R《初等数论(闵嗣鹤、严士健)》第三版习题解答
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
《初等数论(闵嗣鹤、严士健)》第三版习题解答
若 b 0 ,则令 s
得证. 下证唯一性 当 b 为奇数时,设 a bs t bs1 t1 则 t t1 b( s1 s ) b 而t
b b , t1 t t1 t t1 b 矛盾 故 s s1 , t t1 2 2
b 为整数 2
ax0 by0
x, y Z ,由带余除法有 ax by (ax0 by0 )q r , 0 r ax0 by0
则 r ( x x0 q )a ( y y0 q )b S ,由 ax0 by0 是 S 中的最小整数知 r 0
ax0 by0 | ax by ax0 by0 | ax by
a, b Z , b 0, s, t Z , 使 a bs t ,| t |
b 。 , 2
s1 , t1 ,使 b s1t t1 ,| t1 | sn , tn , tn 2 tn 1sn tn ; sn 1 , tn 1 , tn 1 tn sn 1 tn 1 ;
5 / 78
《初等数论》 (闵嗣鹤、严士健编著) (第三版)习题解答
是一个整数系数多项式且 a0 ,an 都不是零,则(1)的根只能是以 a0 的因数作分子以 an 为 分母的既约分数,并由此推出 2 不是有理数. 证:设(1)的任一有理根为
p , ( p, q ) 1, q 1 。则 q
a bs t ,
| t |
|b| 2
成立,并且当 b 是奇数时,s,t 是唯一存在的.当 b 是偶数时结果如何? 证:作序列 ,
3b b b 3b , b , , 0, , b , , 则 a 必在此序列的某两项之间 2 2 2 2
福师期末考试《初等数论》复习题及参考答案
福师期末考试《初等数论》复习题及参考答案本复习题页码标注所用教材为:教材名称单价作者版本出版社初等数论14.20闵嗣鹤,严士健第三版高等教育出版社复习题及参考答案一一、填空(40%)1、求所有正约数的和等于15的最小正数为考核知识点:约数,参见P14-192、若b1,b2,L L,b11是模11的一个完全剩余系,则8b1+1,8b2+1,L L,8b11+1也是模11的剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为考核知识点:倍数,参见P11-13p是素数,a是任意一个整数,则a被p整除或者5、如果考核知识点:整除,参见P1-4a,b的公倍数是它们最小公倍数的.6、提示:要证明原式成立,只须证明 3 a + a +1,或者 3 a + a 成立即可。
四、(10%)设 p 是不小于 5 的素数,试证明 p ≡ 1(mod 24)考核知识点:最小公倍数,参见 P11-137、如果 a , b 是两个正整数,则存在 整数q , r ,使 a = bq + r , 0 ≤ r p b .考核知识点:整除,参见 P1-48、如果 3 n , 5 n ,则 15( ) n .考核知识点:整除,参见 P1-4二、(10%)试证:6|n(n+1)(2n+1),这里 n 是任意整数。
考核知识点:整除的性质,参见 P9-12提示: i)若 则ii)若 则iii)若 则又三、(10%)假定 a 是任意整数,求证 a 2+ a + 1 ≡ 0(mod 3 ) 或a 2+ a ≡ 0(mod 3 )考核知识点:二次同余式,参见 P882 22 考核知识点:同余的性质,参见 P48-52提示: 且 是不小于 5 的素数. 又 且 是不小于 5 的素数.⎩14 x ≡ 2(mod 8)⎪⎩ x ≡ 3(mod 8) ⎪⎩如果 n = x + y , 所以 x , y 只能与 0,1 同余,所以 x + y ≡ 0,1, 2(mod 4)只能是奇数且即 即五、(15%)解同余式组 ⎧5 x ≡ 1(mod 7) ⎨考核知识点:同余式,参见 P74-75 提示∵ (14,8)=2 且 2 | 2∴ 14x≡2(mod8) 有且仅有二个解 解 7x≡1(mod4) ⇒ x≡3 (mod4) ∴ 6x≡10(mod8)的解为x≡3,3+4(mod8)⎧⎪x ≡ 3(mod 7) 原同余式组等价于 ⎨ ⎧⎪x ≡ 3(mod 7)或 ⎨x ≡ 7 (mod 8)分别解出两个解即可。
R《初等数论 闵嗣鹤 严士健 》第三版习题解答
3.证明推论 3.3 并推广到 n 个正整数的情形.
