变压器的接线组别
变压器联结组别含义
变压器联结组别含义变压器联结组别含义是指变压器的不同接线方式。
变压器联结组别主要分为三种:Y型联结、△型联结和Y/△型联结。
首先来讲讲Y型联结。
Y型联结是将三相电源线连接到三个独立的变压器绕组端子上,在这种情况下,每个变压器绕组都与相邻的变压器绕组串联,且每个相都连接到中性点,中性点上可以接地。
这种联结方式常用于需要中性点的场合。
在进行电力负载时,Y型联结使得负载电流能够均匀分布,并且能够有效降低相间电压的峰值,从而实现较好的电力负载平衡。
其次是△型联结。
在△型联结中,三相电源线被连接到变压器的三个端子上,通过三个相相连的连接而形成一个封闭环路。
这样的联结方式可在任何负载情况下实现三相平衡,且能够实现较好的电力负载和相邻变压器之间的电压平衡。
在△型联结中,负载电流既能够沿着相线流动,也能从其中一个相线流到另外一个相线,因此,它最适合用于高电压负载。
最后是Y/△型联结。
Y/△型联结实际上是Y型联结和△型联结的结合。
在一个三相电源线连接到变压器的一个端子上的情况下,此种联接方式的变压器绕组中包含了两种不同的绕组:一个是Y型绕组,另一个是△型绕组。
电力负载时,正常工作时使用△型联结,负载不足时使用Y型联结。
总之,变压器联结组别是指变压器绕组的连接方式。
不同的变压器联结组别对应着不同的电力负载情况,能够实现较好的电力负载平衡,同时,还能够获得多相电流的优点。
实际应用中,需要根据电压、电流和功率等因素选择不同的联结方式,尤其是在高电压负载情况下,需要选定合适的联结方式以保证稳定的电力负载。
变压器的四种接线组别Dd,Yy,Yd,Dy
变压器的四种接线组别Dd,Yy,Yd,Dy变压器的四种接线组别Dd,Yy,Yd,Dy变压器Dd接线的优点是:(1)没有三次谐波电动势和Yy接法的主要弊病。
(2)由平衡的线电压,可供较大的三相不平衡负载。
(3)对于输出较大电流的低压变压器,这种接法是比较经济的,因为变压器的各线圈流的是相电流,输给用户的则是比相电流大√3倍的线电流。
变压器Dd接线的缺点是:(1)和Y形比较,绝缘物用得较多,导线截面小使耐受短路时机械力的能力减弱。
(2)不能抽取中性点,有时满足不了系统及用户的要求。
(3)在单相变压器组成的三相变压器组中,如果各相电压不一致时,将在线圈中产生环流,影响效率。
变压器Yd接线的优缺点:变压器Yd接线的优点是:(1)二次电动势中没有三次谐波电动势和Yy接法的主要弊病。
(2)根据需要可在Y一侧抽取中性点。
(3)由于其中有一侧接成△形,可基本上维持另一侧Y形接法的中性点稳定(使中性点的电压变动不大)。
(4)因为接线组别是单数组,有一个优点,即不同组别的两台单数组变压器可以在改变外部首、尾端标号的条件下并列,不需抽出器身重新接线。
(5)降压变压器接成Yd,则可充分利用Y接法和△形接法的优点。
变压器Yy(包括Yyn)接线的优缺点:变压器Yy(包括Yyn)接线的优点是:(1)Y形和△形相比,在承受同样线电压情况下Y形的每相线圈承受的电压较小,故在制造上用的绝缘材料较少。
而由于每相流过的电流较大(Y形的相电流等于线电流),选用导线截面较粗,故线圈的机械强度较好,较能耐受短路时的机械力。
(2)中性点可以任意抽取,适用于三相四线制,且Y 形接法抽头放在中性点,三相抽头间正常电压很小。
分接开关可共用一盘,结构简单。
(3)在同样绝缘的水平下,Y形接法比△形接法可获得较高的电压(高√3倍)。
(4)由于选用导线较粗,可使匝间有较高的电容,能耐受较高的冲击电压。
变压器Yy(包括Yyn)接线的缺点是:(1)二次相电动势中有三次谐波存在将危及线圈绝缘,这是这种接法致命的缺点,限制了它在大容量变压器中使用,一般只能用于容量在1800KV A以下的小容量变压器。
