导数在求曲线切线方程的应用

合集下载

求切线方程的三种方法

求切线方程的三种方法

求切线方程的三种方法宝子们,今天咱们来唠唠求切线方程的那些事儿。

这切线方程啊,就像是给曲线找到一个最亲密接触的直线小伙伴,可有意思啦。

一、利用导数求切线方程。

咱先说说这个用导数的方法。

导数这玩意儿啊,其实就是曲线在某一点的斜率。

比如说有个函数y = f(x),咱们先求出它的导数f'(x)。

那在某一点x = a处的切线斜率k呢,就等于f'(a)。

这时候啊,我们已经知道了斜率,再知道这个点(a, f(a))在切线上,就可以用点斜式y - y₁ = k(x - x₁)来求出切线方程啦。

就像你知道一个朋友的走路速度(斜率),又知道他从哪个地方(点)出发,就能算出他走的路线(切线方程)啦。

二、设切点法。

再来说说设切点法。

有时候啊,题目没有直接告诉你切点是啥。

这时候咱就可以聪明点,设切点为(x₀, y₀)。

那这个点既在曲线上又在切线上哦。

如果曲线方程是y = f(x),那y₀ = f(x₀)。

然后呢,求出函数在x₀处的导数f'(x₀),这就是切线的斜率啦。

再根据点斜式写出切线方程y - y₀ = f'(x₀)(x - x₀)。

这就像是在玩一个猜谜游戏,我们先假设一个神秘的点(切点),然后通过各种线索(曲线方程和导数)来找出这个切线方程这个宝藏呢。

三、利用已知切线方程的形式来求。

还有一种方法呢,就是利用已知切线方程的形式。

比如说对于圆的方程(x - a)²+(y - b)² = r²,在点(x₁, y₁)处的切线方程是(x₁ - a)(x - a)+(y₁ - b)(y - b)= r²。

对于椭圆、双曲线等一些特殊的曲线也有类似的固定形式的切线方程哦。

这就像是有个小秘籍一样,直接套用这个形式就能求出切线方程啦。

就好比你有一把万能钥匙,遇到特定的锁(特殊曲线在某点的切线),直接一插就能打开(求出切线方程)啦。

宝子们,这三种求切线方程的方法是不是很有趣呀?只要多练练,你就能在求切线方程这个小天地里畅游无阻啦。

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题山东 黄丽生导数与曲线的切线有缘,因为()0/x f的几何意义是曲线y=f (x)在点(x 0 ,f (x 0))处的切线斜率,其物理意义通常指物体运动时的瞬时速度。

曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。

因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。

在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。

举例说明。

例1已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(1)设)(t g MN =,试求函数)(t g 的表达式;(2)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.分析:由题意点P 在曲线外,故求切线PM 、PN 的方程,须设出M 、N 两点的横坐标,目的是借助导数求直线的斜率;第二问属探索性问题,往往是先假设存在,看是否能求得符合条件的t 或导出矛盾。

解:(1)设M 、N 两点的横坐标分别为1x 、2x , 21)(x tx f -=', ∴切线PM 的方程为:))(1()(12111x x x tx t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , 同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ( * )22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-= ])1(1][4)[(22121221x x t x x x x -+-+=, 把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g .(2)当点M 、N 与A 共线时,NA MA k k =,∴01111--+x x t x =01222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. 把(*)式代入,解得21=t . ∴存在t ,使得点M 、N 与A 三点共线,且 21=t . 点评:本题以函数为载体,综合考查了函数与导数的有关问题。

导数的应用曲线的切线与法线

导数的应用曲线的切线与法线

导数的应用曲线的切线与法线导数的应用:曲线的切线与法线在微积分学中,导数是一个十分重要的概念。

导数的计算和应用广泛应用于各个科学领域,特别是在物理学和工程学中。

其中一个应用就是研究曲线的切线和法线。

一. 切线的定义和计算我们首先来了解一下切线的概念。

在数学中,切线是指与给定曲线在某一点相切的直线。

为了计算曲线的切线,我们需要先计算该点的导数。

设曲线方程为y = f(x),我们要求曲线上一点P(a, f(a))处的切线。

首先计算曲线在点P处的导数,即求得f'(a)。

然后,我们可以使用点斜式或者截距式来表示切线方程。

点斜式表示的切线方程为:y - f(a) = f'(a)(x - a)截距式表示的切线方程为:y = f'(a)x + (f(a) - af'(a))有了切线方程,我们可以计算曲线在该点处的切线了。