推论 3.3 设 a,b 是任意两个正整数,且
a
p1 1
p2 2
pn n
,i
0,i
1, 2,, k
,
b
p 1 1
p2 2
p n n
, i
0,i
1, 2,, k
,
则 (a,b)
p1 1
p 2 2
p k k
,[a,b]
p1 1
p2 2
pk k
,
q
假设 2 为有理数, x 2, x2 2 0 ,次方程为整系数方程,则由上述结论,可知其
有有理根只能是
1, 2 ,这与 2 为其有理根矛盾。故 2 为无理数。
p 另证,设 2 为有理数 2 = , ( p, q) 1, q 1 ,则
q
2 p2 ,2q2 p2 ,( p2, q2 ) (2q2 , p2 ) q2 1 q2 但由 ( p, q) 1, q 1 知 ( p2 , q2 ) 1,矛盾,故 2 不是有理数。
则 r (x x0q)a ( y y0q)b S ,由 ax0 by0 是 S 中的最小整数知 r 0
ax0 by0 | ax by ax0 by0 | ax by ( x, y 为任意整数) ax0 by0 | a, ax0 by0 | b
ax0 by0 | (a, b). 又有 (a,b) | a , (a,b) | b
3 b 1 b 2 ( ), t1 , t1
2
2
222
§2 最大公因数与辗转相除法
1.证明推论 4.1
推论 4.1 a,b 的公因数与(a,b)的因数相同.
证:设 d 是 a,b 的任一公因数, d |a, d |b
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
《初等数论(闵嗣鹤、严士健)》第三版课件2-1
即
x0 y t 0 b a x0 y 1 t 0 1 b a
x0 , y是原方程的一个非负整数解, 0 x x0 bt , y y0 at , t Z ax0 N ax t 0 ab ab N . 从而得证。 t 的取值区间长度为 ab
定理1 若〔1〕式有整数解 x x0 , y y0 则〔1〕式的一切解可以表示为
x x0 b1t , y y0 a1t , a b 其中, a1 , b1 , t 0, 1, 2, (a , b ) (a , b ) (2)
(*)
(a1 , b1 ) 1
7
说明:定理1给出了方程通解的一般形式。这样, 解决问题的关键在于求一个特解。 问题:所有的二元一次方程都有解吗? 例如 定理2 6 x 8 y 1. ax by c (1) 有整数解 (a , b ) c .
显然; ,记d (a , b ) 若d c ,则c c1d , c1 Z . d 可以表示为as bt . 所以 c c1 ( as bt ) 取 x0 c1 s , y0 c1t, 即为方程〔1〕的解。
当N ab a b时有非负整数解;N ab a b时则不然 思考:N ab a b呢? (1)方程的一般解可以表示为
4.证明:方程 ax by N , a 1, b 1,( a , b ) 1
当N ab a b时有非负整数解;N ab a b时则不然 思考:N ab a b呢?
ax by c (1)
ax by c , a , b, c Z , a , b 0
证:把〔2〕代入〔1〕,成立,故〔2〕是〔1〕的解。 设x ', y '是(1)的任一解,又x0 , y0是(1)的解. 所以有 ax ' by ' ax0 by0 .