变压器的接线组别
变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
变压器接线组别与差动保护分析
变压器接线组别与差动保护分析一、变压器的接线组别在电力系统中,变压器是很重要的电力设备之一,其主要作用是将电压进行变换,以适应不同的电力需求。
变压器的接线组别是影响其性能的重要因素之一。
1.1 变压器接线组别的定义变压器接线组别是指在变压器的同种绕组中,导线首尾间的连接不同所形成的各种互不相同的接线组合形式。
以三相变压器为例:1.Yyn0接线组:这是标准的变压器接线组合,其中,每个相位上的中点点称为“零点”,用“0”表示;主绕组接成Y形,副绕组接成D形。
变压器的中性点与地接触。
2.Ynd11接线组:主绕组接成Y形,副绕组接成D形,中性点未接地,改由中性刀闸接通地网,副绕组中性点接地。
3.Dd0接线组:主绕组接成D形,副绕组接成D形,不设中性点。
1.2 不同接线组别对变压器性能的影响不同的接线组别会对变压器的性能造成影响:1.不同的接线组合方式对于同一变压器,其短路阻抗不同,进而会影响容量和符合的不短路容率。
2.其中,Dd0和Yyn0两种接线组性能比较接近,Dd0接线组变压器具有较大的短路阻抗,能承受较大的瞬时电流冲击,隔离性能较好,一般适合在高压电网上使用,消弧性能较好;而Yyn0接线组变压器具有较小的短路阻抗、较大的不短路容量,适合在低压电网中使用,但隔离性能较差。
二、差动保护差动保护是变压器最主要的保护方式之一,采取对变压器主副绕组接线点的电流进行比较,从而检测变压器内部是否有故障。
2.1 差动保护原理差动保护的原理是,变压器的主副绕组接到差动保护装置的两个输入端口上,差动保护装置对两个输出电流进行比较,如果两个电流值之差的绝对值大于设定值,则表示有故障,在差动保护装置输出的信号下,断路器动作,使故障的电流断开。
2.2 差动保护的分类差动保护按照性质、作用和结构可以分为多种形式。
1.比率差动保护(R差动保护),是通过比较变压器主副绕组电流之比判断差动电流的方式。
2.移相差动保护(Angle差动保护),采用相序变换装置,将原始电流变换为辐角差相等电流进行比较。
变压器常用连接组和适用范围
变压器常用连接组和适用范围
变压器的连接组别是用来表示变压器高低压绕组的接线方式以及它们之间的相位关系的。
连接组别的表示方法通常是用一个或两个字母加上一个数字来表示的,其中字母表示高压绕组的接线方式,数字表示低压绕组的接线方式。
以下是一些常用的变压器连接组别及其适用范围:
1. Yyn0:
适用范围:主要用于6-10kV电压等级的配电变压器,低压侧引出中性线,构成三相四线制供电。
2. Yd11:
适用范围:主要用于35-60kV,低压侧为6-10kV的输配电系统。
其低压侧采用三角形接法可以改善电网的电压波形,从而使三次谐波电流只能在三角形绕组内形成环流,不至于传输到用户和供电线路中去。
3. YNd11:
适用范围:主要用于高压侧为110kV及以上的大电流接地系统中的变压器。
4. Dyn11:
适用范围:这种连接组别在近年来逐步推广使用,主要用于高压侧为6-10kV,低压侧为380/220V的配电变压器。
Dyn11接线的变压器中性线电流不得超过二次绕组额定电流的75%。
5. Yd1:
适用范围:用于电力系统中的中性点不接地或经消弧线圈接地系统中,能够限制短路电流,降低故障时的电压降。
6. Yn:
适用范围:主要用于星形接线的变压器,中性点直接接地或经消弧线圈接地,广泛应用于电力系统中。
7. D:
适用范围:表示三角形接线的变压器,常用于高压侧为35kV及以下,低压侧为10kV及以下的电力系统中。
