总电子电流密度
kT J J 2 J1 qn20 * 2m
1/ 2
qVD 2 qV2 qV1 exp exp exp kT kT kT
V V1 V2
X D d1 d 2
d1: 势垒区负空间电荷区的宽度 d2: 势垒区正空间电荷区的宽度
异质结的接触电势差为
VD VD1 VD 2

第九章半导体异质结结构-PPT

第九章半导体异质结结构-PPT

VD1 V1(x0 ) V1(x1)
(9-23) (9-24) (9-25) (9-26)
而VD在交界面n型半导体一侧得电势差为
VD2 V2 (x2 ) V2 (x0 )
(9-27)
在交界面处,电势连续变化,故
VD VD1 VD2
令V1(x)=0,则VD=V2(x),并代入式(9-23)、式(9-24)中得
因此,将DD11、qDN22分A11别x12代, D入2式(V9-D23)及qN式2D(229x-2224)得
V1 ( x)
qN A1(x
21
x1 ) 2
V2
(x)
VD
qN D2 (x2
2 2
x)2
由V1(x0)=V2(x0),即得接触电势差VD为
VD (x)
qN
A1
(
x
V
x1
)
2
21
qND2 (x2
dx
2
(9-19) (9-20)
(9-21) (9-22)
对式(9-21)、式(9-22)积分得
V1 ( x)
qN A1x2
21
qN A1x1x
1
D1
V2 (x)
qN D2 x2
2 2
qN D2 x2 x
2
D2
在热平衡条件下,异质结得接触电势差VD为
VD V2 (x2 ) V1(x1)
而VD在交界面p型半导体一侧得电势差为
将上述两式代入(9-30)得
VD
q
21 2
2 N A1
ND2X D N A1 N D2
2
1N A1
N A1 X D N A1 N D2
2

九章节半导体异质结构

九章节半导体异质结构

9.1 半导体异质结及其能带图
2. 理想异质结的能带图
形成突变pn异质结之前的平衡能带图
9.1 半导体异质结及其能带图
窄带隙材料和宽带隙材料在接触前的能带图
EC 1 2
EV EC Eg 2 Eg1
EV (Eg 2 Eg1) (1 2 )
qVD qVD1 qVD2 EF1 EF 2 VD VD1 VD2
np
9.1 半导体异质结及其能带图 Nn异质结在热平衡状态下的理想能带图
9.1 半导体异质结及其能带图
n-AlGaAs, n-GaAs异质结的导种不同的半导体材料接触形成的结。 2.反型异质结: 由导电类型相反的两种不同的半
导体单晶材料所形成的异质结。 如:p(Ge)-n(GaAs); p(Ge)-n(Si)等。 3.同型异质结:由导电类型相同的两种不同的半导 体单晶材料所形成的异质结。 如:n(Ge)-n(GaAs); p(Ge)-p(Si)等。
形成突变pn异质结之后的平衡能带图
由于p区和n区的电子亲和势和禁带宽度不同, 使异质结在界面处的能带突变,EC和EV的 出现将阻碍载流子通过界面,这种对载流子的 限制作用是同质结中所没有的。
p-nGe-GaAs异质结的平衡能带图
9.1 半导体异质结及其能带图
热 平 衡 状 态 下 的 一 个 典 型 的 异 质 结 能 带 图
9.1 半导体异质结及其能带图
1 半导体异质结 两种不同半导体材料接触形成的结 反型异质结:由导电类型相反的两种不同的半导体
单晶材料所形成的异质结 如p-Ge和n-GaAs 记为p-nGe-GaAs 如p-nGe-Si, n-pGe-GaAs 同型异质结:导电类型相同的两种半导体材料所形 成的异质结 如n-nGe-Si, p-p Ge-GaAs ,p-pSi-GaP 一般把禁带宽度较小的半导体材料写在前面。

半导体物理第九章

半导体物理第九章
4 异质结
1. 异质结及其能带 2. 异质结的电流输运
3. 异质结的应用
4. 半导体的超晶格
1异质结及其能带
概念
由导电类型相反的同一种半导体单晶材料组成的pn结,通常称为同质结。
而由两种不同的半导体单晶材料组成的结,则称为 异质结。 异质结的结构特点 异质结是由两种不同的半导体单晶材料形成的, 根据这两种半导体单晶材料的导电类型分类
27
② 正反向势垒情形 这时在交界面处禁带宽度大的半导体的势垒“尖峰”,高于异质结势
垒区外的禁带宽度小的半导体材料的导带底,称为正反向势垒。
qVB= qVD2- (EC –qVD1) 热平衡时,异质结势垒区两侧克服各自势垒到对方去的电子数相等。
(a)零偏压和(b)正向偏压下正反向势垒扩散和发射模型能带图
o
qVD
如在杂质浓度ND1>>ND2 ,类似于计算金属半导体接触间的电 qN 容方法,得到每单位面积结电容公式为: C [ 2 D 2 ]1 / 2
2(VD V )
21
2 异质结的电流输运机构
影响异质结电流运输机制的特殊原因
形成异质结的两种半导体的交界面处能带是不连续 的。
两种半导体材料的晶格结构、晶格常数、热膨胀系 数的不同和工艺技术等原因,会在交界曲处引入界 面态及缺陷。
(a)零偏压和(b)正向偏压下负反向势垒扩散和发射模型能带图
24
(a)零偏压和(b)正向偏压下负反向势垒扩散和发射模型能带图
正偏下
25
(a)零偏压和(b)正向偏压下负反向势垒扩散和发射模型能带图
P型区注入的小数载流子浓度连续性运动方程
解之得
26
(a)零偏压和(b)正向偏压下负反向势垒扩散和发射模型能带图