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)
闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)1.证明,0,1,,1,0,1,,1,s t s t t x u p v u p v p t s --=+=-=-≤是模s p 的一个完全剩余系。
证 易知,当0,1,,1,0,1,,1s t t u p v p -=-=- 时,s t x u p v -=+通过s p 个整数,下证这s p 个整数对模s p 两两部同余。
设()mod ,s t s t s u p v u p v p --''''''+≡+ (1)其中01,01,01,01,s t s t t t u p u p v p v p --''''''≤≤-≤≤-≤≤-≤≤-则()()mod ,mod .s t s t s t s t u p v u p v p u u p ----'''''''''+≡+≡又因01,01s t s t u p u p --'''≤≤-≤≤-,故.u u '''=从而由(1)式得()()mod ,mod .s t s t s t p v p v p v v p --''''''≡≡又由01,01ttv p v p '''≤≤-≤≤-得.v v '''=故这sp 个整数对模sp 两两不同余,从而它们作成模sp 的完全剩余系。
2. 若12,,,k m m m 是k 个两两互质的正整数,12,,,k x x x 分别通过模12,,,km m m 的完全剩余系,则1122k k M x M x M x +++通过模12k m m m m = 的完全剩余系,其中,1,2,,.i i m m M i k == 。
《初等数论(闵嗣鹤、严士健)》习题解答2012完整版[1]
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t < ()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b ---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄,d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。
存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m又12,,,n q q q 是任意n 个整数1122n n q a q a q a 1122n n q p m q p m q p m1122()n n p q q p q p m即1122n n q a q a q a 是m 的整数 2.证明 3|(1)(21)n n n证明 (1)(21)(1)(21)n n n n n n n (1)(2)(1)(1)n n n n n n又(1)(2)n n n ,(1)(2)n n n 是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n3|(1)(2)(1)(1)n n n n n n从而可知3|(1)(21)n n n3.若00ax by 是形如ax by (x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by .证: ,a b 不全为0在整数集合 |,S ax by x y Z 中存在正整数,因而有形如ax by 的最小整数00ax by,x y Z ,由带余除法有0000(),0ax by ax by q r r ax by则00()()r x x q a y y q b S ,由00ax by 是S 中的最小整数知0r00|ax by ax by00|ax by ax by (,x y 为任意整数) 0000|,|ax by a ax by b 00|(,).ax by a b 又有(,)|a b a ,(,)|a b b 00(,)|a b ax by 故00(,)ax by a b4.若a ,b 是任意二整数,且0b ,证明:存在两个整数s ,t 使得||,||2b a bs t t成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b 则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b 成立 ()i 当q 为偶数时,若0.b 则令,22q qs t a bs a b,则有 02222b q q qa bs t ab a b b t若0b 则令,22q qs t a bs a b,则同样有2b t ()ii 当q 为奇数时,若0b 则令11,22q q s t a bs a b,则有若 0b ,则令11,22q q s t a bs a b,则同样有2b t,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t 则11()t t b s s b 而111,22b bt t t t t t b矛盾 故11,s s t t 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d 是a ,b 的任一公因数, d |a ,d |b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b(,)n a b rd |1a bq 1r , d |122b r q r ,, ┄d |21(,)n n n n r r q r a b ,即d 是(,)a b 的因数。
反过来(,)a b |a 且(,)a b |b ,若|(,),d a b 则|,|d a d b ,所以(,)a b 的因数都是,a b 的公因数,从而,a b 的公因数与(,)a b 的因数相同。
2.证明:见本书P2,P3第3题证明。
3.应用§1习题4证明任意两整数的最大公因数存在,并说明其求法,试用你的所说的求法及辗转相除法实际算出(76501,9719).解:有§1习题4知:,,0,,,a b Z b s t Z 使,||2ba bs t t。