二. 法线的定义和计算接下来,我们来了解一下法线的概念。

在数学中,法线是切线的垂直线。

要计算曲线在某一点的法线,我们首先需要计算切线的斜率,然后求其相反数,即得到法线的斜率。

设曲线方程为y = f(x),切线斜率为k。

则法线的斜率为-1/k。

然后,我们可以使用与切线相同的方法来表示法线的方程。

点斜式表示的法线方程为:y - f(a) = (-1/k)(x - a)截距式表示的法线方程为:y = (-1/k)x + (f(a) + a/k)有了法线方程,我们可以计算曲线在该点处的法线了。

三. 实例分析现在,我们通过一个实例来理解切线和法线的应用。

假设有以下函数:y = 2x^2 - 3x + 1。

我们要求该函数在x = 2处的切线和法线。

首先,计算曲线在x = 2处的导数。

函数的导数为f'(x) = 4x - 3。

将x = 2代入导数公式,得到f'(2) = 5。

接下来,使用点斜式表示切线方程和法线方程。

切线方程为:y -f(2) = f'(2)(x - 2),化简得到y = 5x - 5。

导数的应用曲线的切线和法线问题

导数的应用曲线的切线和法线问题

导数的应用曲线的切线和法线问题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

除了用来求函数的极值和变化趋势外,导数还可以应用于曲线的切线和法线问题。

本文将探讨导数在曲线切线和法线问题上的应用。

一、曲线的切线问题对于给定的曲线,我们可以通过求取该曲线上某一点的导数来确定该点处的切线。

具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。

2. 求取该点的导数dy/dx。

3. 使用点斜式或一般式求取与该点所在切线平行的直线方程。

4. 得到切线的方程。

举例来说,如果我们有一个曲线的方程为y = 2x² + 3x - 4,那么可以依次进行如下步骤来求取曲线在某一点上的切线:1. 确定点P(x₀, y₀)的坐标,假设为P(2, 7)。

2. 求取该点的导数dy/dx,对于曲线y = 2x² + 3x - 4,求导得到dy/dx = 4x + 3。

3. 使用点斜式求取切线的方程,将点P的坐标和导数dy/dx的值代入点斜式方程y - y₀ = m(x - x₀),得到y - 7 = (4(2) + 3)(x - 2)。

4. 化简方程,得到切线的方程y = 8x - 9。

通过这个例子可以看出,求取曲线切线的关键是求取点的导数,然后利用切线方程将导数与点的坐标结合,得到切线的方程。

二、曲线的法线问题曲线的法线是与该曲线在某一点处相切,垂直于切线的直线。

求取曲线的法线同样可以通过求取该点的导数来完成。

具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。

2. 求取该点的导数dy/dx,并计算其倒数k。

3. 求取法线的斜率nk = -1/k。

4. 使用点斜式求取法线方程。

5. 得到法线的方程。

和曲线的切线问题类似,求取曲线的法线也需要先求取点的导数,然后计算导数的倒数作为法线的斜率。

三、综合案例考虑一个具体的综合案例,假设我们有一个函数f(x) = x³ + 2x²- 3x + 1,我们希望求取该函数在 x = 2 处的切线和法线。

导数的几何意义及应用

导数的几何意义及应用

1
2
3
4
5
6
变式2:若曲线上一点P处的 切线恰好平行于直
线y=11x-1,则P点坐标为 ____________,
切线方程为 _____________________.
y=11x-14或 y=11x+18
变式4:若曲线C: y=x3-ax+2求在点 x=3处的切线方程为 y=11x-b ,求切点 坐标及a、b。
解:f/(x)=3x2-1, ∴所求的切线方程为: 即 y=2x 处的切线方程?
∴k= f/(1)=2
y-2=2(x-1),
同样题:已知曲线C:y=x3 -x+2,求在点x=1
变式1:求过 点A的切线方
程?
例1.曲线y=x3-x+2,求在点A(1,2) 处的切线方程?
解:设切点为P(x0,x03-x0+2), k= f/(x0)= 3 x02-1,
一.求切线方程的步骤: 1. 设切点P(x0,y0) 2. 求k=f/(x0) 3. 写出切线方程 y-y0= f/(x0)(x-x0)
求曲线上点到-1,2)且与y=x2+ 2在点M(1,3)
处的切线垂直的直线方程是__________.
在曲线y=x3+x2+x-1的切线斜率中斜率最小的
例2:已知曲线C:y=x2-x+3,直线L:x- y-4=0,在曲线C上求一点P,使P到直线L 的距离最短,并求出最短距离。
|134| 3 2 2
解:设P(x0,y0),
∵f/(x)=2x-1, ∴2 x0-1=1, 解得x0= 1, ∴ y0=3,得 P(1,3)
∴P到直线的最短距离 d=
小结
切线方程是 __________ .