这些连接组别的选择取决于系统的电压等级、运行条件、负载特性和对电压质量的要求。
在选择变压器的连接组别时,需要考虑系统的稳定性和经济性,确保变压器能够高效和安全地运行。
三相变压器接线组别
Y型接线组别的优缺点
优点
结构简单、维护方便、成本低廉 、运行稳定。
缺点
不能承受较大的不平衡负载,当 一相断路时,其它两相电压会升 高,需要配置相应的保护措施。
03
Δ型接线组别
Δ型接线组别的特点
三个线圈呈三角形连接,每个线圈的首尾相接。 三个线圈的匝数相等,相位差为120度。
输入输出电压比为3:1或1:3。
其他特殊接线组别
其他特殊接线组别包括各种不同的接线方式,如三相-三相变压器 接线、三相-单相变压器接线等。这些特殊接线组别通常用于特定 的应用场合,以满足不同的需求。
特殊接线组别的优点在于其能够实现特定的功能,如电压变换、 相位变换等。
然而,特殊接线组别也存在一些缺点,例如其结构复杂、维护困 难等。因此,在实际应用中需要根据具体需求进行选择。
02
Y型接线组别
Y型接线组别的特点
三个线圈的尾端连接 在一起,首端引出作 为电源或负载的接线 端。
输出电压与输入电压 同相位。
三个线圈的匝数相等, 相位差为120度。
Y型接线组别的应用场景
适用于高压输电线路的三相变压 器。
适用于需要三相平衡供电的工业 和商业场所。
适用于需要降低谐波干扰的场合。
Δ型接线组别的应用场景
适用于高压输电线路的三相变压器。
适用于需要平衡三相负载的电力系统。
适用于需要高电压或大电流的工业应 用。
Δ型接线组别的优缺点
优点
结构简单,制造方便,运行稳定,能 够承受较大的短路电流。
缺点
不能实现电气隔离,需要额外的隔离 变压器或光耦等设备来实现电气隔离 。
04
其他接线组别
三相变压器接线 组别
目录
变压器接线组别
大容量1800kVA,并规定Yyn0接线变压器中性线电流不应超过低压侧额定电流的25%;Dyn11接线中,一次绕组的零序电流可以在绕组内环流,反过来可削弱二次绕组的零序磁通,不致使零序磁通造成配变的过热,因此中性线电流几乎可达相线电流值(一般能达到相线电流的80%),规程规定Dyn11接线变压器中性线电流不应超过低压侧额定电流的40%,所以Dyn11接线能使配变容量尽可能得到充分利用,同时也降低了损耗,同容量的配变负载损耗Dyn11接线比Yyn0接线可减少20% 对于供电质量来说,对于Yyn0接线的配变,由于二次零序磁通未被去磁,零序阻抗大,因此零序电压也较大;而Dyn11接线中由于一次零序磁通的去磁,使铁芯中合成零序磁通很小。据实测数据发现,同容量的配变Yyn0接线零序阻抗比Dyn11接线大8~10倍.这样在同样的零序电流下,零序电压前者比后者大8~10倍,从而造成Yyn0接线配变中性点产生较大偏移,相电压不对称程度严重. 当低压母线处发生单相短路时,由于Dyn11接线配变零序阻抗小,因此Dyn11接线要比Yyn0接线单相短路大得多,这样低压总开关过流保护的灵敏度也高得多,对于高压侧,由于Dyn11接线低压单相短路电流对高压侧的穿越电流也大,当高压侧过流继电保护兼作低压单相接地保护时,其灵敏度也比Yyn0接线大. 尽管Dyn11接线有许多优点,但是两种接线组别的配变在农村低压电力技术规程(DL/T 499—2001)中规定都是允许的,两种接线组别的配变优缺点及适用范围 见下表1。 表1 Yyn0和Dyn11接线组别的配变优缺点及适用范围 来源组和二次绕组组合接线形式的一种表示方法; 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 (一)变压器接线组别 变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。 