, 11,s t ,使1112||,||,,22t bb s t t t 如此类推知: 21,,;n n n n n n s t t t s t 11111,,;n n n n n n s t t t s t且1221||||||||||2222n n n n n t t t b t而b 是一个有限数,,n N 使10n t1121(,)(,)(,)(,)(,)(,0)n n n n a b b t t t t t t t t t ,存在其求法为:1(,)(,)(,())a b b a bs a bs b a bs s(76501,9719)(9719,7650197197)(8468,97198468)(1251,846812516)(3,1)14.证明本节(1)式中的log log 2bn证:由P3§1习题4知在(1)式中有 12112102222n n n n n n r r r br r,而1n r 1,22nn b b, 2log log log 2b n b ,即log log 2b n §3 整除的进一步性质及最小公倍数1.证明两整数a ,b 互质的充分与必要条件是:存在两个整数s ,t 满足条件1ax bt . 证明 必要性。
若(,)1a b ,则由推论1.1知存在两个整数s ,t 满足:(,)as bt a b ,1as bt充分性。
若存在整数s ,t 使as+bt=1,则a ,b 不全为0。
又因为(,)|,(,)|a b a a b b ,所以(,|)a b as bt 即(,)|1a b 。
又(,)0a b ,(,)1a b 2.证明定理3定理3 1212,,||,||,||n n a a a a a a 证:设121[,,,]n a a a m ,则1|(1,2,,)i a m i n ∴1|||(1,2,,)i a m i n 又设122[||,||,,||]n a a a m 则21|m m 。
反之若2|||i a m ,则2|i a m ,12|m m 从而12m m ,即12[,,,]n a a a =122[||,||,,||]n a a a 3.设1110n n n n a x a x a x a (1)是一个整数系数多项式且0a ,n a 都不是零,则(1)的根只能是以0a 的因数作分子以n a 为不是有理数.证:设(1)的任一有理根为pq,(,)1,1p q q 。
则1110()(0n n n n p p pa a a a q q q111100n n n n n n a p a p q a pq a q (2)由11110(2)n n n n n n a p a p q a pq a q ,所以q 整除上式的右端,所以|n n q a p ,又(,)1,1p q q , 所以(,)1,|n n q p q a ;又由(2)有11110n n n n n n a p a p q a pq a q因为p 整除上式的右端,所以0|n P a q ,(,)1,1p q q ,所以(,)1, |n n q p p a ∴ 故(1)的有理根为pq,且0|,|n p a q a 。
220x x ,次方程为整系数方程,则由上述结论,可知其有有理根只能是1,2 为无理数。
=,pq(,)1,1p q q ,则2222222222,2,(,)(2,)1p q p p q q p q q但由(,)1,1p q q 知22(,)1p q 不是有理数。
§4 质数·算术基本定理 1.试造不超过100的质数表 解:用Eratosthenes 筛选法(110 a(2)10内的质数为:2,3,5,7(3)划掉2,3,5,7的倍数,剩下的是100内的素数 将不超过100的正整数排列如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 1002.求82798848及81057226635000的标准式.解:因为8|848,所以38|,827988488103498562A A B , 又8|856,所以8|B ,3812937322B C , 又4|32,所以4|C ,243234332C D又9|(3+2+3+4+3+3),所以9|D ,29359373D E , 又9|(3+5+9+3+7),所以9|E ,93993E 又3399331331311 所以8532311A ;同理有3343281057226635000235711172337 。
3.证明推论3.3并推广到n 个正整数的情形. 推论3.3 设a ,b 是任意两个正整数,且1212n n a p p p ,0i ,1,2,,i k , 1212n nb p p p ,0i ,1,2,,i k , 则1212(,)k k a b p p p ,1212[,]k ka b p p p ,其中min(,)i i i ,min(,)i i i ,1,2,,i k 证: min(,)i i i , 0,0i i i i∴|,|i i i i i i i i p p p p (1,2)i k∴11iikki ii i p p,11iikki ii i p p.∴ 1212|(,)k k p p p a b ,又显然1212(,)|k ka b p p p ∴1212(,)k k p p p a b ,同理可得1212[,]k k p p p a b ,max{,}i i i推广设11112112k k a p p p ,22122212k k a p p p ,1212,n n nk n k a p p p(其中j p 为质数1,2,,,i j k a 为任意n 个正整数1,2,,,0ij i n ), 则1212121(,,,),min{},1,2,,i i ik k n ij ij i np p p a a a j k1212121[,,,],max{},1,2,,i i ik k n ij ij i np p p a a a j k4.应用推论3.3证明§3的定理4(ii )证:设12111212k k k k a p p p b p p p ,,其中p 1, p 2, , p k 是互不相同的素数, i , i (1 i k )都是非负整数,有11111212(,)min{,}1[,]max{,}1k kk i i i k i i i a b p p p i k a b p p p i k ,,,,,。