利用导数求切线方程

利用导数求切线方程

利用导数求切线方程1. 引言在微积分中,导数是一个重要的概念。

它描述了函数在给定点的变化率,可以用来解决许多实际问题。

其中一个应用就是求解切线方程。

切线是曲线上的一条直线,与曲线在给定点处相切。

求解切线方程可以帮助我们更好地理解曲线的性质和行为。

本文将介绍如何利用导数求解切线方程。

首先,我们将回顾导数的定义和性质。

然后,我们将详细介绍如何利用导数求解切线方程,并提供一些实例来帮助读者更好地理解。

2. 导数的定义和性质回顾在微积分中,导数描述了函数在给定点的变化率。

对于一个函数f(x),它在x处的导数可以通过以下极限定义得到:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ其中,f′(x)表示函数f(x)在x处的导数。

导数具有一些重要的性质,这些性质在求解切线方程时非常有用。

下面是一些常见的导数性质:•常数函数的导数为0:f′(x)=0•幂函数的导数:(x n)′=nx n−1•和差法则:(f(x)±g(x))′=f′(x)±g′(x)•乘法法则:(f(x)g(x))′=f′(x)g(x)+f(x)g′(x)•除法法则:(f(x)g(x))′=f′(x)g(x)−f(x)g′(x)g2(x)•复合函数的导数:(f(g(x)))′=f′(g(x))g′(x)这些性质将在后面的内容中被广泛应用。