变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载损耗Dyn11接线比Yyn0接线可减少10%。 负载运行中,若二次侧负载不对称,各项均有零序电流,其值为中线电流的1/3,零序电流在配变铁芯中产生零序磁通,Yyn0接线的配变高压侧没有零序电流与之去磁,零序磁通在变压器铁芯柱中无通路,只能通过空气隙、箱壁、夹紧螺栓形成回路,产生附加损耗,鉴于此,大容量变压器不宜采用Yyn0接线,最
变压器接线组别
Yy总结Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数。
若高压绕组三相标志不变,低压绕组三相标志依次后移,可以得到
Yy4、Yy8连接组别。
若异名端在对应端,可得到Yy6、Yy10和Yy2连接组别。
※我国标准规定生产:Yyn0、YNy0、Yy0
Yd联结组别总结:Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数。
若高压绕组三相标志不变,低压绕组三相标志依次后移,可以得到Y,d3、Y,d7连接组别。
若异名端在对应端,可得到Y,d5、Y,d9和Y,d11连接组别。
※我国标准规定生产:Yd11、YNd11
接线组别向量图画法的几个要点:
1. 正序表示A到B到C旋转方向为顺时针
2. 对应铁芯上的高低压侧绕组的电压方向只有同向和反向两种
3. 三角形绕组的接法有两种,因此的画图时注意收尾的同一点重合
4. 接线组别具有“相对性”。
变压器的接线组别及其物理意义
变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D (或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,该台变压器的联结组标号为:YN,yn0,d11。
变压器的接线组别表示
变压器的接线组别表示
变压器的接线组别是变压器一、二次侧绕组根据肯定的接线方式连接时,一次侧绕组的线电压与二次侧绕组线电压之间的相位关系。
通常采纳时钟表示法来区分不同的连接组别,即用一次侧绕组与二次侧绕组的线电压相量作为时钟盘面上的长针和短针,长针代表一次侧绕组(高压)并固定指向12点,短针代表二次侧绕组(低压),其所指的钟点就是接线组别名。
时钟等分为12个格,每格为30°,由长、短针相距的格数,可得出一、二次侧绕组线电压的相位关系.如长、短针均指向12点,就表示一、二次侧绕组相对应的电压相位相同,接线组别为12,即Yy0;如长针指向12点,短针指向11点,就表示一、二次侧绕组相对应的电压相位差30°,接线组别为11,即Yd11。
三相变压器的接线组别共有12种,即共有12个组别,分别用0~11表示,接线符号间用逗号或不加符号。
凡一次侧绕组与二次侧绕组接法不同时,如Y/△或△/Y,属于1、3、5、7、9、11奇数组,共6组;凡一次侧绕组与二次侧绕组的接法相同时,如Y/Y或△/△,属于0、2、4、6、8、10偶数组,也是6组。
绕组的接线方式主要有星形、三角形和曲折形三种,对高压绕组分别用大写字母Y、D、Z表示;对低压或中压绕组分别用小写字母y、d、z表示。
有中性线引出时加注字母N或n表示,而不用0表示,如YN、ZN和yn、zn。
1。
三相变压器的连接组别
三相变压器的连接组别三相变压器是一种常见的电力设备,用于将电能从一种电压水平转换为另一种电压水平。
其连接组别是指变压器的三个相线如何连接以实现所需的电压转换。
在三相变压器中,有两种常见的连接组别方式:星形连接组别(Y 型连接)和三角形连接组别(Δ型连接)。