第09章_异质结

第09章_异质结
Q:单位面积上的空间电荷
( x0 x1 ) N D 2 ( x2 x0 ) N A1
突变反型异质结交界面两边的泊松方程:
d 2V1 ( x) qN A1 2 dx 1 d 2V2 ( x) qN D 2 dx 2 2 ( x1 x x0 ) ( x0 x x2 )
No.27
三、突变反型异质结的接触电势差及势垒区宽度 以突变p-n异质结为例,求接触电势差及势垒区宽度
假设: 设p型和n型半导体中的杂质都是 均匀分布的,其浓度分别为NA1 和ND2 。 势垒区的正负空间电荷区的宽度 分别为 ( x0 x1 ) d1 , ( x2 x0 ) d 2 取x=x0为交界面 势垒区中的电荷密度:
qN A1 ( x x1 ) 2 V1 ( x) 2 1 qN D 2 ( x2 x) V2 ( x) VD 2 2
2
No.32
V1 ( x0 ) V2 ( x0 )
qN A1 ( x0 x1 ) 2 qN D 2 ( x2 x0 ) 2 VD 2 1 2 2 qN A1 ( x0 x1 ) 2 VD1 2 1 VD 2 qN D 2 ( x2 x0 ) 2 2 2
No.20
对(111)晶面,单个原子提供的键数为1
No.21
No.22
(100)晶面面积: a 2
1 面内原子数: 4 1 2 4
单个原子提供的键数:2
4 Ns 2 2 / a 2 a
2
(a a ) N s 4[ 2 2 ] a1 a2
2 2 2 1
No.23
1
2 1 2 N A1VD d 2 ( x2 x0 ) [ ]2 qN D 2 ( 1 N A1 2 N D 2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图9.6 产生悬挂键的示意图
School of Electronic Engineering & Optoelectronic Techniques
如图9.7所示
因此对于晶格常数分别为a1、
a2的两块半导体形成的异质
结,以(111)晶面为交界 面的时悬挂键密度为
N s
2 2 4 a 2 a 1 2 2 3 a1 a 2
对于反型异质结,两种半导体材料的交界面两边都成了耗
尽层;而在同型异质结中,一般必有一变成为积累层。 图9.5为pp异质结在热平衡时的能带图。其情况与nn异质 结类似。

实际上由于形成异质结的两种半导体材料的禁带宽度、电 子亲和能及功函数的不同,能带的交界面附近的变化情况 会有所不同。
School of Electronic Engineering & Optoelectronic Techniques
(9-5)
School of Electronic Engineering & Optoelectronic Techniques
而且
Ec Ev E g 2 E g 2
(9-6)
式(9-4)、式(9-5)和式(9-6)对所有突变异质结普遍适用。

下图9.2为实际的p-n-Ge-GaAs异质结的能带图
School of Electronic Engineering & Optoelectronic Techniques
如果从一种半导体材料向另一种半导体材料得过渡只发生
于几个原子范围内,则称为突变型异质结。如果发生于几
个扩散长度范围内,则称为缓变形异质结。 1.不考虑界面态时的能带图 (1)突变反型异质结能带图
(9-12)
势垒区内的正负电荷总量相等,即
qN
A1
( x 0 x1 ) qN
x1
D2
( x2 x0 ) Q
(9-13)
式(9-13)可以化简为
x0
x2 x0

N N
D2 A1
(9-14)
设V(x)代表势垒区中x电的电势,则突变反型异质结交界 面两边的泊松方程分别为:
School of Electronic Engineering & Optoelectronic Techniques
处于热平衡状态的pn异质结的能带图如图9.1(b)所示。
从图中看到有两块半导体材料的交界面即附近的能带可反
应出两个特点:1.能带发生了弯曲。2.能带再交界面处不 连续,有一个突变。 两种半导体的导带底在交界面的处突变 E c 为
Ec 1 2
(9-4)
而价带顶的突变 E v 为
E v E g 2 E g 1 1 2
School of Electronic Engineering & Optoelectronic Techniques
交界面处引入界面态。
9.1.2 突变反型异质结的接触电势差及势垒区宽度 以突变pn异质结为例 设p型和n型半导体中的杂志都是均匀分布的,则交界面两 边的势垒区中的电荷密度可以写成
2.考虑界面态时的能带图
通常制造突变异质结时,是把一种半导体材料在和它具有
相同的或不同的晶格结构的另一种半导体材料上成长而成
。生长层的晶格结构及晶格完整程度都与这两种半导体材 料的晶格匹配情况有关。表9-2列出若干半导体异质结的 晶格失配的百分数
School of Electronic Engineering & Optoelectronic Techniques
d V1 ( x ) dx
2 2
2