3. 求解切线方程的步骤为了求解切线方程,我们需要知道曲线上的一个点以及该点处的斜率。

导数提供了一个方法来计算曲线在给定点处的斜率,因此我们可以利用导数来求解切线方程。

以下是求解切线方程的步骤:步骤 1:确定曲线上的一个点首先,我们需要确定曲线上的一个点。

这个点将成为切线方程的起点。

可以通过给定的问题或者观察曲线的图像来确定这个点。

步骤 2:计算导数在确定了起点之后,我们需要计算曲线在该点处的导数。

根据导数的定义和性质,我们可以得到导数的计算公式。

步骤 3:计算斜率利用导数求得的斜率可以用来确定切线的斜率。

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。

,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。

使用函数的导数求解曲线的切线方程

使用函数的导数求解曲线的切线方程

使用函数的导数求解曲线的切线方程函数的导数是解析几何和微积分中的一个重要概念,它描述了函数在某一点上的变化率。

通过使用导数,我们可以求解曲线的切线方程,从而研究曲线在不同点上的性质和特征。

在解决曲线切线问题时,我们需要使用函数的导数。

函数的导数可以通过极限的方式定义,也可以通过函数图像上的切线斜率来表示。

设函数f(x)在点(x0, f(x0))处可导,那么曲线在该点的切线方程可以通过函数的导数来求解。

首先,我们需要求解函数f(x)的导数,记为f'(x)或者dy/dx。

导数表示了函数在不同x值上的变化率。

导数的计算方法因函数而异,下面以几个例子说明:1. 对于常数函数f(x) = c,其中c为常数,其导数f'(x) = 0。

因为常数函数在任意点上的斜率都为0。

2. 对于一次函数f(x) = ax + b,其中a和b为常数,其导数f'(x) = a。

一次函数的导数恒为斜率a。

3. 对于二次函数f(x) = ax^2 + bx + c,其中a、b和c为常数,其导数f'(x) = 2ax + b。

二次函数的导数是一次函数。

4. 对于正弦函数f(x) = sin(x),其导数f'(x) = cos(x)。

正弦函数的导数是余弦函数。

有了函数的导数,我们就可以求解曲线在特定点上的切线方程。

设曲线上一点为(x0, f(x0)),切线的斜率则为导数f'(x0)。

由于切线过点(x0, f(x0)),我们可以使用点斜式或者一般式来求解切线方程。

1. 点斜式:设切线方程为y - f(x0) = f'(x0)(x - x0),其中f'(x0)为导数在点(x0, f(x0))处的值。

2. 一般式:设切线方程为y = mx + c,其中m为切线的斜率,c为切线和y轴的交点。

通过上述方法,我们可以使用函数的导数求解曲线在某点上的切线方程。

下面通过一个具体的例子来说明:例:求解曲线y = x^2在点(2, 4)处的切线方程。

利用导数求切线方程

利用导数求切线方程

3
题型二:求曲线过一点的切线方程 例:已知曲线C:f (x) x3 x 2 ,求经
过点 P(1, 2) 的曲线C的切线方程。
思考(1)判断P点 所处的位置? (2)从图像探究, 过该点有几条切线, 如何印证你的探究
答案:2x-y=0或x+4y-9=0
点P是曲线 y x2 ln x上任意一点,则点P 到直线 y x 2 的最小距离是多少?
T 切线
P
o
x
3.基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sinx f(x)=cosx
导函数 f′(x)=__0
f′(x)=___α_x_α_-1
f′(x)=_c_o__s_x f′(x)=__-s_i_n_x_
原函数
导函数
f(x)=ax(a>0,且a≠1) f(x)=ex
答案:
求曲线上的点到直线的最小距离。
• 练习:
1.求y xex 2x 1在(0,0)处的切线
3x y 1 0
2.曲线y x2 ax b在(0,b)处的切线方程是
x y 1 0,求a,b
a 1,b 1
已知切线方程为y ex,曲线为f (x) ex ,
求切点坐意义
函数 y f (x) 在x x0 处的导数就是函数
y f (x) 的图像在点 (x0 , f (x0 )) 处的切线的 斜率,即
k f (x0 )
一.曲线的切线
请看当点Q沿着曲线逐渐向点P接近时,割线PQ
绕着点P逐渐转动的情况.
y
y=f(x)

线 Q
解:f ' (x) 6x2 3 k f '(1) 3 y 1 3(x 1)3x y 4 0

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。

通过使用导数,我们可以求解给定曲线上某一点的切线方程。

在本文中,我们将探讨四种使用导数求解切线方程的常见类型。

1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。

假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。

要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。

2.使用点斜式或一般式等方程形式得到切线方程。

点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。

一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。

2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。

与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。

为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。

2.写出点斜式的一般方程形式y−y1=m(x−x1)。

3.将另一个点(x2,y2)替代初始点(x1,y1)。

4.解方程得出切线方程。

3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。

假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。

我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。

2.使用导数的定义f′(x)=m来设置方程。

3.解方程以获得曲线方程。

4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。

为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。

2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。

通过上述四种类型的方法,我们可以使用导数来求解切线方程。

这些方法在解决微积分问题以及实际问题中的应用非常广泛。

导数法求曲线切线方程的三种题型

导数法求曲线切线方程的三种题型

导数法求曲线切线方程的三种题型本文将介绍导数法求解曲线切线方程的三种常见题型。

导数法是解决曲线切线问题的一种常用方法,能够快速而准确地求得曲线上某点的切线方程。

1. 已知函数解析式的题型对于已知函数解析式的题型,我们可以通过求导来获得函数的导函数,然后根据导数的定义来求得切线的斜率。

切线的斜率可以通过导数函数在给定点处的值得到。

最后,利用给定点和切线斜率,我们可以求得切线的方程。

以 y=f(x) 为例,求曲线在点 (a, f(a)) 处的切线方程。

具体步骤如下:1. 求函数 f(x) 的导函数 f'(x);2. 计算 f'(a),得到切线的斜率 k;3. 利用点斜式或一般式,将点 (a, f(a)) 和斜率 k 带入,得到切线方程。

2. 已知曲线上点和斜率的题型对于已知曲线上某点和斜率的题型,我们可以通过求导函数来得到切线的斜率。

切线的斜率等于导函数在给定点处的值。

然后,利用给定点和切线斜率,我们可以求得切线的方程。

以曲线上的点 (a, f(a)) 和切线斜率 m 为例,求曲线在该点处的切线方程。

具体步骤如下:1. 求导函数 f'(x);2. 计算 f'(a) 的值,得到切线的斜率;3. 利用点斜式或一般式,将点 (a, f(a)) 和斜率 m 带入,得到切线方程。