1. 星形连接组别(Y型连接):在星形连接组别中,变压器的三个相线的连接形成一个星形。
这意味着变压器的winding的一个端点集中连接在一起,并且该点是系统的中性点。
另外两个端点通过电缆连接到三相电源或负载。
星形连接组别常用于系统中电压较低的一侧,而不适用于高电压一侧。
星形连接组别的优点包括:- 提供对称的电压和电流分配,减少不平衡问题。
- 较低的绝缘要求,因为相线与中性点的绝缘相对较小。
- 使系统能够接地,并提供对地故障电流的路径。
星形连接组别的缺点包括:- 较低的电压变换比,因为相线与中性点之间有额外的电阻。
- 需要中性点的绝缘,以保证安全。
2. 三角形连接组别(Δ型连接):在三角形连接组别中,变压器的三个相线的连接形成一个闭合的三角形回路。
这意味着电流在三个相线之间按顺序循环,并且没有中性点。
三角形连接组别常用于系统中电压较高的一侧,因为它可以实现较高的电压变换比。
三角形连接组别的优点包括:- 较高的电压变换比,因为没有额外的电阻。
- 高电流负载能力,适用于大功率负载。
三角形连接组别的缺点包括:- 不提供对称的电压和电流分配,可能会导致不平衡问题。
- 更高的绝缘要求,因为相线之间的电压相对较高。
除了以上的两种常见的连接组别方式,还有其他一些特殊的连接组别方式,例如Zig-Zag连接组别、V连接组别等。
这些连接组别方式根据具体的应用和需求而定,用于特殊的电压转换和电力系统配置。
需要注意的是,无论使用哪种连接组别方式,安全性都是非常重要的。
变压器应该根据规范进行正确的接线和绝缘,以确保电能转换的安全和稳定。
总结:三相变压器的连接组别是指变压器的三个相线如何连接以实现所需的电压转换。
变压器接线组别Dyn11是什么意思?
变压器接线组别Dyn11是什么意思?变压器连接组别:变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法。
常见变压器高压侧有三角形和星型接法,低压侧也有三角形或星型接法;这几种接法相组合,加上高压侧和低压侧电压形成一定的角度差;再加上高低压侧中性点有接地和不接地两种方式,这就构成了变压器连接组别的所有要素。
举个简单的列子,我们常见的变压器铭牌上标的连接组别:Dyn11,这是什么意思呢,高压侧和低压侧如何接线?等你理解了变压器连接组别的规律,任何铭牌你一看便知。
技术文章有点生涩难懂。
变压器连接组别的表示方法IEC标准中规定了变压器绕组联接组的最新表示方法。
即三相变压器绕组,连接成星形、三角形、曲折形时对于高压绕组则分别用Y、D、Z表示;对于中、低压绕组则分别用小写字母y、d、z表示。
如果是星形或曲折形联结有中性点引出时,则分别用YN或ZN,yn或zn表示。
变压器按高压、低压绕组联结的顺序组合起来就是绕组的联结组。
今天主要讲解Y和D型接法,Z型接法比较少见,我们通过Y和D型完全可以理解。
通过典型的几种接法,让大家迅速的理解。
常见三种连接组别及使用场合1.Dyn11的意义:D:高压侧三角形接法,y:低压侧星型接法;n:低压侧中性点引出;11:高低压差相位差30度。
使用场合:单相不平衡电流超过额定电流的25%,即单相负载多;系统有较大的谐波存在,有消谐作用;2.Yyn0的意义:Y:高压侧星型接法,无中性点引出;y:低压侧星型接法;n:中性点引出;0:高低压差位差0度。
使用场合:三相负荷基本平衡;供电系统谐波不严重;常用于10KV系统。
3.Yd1意义:Y:高压侧星型接法;d:低压侧三角形接法;1:高低压差相位差30度。
使用场合:35KV配电系统。
变压器原理及接线组别
变压器原理及接线组别
一、变压器原理
变压器主要由两组由线圈组成的磁路组成,分别叫做输入线圈和输出线圈,这两组磁路之间被电压所隔离。