qN
A1Leabharlann 1qND2
x1
x0
x x0
x x2
(9-15)
d V2 (x) dx
2

2
(9-16)
将(9-15)(9-16)积分一次得
dV 1 ( x ) dx dV 2 ( x ) dx

qN
A1
x
1
qN
D2
C1 x
x1
图9.7 金刚石结构(111)面内的键数
(9-8)
同理(110)晶面,悬挂键密度为
N s
2 2 4 a 2 a 1 2 2 2 a1 a 2
(9-9)
School of Electronic Engineering & Optoelectronic Techniques
在异质结中,晶格失配是不可避免的由于晶格失配,在两
种半导体材料的交界面处产生了悬挂键,引入了表面态。 图9.6表示产生悬挂键的示意图。突变异质结的交界面处 的悬挂键密度 N s 为两种半导体材料在交界面处的键密度 之差。即 N N N s s1 s2 的悬挂键密度
(9-7)
下面计算具有金刚石型结构的两块半导体所形成的异质结
而VD在交界面n型半导体一侧的电势差为
V D 2 V2 ( x2 ) V2 ( x0 )
在交界面处,电势连续变化,故
(9-27)
V D V D1 V D 2
x 1 x x 0 , 1 ( x ) qN x 0 x x 2 , 2 ( x ) qN
A1 D2

(9-11)
School of Electronic Engineering & Optoelectronic Techniques
势垒区总宽度为
X D x 2 x 0 x 0 x1 d 2 d 1
这时两块半导体有统一的费米能级,即
E F E F1 E F 2
因而异质结处于热平衡状态。两块半导体材料交界面的两
端形成了空间电荷区。n型半导体一边为正空间电荷区,p 型半导体一边为负空间电荷区。正负空间电荷间产生电场 ,也称为内建电场,因为电场存在,电子在空间电荷区中 各点有附加电势能,是空间电荷区中的能带发生弯曲。由
根据表面能级理论计算求得,当金刚石结构的晶体表面能
级密度在1013cm-2以上时,在表面处的费米能级位于禁带 宽度的1/3处,如图9-8所示。

对于n型半导体,悬挂键起受主作用, 因此表面能级向上弯曲。对于p型半 导体悬挂键起施主作用,因此表面 能级向下弯曲。对与异质结来说, 当悬挂键起施主作用时,则pn、np 、pp异质结的能带图如9-9中的(a)、(b)、(c)所示
D2
( x2 x)
(9-22)
2
School of Electronic Engineering & Optoelectronic Techniques
对式(9-21)、式(9-22)积分得
V1 ( x )
V2 (x)
qN
x A1
2
2 1
qN x D2
2

qN
A1
x1 x
1
qN
x x0
x x2
(9-17)

2
C2
x0
(9-18)
School of Electronic Engineering & Optoelectronic Techniques
因势垒区外是电中性的,电场集中在势垒区内,故边界条
件为
E 1 ( x1 ) dV 1 dx dV 1 dx
School of Electronic Engineering & Optoelectronic Techniques
如图表示两种不同的半导体材料没有形成异质结前的热平
衡能带图。有下标“1”者为禁带宽度小的半导体材料的
物理参数,有下标“2”者为禁带宽度大的半导体材料的 物理参数。
图9.1 形成突变pn异质结之前和之后的平均能带图
于EF2比EF1高,则能带总的弯曲量就是真空电子能级的弯
曲量即
qV D qV D 1 qV D 2 E F 2 E F 1
(9-3)
School of Electronic Engineering & Optoelectronic Techniques
显然
V D V D1 V D 2
School of Electronic Engineering & Optoelectronic Techniques
当悬挂键起受主作用时,则pn、np、pp异质结的能带图
如图9-9中的(d)(e)(f)图所示。

以上讨论可知,当两种半导体的晶格常数极为接近时,晶 格间匹配较好,一般可以不 考虑界面态的影响。但是在 实际中,即使两种半导体材 料的晶格常数在室温时相同 ,但考虑它们的热膨胀系数 不同,在高温下,也将发生晶格适配从而产生悬挂键,在
图9.2 p-n-Ge-GaAs异质结的能带图
School of Electronic Engineering & Optoelectronic Techniques
表9-1为实验测定的p型Ge与n型GaAs的有关常数值。
图9-3为突变np异质结能带图,其情况与pn异质结类似。
School of Electronic Engineering & Optoelectronic Techniques
(2)突变同型异质结的能带图
图9-4(a)均是n型的两种不同的半导体材料形成的异质结
之间的平衡能带图;(b)为形成异质结之后的平衡能带
图。当两种半导体材料紧密接触形成异质结时,由于禁带 宽度大的n型半导体的费米能级比禁带宽度小的高,所以 电子将从前者向后者流动。
School of Electronic Engineering & Optoelectronic Techniques
相关文档
最新文档