3. 已知两个切线相交的题型对于已知两个切线相交的题型,我们可以通过求解方程组来求得两切线的交点坐标。

首先,我们需要利用已知切线的斜率和点来得到切线的方程。

然后,将两个切线方程联立,解方程组可以得到切线的交点坐标。

以已知切线1方程和切线2方程的斜率和交点为例,求两切线的交点坐标。

具体步骤如下:1. 求切线1和切线2的方程;2. 联立两切线方程,形成方程组;3. 解方程组,得到切线的交点坐标。

使用导数法求解曲线切线方程的三种题型,能够帮助我们准确而高效地求得曲线上某点的切线方程。

这些方法在数学和物理等领域都有广泛的应用,是解决相关问题的重要工具。

利用导数求曲线的切线和公切线以及切线条数专题总结.doc

利用导数求曲线的切线和公切线以及切线条数专题总结.doc

导数中的切线问题专题总结一、求切线方程1.过曲线上一点求切线方程的三个步骤2.求过曲线y =f (x )外一点P (x 1,y 1)的切线方程的六个步骤(1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =f ′(x 0)=li m Δx →0f x 0+Δx-f x 0Δx .(3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率.(4)根据斜率相等求得x 0,然后求得斜率k .(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.例1.已知曲线y =1x .(1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点Q (1,0)处的切线方程.例2.已知曲线y=1 x .(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点Q(1,0)处的切线方程.3.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是二、求切点坐标【小结】求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标例1.已知抛物线y =2x 2+1分别满足下列条件,请求出切点的坐标.(1)切线的倾斜角为45°.(2)切线平行于直线4x -y -2=0.(3)切线垂直于直线x +8y -3=0..变式练习直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切,则a 的值为___________,切点坐标为____________.三、求两个函数公切线公切线问题:切点相同。

()()00x g x f =()()00''x g x f =切点不同。

()()()()k x g x f mkx x g m kx x f ==+=+=212211'',例1、 已知直线b kx y +=是曲线2ln +=x y 的切线,也是曲线x e y =的切线,求k 和b 的值解析:例2.若直线b kx y +=是曲线2ln +=x y 的切线,也是y =ln⁡(x +1)的切线,求b 的值例3.已知函数f (x )=lnx ,g (x )=2﹣(x >0)(1)试判断当f (x )与g (x )的大小关系;(2)试判断曲线 y=f (x )和 y=g (x )是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;变式练习1.两曲线y =x 2−1和y =alnx −1存在公切线,则正实数a 的取值范围变式练习2.若曲线y =12e x 2与曲线y =alnx 在它们的公共点P (s,t )处有公切线,则实数a =变式练习 3.已知函数()()1263,1163223++=--+=x x x g ax x ax x f 和直线m:9+=kx y ,又()01'=-f ,是否存在k,使直线m 既是曲线()x f y =的切线,又是曲线()x g y =的切线?如果存在,求出k 的值四、切线条数切线的条数问题====以切点0x 为未知数的方程的根的个数例1.已知函数32()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.例2.已知函数f (x )=2x 3﹣3x+1,g (x )=kx+1﹣lnx .(1)设函数,当k <0时,讨论h (x )零点的个数;(2)若过点P (a ,﹣4)恰有三条直线与曲线y=f (x )相切,求a 的取值范围.变式练习.已知函数f (x )=x 2+2(1﹣a )x ﹣4a ,g (x )=﹣(a+1)2,则f (x )和g (x )图象的公切线条数的可能值是 .。