当交流电压施加在输入线圈上时,磁场经过输出线圈,就产生了变压的现象:输出线圈上的电压与输入线圈上的电压相比,明显增大或缩小。
变压器的原理是磁感应:当交流电压施加于输入线圈上时,就产生一个磁场,如果能把这个磁场引到输出线圈上,就能把输入线圈上的电压转换为输出线圈上的电压。
二、变压器接线组别
Y组别:Y组别可以理解为三个单相变压器组成的组别,每个单相变压器有一个输入线圈和一个输出线圈,输入线圈之间的电压是相等的,而输出线圈之间的电压可以是相等的也可以是不相等的可以通过调整输出线圈之间的相位来改变电压。
变压器的连接组别
001变压器三相绕组有星型联结、三角形联结与曲折联结等三种联结法。
在绕组联结中常用大写字母A、B、C表示高压绕组首端,用X、Y、Z表示其末端;用小写字母a、b、c表示低压绕组首端,x、y、z表示其末端,用o表示中性点。
新标准对星型、三角形和曲折形联结,对高压绕组分别用符号Y、D、Z表示;对中压和低压绕组分别用y、d、z表示。
有中性点引出时分别用YN、ZN 和yn、zn表示。
自藕变压器有公共部分的两绕组中额定电压低的一个用符号a 表示。
变压器按高压、中压和低压绕组联结的顺序组合起来就是绕组的联结组。
例如:高压为Y,低压为yn联结,那么绕组联结组为Yyn。
加上时钟法表示高低压侧相量关系就是联结组别。
常用的三种联结组别有不同的特征:1 Y联结:绕组电流等于线电流,绕组电压等于线电压的1/√3,且可以做成分级绝缘;另外,中性点引出接地,也可以用来实现四线制供电。
这种联结的主要缺点是没有三次谐波电流的循环回路。
2 D联结:D联结的特征与Y联结的特征正好相反。
3 Z联结:Z联结具有Y联结的优点,匝数要比Y形联结多15.5%。
成本较大。
据GB/T6451-1999《三相油浸式电力变压器技术参数和要求》和GB/T10228-1997《干式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。
而我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。
现在国际上大多数国家的配电变压器均采用Dyn11联结,主要是由于采用Dyn11联结较之采用Yyn0联结有优点:3.1 D联结对抑制高次谐波的恶劣影响有很大作用3.1.1 在D联结绕组中的三次谐波环流能够在变压器中产生三次谐波磁动势,它与低压绕组的三次谐波磁动势平衡抵消;3.1.2 高压相绕组的三次谐波电动势在D联结回路中环流,三次谐波电流可在D联结的一次绕组内形成环流,使之不致注入公共的高压电网中去。
变压器接线组别表示方法
变压器接线组别表示方法
变压器接线组别表示方法是指在变压器接线端子上采用一定的符号或字母来标示不同的接线组别。
这种表示方法是为了方便安装、维护和调试变压器,并提供清晰的电气接线信息。
常见的变压器接线组别表示方法有以下几种:
1. Y连接组别表示方法:在三相变压器中,如果变压器的高压绕组和低压绕组都是星形(Y)连接,则用字母Y表示。
例如,Yyn0表示高压绕组和低压绕组都是星形连接,且对称接地。
2. Δ连接组别表示方法:在三相变压器中,如果变压器的高压绕组和低压绕组都是三角(Δ)连接,则用字母Δ表示。
例如,Dd0表示高压绕组和低压绕组都是三角形连接,且对称接地。
3. Y/Δ连接组别表示方法:在三相变压器中,如果变压器的高压绕组是星形(Y)连接,而低压绕组是三角形(Δ)连接,则用字母Y/Δ表示。
例如,Y/Δd11表示高压绕组是星形连接,而低压绕组是三角形连接,且低压绕组不对称接地。
4. Y/Δo连接组别表示方法:在三相变压器中,如果变压器的高压绕组是星形(Y)连接,而低压绕组是三角形(Δ)连接,并且低压绕组的中性点未连接到任何引线,则用字母Y/Δo表示。