新高考视角下的导数新授课:切线问题专题研究

新高考视角下的导数新授课:切线问题专题研究

新高考背景下的切线问题研究一.基本原理1. 用导数的几何意义求曲线的切线方程的方法步骤: ①求出切点00(,())x f x 的坐标;②求出函数()y f x =在点0x 处的导数0()f x ' ③得切线方程00()()()y f x f x x x '-=- 2. 求过点A 处切线方程方法如下:设切点为00(,)P x y ,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,∵过点(,)A m n ,∴000()()n y f x m x '-=-然后解出0x 的值,0x 有几个值,就有几条切线. 3.若函数)(x f y =的图象在点),(11y x A 处的切线与函数)(x g y =的图象在点),(22y x B 处的切线相同(公切线),则等价于)(x f 的图象在点A 处的切线:))(()(11'1x x x f x f y -=-与)(x g 的图象在点B 处的切线:))(()(22'2x x x g x g y -=-重合.进一步等价于下列方程组有解:⎪⎩⎪⎨⎧⋅-=⋅-=)()()()()()(2'221'112'1'x g x x g x f x x f x g x f . 4.若动点C 为函数)(x f y =图象上任一点,直线l 与)(x f y =图象相离,则C 到l 距离的最小值为函数)(x f y =图象在点C 处的切线与l 平行时产生,故此时最小距离即为切点到直线l 的距离.5.切线不等式求解双参数恒成立问题,分离性常见的两个不等式:(1)与xe 有关:0,1≥+≥x x e x;0,≥≥x ex e x.(2)与x ln 有关:0,ln 1>≥-x x x几何解释:凸函数的图象上切线总在图象的下方;几何解释:凹函数的切线总在的上方; 可以看到,分离性是导数中切线放缩的理论依据. 二.典例分析例1.已知直线21y x =-与曲线ln(3)y x t =+相切,则实数t 的值为__________. 解析:依题意,设切点坐标为00(,ln(3))x x t +,由ln(3)y x t =+求导得:33y x t'=+,于是得000323ln(3)21x t x t x ⎧=⎪+⎨⎪+=-⎩,即00332321ln 2x t x ⎧+=⎪⎪⎨⎪=+⎪⎩,解得:33ln 22t =-,所以实数t 的值为33ln 22-. 故答案为:33ln 22-例2.(2021新高考1卷)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<解析:在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D. 例3.(2022新高考1卷)若曲线()e =+x y x a 有两条过坐标原点的切线,则a 的取值范围是____________.解析:易得曲线不过原点,设切点为()000,()e +x x x a ,则切线斜率为:000'()(1)e =++x f x x a .可得切线方程为00000()e (1)e ()-+=++-x x y x a x a x x ,又切线过原点,可得00000()e (1)e -+=-++x x x a x x a ,化简得0020=-+a ax x ,又切线有两条,即方程有两不等实根,由判别式042>+=∆a a ,得4<-a ,或0>a .例4.若过点()(),0a b a >可以作曲线e x y x =的三条切线,则() A .0e b a b << B .e 0a a b -<<C .20e 4a b <<+D .()24e 0a b -+<<解析:由题可得()1e xy x '=+,设切点()00,ex x x ,则()00000e 1e x x x bx x a-+=-,整理得()0200e x xax a b --=-,由题意知关于0x 的方程()0200e x x ax a b --=-有三个不同的解,设()()2e x f x x ax a =--,()()()2e x x x f x a '=+-,由0fx ,得2x =-或x a =,又0a >,所以当2x <-时,0f x,()f x 单调递增,当2x a -<<时,0fx,()f x 单调递减,当x a >时0f x,()f x 单调递增,当x →-∞时()0f x →,当x →+∞时,()f x →+∞,且()242eaf +-=,()e 0a f a a =-<,函数()f x 的大致图像如图所示,因为()f x 的图像与直线y b =-有三个交点,所以240ea b +<-<,即()24e 0a b -+<<. 故选:D.例5.(2022浙江卷)设函数()ln (0)2ef x x x x=+>. (1)求()f x 的单调区间;(2)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-)(a 1(1)2ae<-;解析:证明:设经过点(,)a b 的直线与函数()f x 的图象相切时切点坐标为000(,)2ex lnx x +, 则切线方程为0000:()()2yl lnx f x x x x -='-,2001()2e f x x x '=-+,∴切线l的方程为020001()102e ex y lnx x x x -+-++-=, 020001()102e ea b lnx x x x ∴-+-++-=, 令21()()12e eg x a b lnx x x x=-+-+++-,(0)x >, 曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b , ∴函数()g x 有三个不同的零点,322311()()()()e e x e x a g x a x x x x x --'=--+=, a e >,x e ∴<,或x a >时,()0g x '>,()g x 单调递增,e x a <<时,()0g x '<,()g x 单调递减,从而()g x g =极大值)(e 0>,()g x g =极小值)(a 0<,∴102a b e -+>①,且02e lna b a+-<②, 由②得b f -)(a 02e b lna a =-->,由①有12ab e<+, b f -)(a 2e b lna a =--,∴要证明b f -)(a 1(1)2ae<-, 只需证明11(1)222a e a lna e a e +--<-,即322e lna a +>, 令h )(a 2e lna a =+,则2212()022e a eh a a a a -'=-=>,h ∴(a )在 ()e,+∞上单调递增, h ∴)(a h >)(e 32=,b f ∴-)(a 1(1)2a e <-,综上,若a e >,则0b f <-)(a 1(1)2ae<-. 例6.若曲线与曲线存在公切线,则的最值情况为( )A .最大值为B .最大值为C .最小值为D .最小值为解析:设公切线与曲线1C 切于点()211,x x,与曲线2C切于点()22,x x ae,由''2xy x y ae⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e-=,设()()41xx f x e-=,则()()'42xx fx e-=,可知()f x 在()1,2单调递21x y C =:xae y C =:2a 28e 24e 28e 24e增,在()2,+∞单调递减,所以()max 242a f e ==例7.(2015年新课标卷)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a =_______ 解析:'11y x=+,所以'1|2x y ==,切线方程为()12121y x y x -=-⇒=-,联立方程()22212021y x ax ax y ax a x =-⎧⎪⇒++=⎨=+++⎪⎩,从而由相切可得:2808a a a ∆=-=⇒= 例8.已知函数1()e ln x f x x -=+,则过点(,)a b 恰能作曲线()y f x =的两条切线的充分条件可以是( ) A .211b a =-> B .211b a =-< C .21()a b f a -<<D .211b a <--由1()e ln x f x x -=+,得11()e (0)x f x x x-'=+>,设切点为0100(,e ln )x x x -+,则切线的斜率为0101e x k x -=+,所以有00110001e ln e ()x x x b x a x --⎛⎫+-=+- ⎪⎝⎭,整理得010000e (1)ln 10(0)x ax a x b x x ----++-=>,由题意可知此方程有且恰有两个解, 令1()e (1)ln 1(0)x a g x x a x b x x -=---++->,11(1)e (11)ln11121a g ab b a -=---++-=+-,112211()e ()()e (0)x x a g x x a x a x x x x --⎛⎫'=--+=--> ⎪⎝⎭,令121()e (0)x F x x x -=->,则132()e 0(0)x F x x x-'=+>>,所以()F x 在(0,)+∞上递增,因为11(1)e 10F -=-=, 所以当01x <<时,()0<F x ,当1x >时,()0F x >, ①当1211a -<-<,即01a <<时,当0x a <<时,()0g x '>,则()g x 递增,当1<<a x 时,()0g x '<,则()g x 递减,当1x >时,()0g x '>,则()g x 递增, 所以只要()0g a =或(1)0g =,即1e ln ()a b a f a -=+=或21(1,1)b a =-∈-;②当211a -≤-,即0a ≤时,当01x <<时,()0g x '<,则()g x 递减,当1x >时,()0g x '>,则()g x 递增,所以只要(1)0<g ,即21b a <-,而211a -≤-;③当211a ->,即1a >时,当01x <<时,()0g x '>,则()g x 递增,当1x a <<时,()0g x '<,则()g x 递减,当x a >时,()0g x '>,则()g x 递增, 当x a =时,1()e ln a g a b a -=--,所以只要(1)0g =或()0g a =,由(1)0g =,得211b a =->,由()0g a =得1e ln ()a b a f a -=+=; ④当1a =时,121()(1)e 0x g x x x -⎛⎫'=--> ⎪⎝⎭,所以()g x 在(0,)+∞上递增,所以函数至多有一个零点,不合题意;综上:0a ≤时,211b a <-≤-;01a <<时,1e ln ()a b a f a -=+=或21(1,1)b a =-∈-;1a >时,211b a =->或1e ln ()a b a f a -=+=,故A 正确,B 错误,C 错误,D 正确.