例如,Y/Δo11表示高压绕组是星形连接,而低压绕组是三角形连接,中性点未连接到引线。
以上是常见的变压器接线组别表示方法,通过使用这些符号或字母,工程师和技术人员可以准确地了解变压器的接线方式,从而进行正确的安装、维护和调试工作。
这种标示方法遵循国际电工委员会(IEC)的标准,确保了国际上的统一性和一致性。
变压器组别接线
变压器组别接线
变压器组别接线
变压器组别接线
• Y/Y—4的接线:变压器一次同名端的首端为A、B、 C,尾端为X、Y、Z,AX、BY、CZ分别是三个 不同的绕组,将来三相交流电的高压侧就接在A、 B、C上,尾端接成星接,即X、Y、Z三个头接在 一起;
• 变压器二次同名端的首端为a、b、c;尾端为x、y、 z, ax、by、cz分别是三个不同的绕组,将来三 相交流电的低压侧就接在瓷瓶a、b、c上,我们把 内部转动120度,让c相接a瓷瓶;a相接b瓷瓶;b 相接c瓷瓶;三个尾端接在一起,变压器的组别就 变成了Y/Y—4接线;如果二次的同名端为x、y、 z,这时的接线就变成了Y/Y—10
• 我们再把内部的绕组来个顺时针120度移位,(假想内部 三个绕组可转动,顺时针转120度后,接线瓷瓶的a相接内 部的b,b相接c;c相接a) 这时原先Y/△—5的接线,就变成了Y/△—9的接线;(内 部转了120度,时针的也转了120度);同理原先的 Y/△—3接线,从外部看就变成了Y/△—7
变压器组别接线
变压器组别接线
变压器组别接线
• Y/△—9的接线:变压器一次同名端的首端为A、B、C, 尾端为X、Y、Z,AX、BY、CZ分别是三个不同的绕组, 将来三相交流电的高压侧就接在A、B、C上,尾端接成星 接,即X、Y、Z三个头接在一起;
• 变压器二次同名端的首端为a、b、c;尾端为x、y、z, ax、by、cz分别是三个不同的绕组,将来三相交流电的低 压侧就接在a、b、c上
变压器组别接线
变压器组别接线
变压器组别接线
• Y/△—5的接线:变压器一次同名端的首端为A、B、C, 尾端为X、Y、Z,AX、BY、CZ分别是三个不同的绕组, 将来三相交流电的高压侧就接在A、B、C上,尾端接成星 接,即X、Y、Z三个头接在一起;
变压器接线组别与差动保护分析
变压器接线组别与差动保护分析一、变压器接线组别变压器接线组别是指变压器的主、副绕组之间的接线方式。
变压器的接线组别决定了其输出电压和电流的相位关系,也决定了其运行时的电磁特性和电气性能。
在实际应用中,变压器接线组别的选择会根据设备的需求和使用环境作出相应的决策。
常见的变压器接线组别有以下几种:1. Yyn0组Yyn0组是指变压器的主、副绕组都是星形结构,外接零线直接接地。
这种接线组别在低压侧电流较大的情况下使用较为广泛,其输出的相位角为0度,因此被称为“零相移变压器”。
2. Ynd1组Ynd1组是指变压器的主、副绕组都是星形结构,但在中性线上接上一个经绕线制成的中性点,其输出的相位角为-30度,常用于变压器的中高压侧。
3. Yyn11组Yyn11组是指变压器的主绕组采用星形结构,副绕组为Y接法,输出的相位角为0度。
这种接线组别常用于一些特殊应用下,如电压升高器等。
4. Ynd11组Ynd11组类似于Ynd1组,但副绕组为Y连接。
其输出的相位角为-30度。
这种接线组别适用于特殊的应用场景中,如电压升高器等5. Dd0组Dd0组指变压器的主副绕组都是加粗的线圈,直接相连。
这种接线组别适用于大型的电力变压器中,其输出的相位角为0度。
二、差动保护差动保护是变压器保护的一种常用方式,主要用于检测变压器主副绕组之间的电流差别,借此判断是否存在局部短路或故障,然后进行保护动作。
通常情况下,差动保护装置由比率变比为1:1的电流互感器组成,放置于变压器主副绕组之间。
差动保护有以下几个基本原理:1. 理想互感器原理当变压器的主、副绕组电流完全相等时,互感器中两路信号的相位相反完全抵消,输出的信号为零。
当主、副绕组之间存在电流不平衡,互感器的输出电压就会不为零,此时差动保护装置便会动作。
2. 均流原理均流原理是指当变压器主、副绕组上的电流不平衡时,在变压器中会产生电流的交换,导致主、副绕组的平均电流发生变化,差动保护装置通过检测平均电流变化从而判断是否存在故障。
配电变压器常用的接线组别
配电变压器常用的接线组别
(1) Yyn0:其中Y表示高压绕组为星形接线,y表示低压绕组为星形接线,n表示从二次侧绕组中点引出中性线,0表示高压与低压的线电压相位相同。
可作为三相四线制或三相五线制的供电输出,用于容量不大的配电变压器,供应动力和照明负载。
(2) Dyn11:其中D表示高压绕组为三角形接线,y表示低压绕组为星形接线,n表示二次侧绕组中性点直接接地并有中性线引出,11表示高压与低压的线电压相位差30°。
常用于我国的TN或TT系统接地式低压电网中。
(3) Yd11:即一次侧绕组接成星形,二次侧绕组接成三角形,一般作为10kV或35kV电网的供电变压器和发电厂的厂用变压器等。
二次侧绕组接成三角形,是为了消退3次谐波电压。
(4) YNd11:即一次侧绕组接成星形,并从中性点再引出中性线直接接地,二次侧绕组接成三角形。
高压绕组接成星形比接成三角形承受电压低√3倍,因而能带来很好的经济效益,一般用在110kV及以上中性点直接接地的电力系统中。
1。
110千伏变压器常用的接线组别
110千伏变压器常用的接线组别110千伏变压器的常见接线组别及其特点110千伏变压器广泛应用于电力系统中,其接线组别对系统稳定性和可靠性至关重要。
常用的接线组别包括:Yyn0相电压:相电压为线电压的1/√3线电流:线电流等于相电流零序分量:零序分量电流为0中性点:中性点不接地或经高阻接地该接线组别适用于供电范围较小的系统,对地面绝缘水平要求不高。
Dyn11相电压:相电压等于线电压线电流:线电流为相电流的1/√3零序分量:零序分量电流不为0,存在三零序谐波中性点:中性点通过消弧线圈直接接地该接线组别具有良好的三相负荷平衡能力,适用于较大供电范围的系统。
Dyn5相电压:相电压等于线电压线电流:线电流为相电流的1/√3零序分量:零序分量电流不为0,存在三零序谐波中性点:中性点经消弧线圈接地,但消弧线圈阻抗较高该接线组别具有良好的三相负荷平衡能力,但零序谐波电流较Dyn11大,一般适用于重工业、冶金等场合。
YNd1相电压:相电压等于线电压的1/√3线电流:线电流为相电流的1/√3零序分量:零序分量电流不为0,存在三零序谐波中性点:中性点经消弧线圈接地,消弧线圈阻抗较小该接线组别具有较小的零序谐波电流,适用于对地面绝缘水平要求较高的系统。
Yy0相电压:相电压等于线电压的1/√3线电流:线电流为相电流零序分量:零序分量电流不为0,存在三零序谐波中性点:中性点不接地或通过高阻抗接地该接线组别适用于供电范围较小且对地面绝缘水平要求不高的情况。
Dy1相电压:相电压等于线电压线电流:线电流为相电流的1/√3零序分量:零序分量电流不为0,存在三零序谐波中性点:中性点直接接地该接线组别具有良好的三相负荷平衡能力,但对地面绝缘水平要求较高,一般适用于大容量的发电机组。
选择接线组别的考虑因素选择110千伏变压器的接线组别需考虑以下因素:系统结构和负荷特性地面绝缘水平要求系统稳定性和可靠性要求电网谐波特性经济性因素根据不同场景和要求,应选择最合适的接线组别,以确保系统稳定运行和安全供电。