故选:AD.例9.已知函数()ln a xf x b x =+在1x =处的切线方程为220x y --=.(1)求()f x 的解析式;(2)求函数()f x 图象上的点到直线230x y -+=的距离的最小值.解析:(1)∵函数()ln a xf x b x =+,∴()f x 的定义域为()0,∞+,()()21ln a x f x x-'=, ∴()f x 在1x =处切线的斜率为()12k f a '===,由切线方程可知切点为()1,0,而切点也在函数()f x 图象上,解得0b =,∴()f x 的解析式为()2ln xf x x=; (2)由于直线220x y --=与直线230x y -+=平行,直线220x y --=与函数()2ln x f x x=在()1,0处相切,所以切点()1,0到直线230x y -+=的距离最小,最小值为d =故函数()f x 图象上的点到直线230x y -+=例11.设点P 在曲线2()2ln f x x x =-上,Q 在直线32y x =-上,则PQ 的最小值=________. 解析:函数2()2ln f x x x =-的定义域为(0,)+∞,求导得1()4f x x x'=-,当曲线在点P 处的切线与直线32y x =-平行时,PQ 最小,最小值为切线与直线之间的距离,即切点到直线的距离.设(,)P m n ,由导数的几何意义,可得143m m -=,解得11,4m m ==-(舍去),故切点为(1,2)P ,点P 到直线32y x =-的距离d ==,所以PQ例10.若直线y ax b =+和()ln f x x =的图象相切,则a b +的最小值为________. 解析:解法1:设y ax b =+和()f x 的图象相切于点()()000,ln 0P x x x >, 因为()1f x x'=,所以()f x 的图象在点P 处的切线方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-,从而01a x =,0ln 1b x =-,所以001ln 1a b x x +=+-, 设()()1ln 10x x x x ϕ=+->,则()22111x x x x xϕ-=-+=',所以()01x x ϕ'>⇔>, ()001x x ϕ'<⇔<<,故()x ϕ在()0,1上,在()1,+∞上,从而()()min 01x ϕϕ==,所以a b +的最小值为0.解法2:如图,a b +表示切线y ax b =+上横坐标为1的点的纵坐标,易得()f x 在1x =处的切线方程为1y x =-,对于这条切线,()110a b +=+-=,而对于其它切线,显然切线上横坐标为1的点M 必在x 轴的上方,所以0a b +>,故a b +的最小值为0.下面把上述问题一般化到恒成立,其实可以看到临界条件还是相切时产生. 例11.已知直线y kx b =+是曲线x y e x =+的一条切线,则k b +的最大值是________. 解析:设切点为(),a a e a +,()1x x e x e +=+',所以切线方程为()()()1a a y e a e x a -+=+-,整理得:()()11a a x y e a e ++--,所以1a k e =+,()1a b a e =-,从而()21a k b a e +=-+,设()()()21a f a a e a =-+∈R ,则()()1a f a a e '=-,所以()01f a a '>⇔<,()01f a a '<⇔>,从而()f a 在(1),-∞上,在(1,,)+∞上,故()()max 11f a f e ==+,即k b +的最大值为1e +.例12.已知函数()ln f x x =,2()1g x ax bx =++,其中,a b ∈R .(1)当0a =时,直线()y g x =与函数()y f x =的图象相切,求b 的值; (2)当0a ≠时,若对任意0x >,都有()()f x g x ≤恒成立,求ba的最小值.解析:()()f x g x ≤恒成立,转化为ln 1ax b x x≤-+对任意0x >恒成立,即等价于 )]([1ln a b x a x x --≤-,故只需使得a b -最大即可,即函数xx x h 1ln )(-=的切线横截距最大,那么当e x =时取得,故ba的最小值为e -.。

导数法求切线方程的三种题型

导数法求切线方程的三种题型

题目:导数法求切线方程的三种题型求曲线的切线方程是导数的重要应用之一。

用导数求切线方程的关键在于清楚导数的几何意义:切线的斜率确实是函数y=f(x)在切点处的导数。

下面举出长建的题型及解法:题型一:已知切点,求曲线的切线方程。

例1:求函数y=f(x)=2x3在x=1处的切线方程。

解:先求y’=f’(x)=6x2f’(1)=6×1=6=k当x=1时y=2∴切点为(1,2)y-2=6(x-1)y=6x-4题型二:已知曲线外一点,求曲线的切线方程。

例2:已知函数f(x)=x3-3x,过点A(0,16)做曲线y=f(x)的切线,求切线方程。

解:带入可知点A不在曲线上。

设切点M(x0,y0),且点M位于曲线上,知足y0=x03-3x0①f’(x)=3x2-3f’(x0)=3x02-3=k ②又有k=(Y0-16)/(x0-0) ③①带入③,且②=③,取得3x02-3=(x03-3x0)/x0解得x0=-2 ∴y0=-2∴M坐标为(-2,-2)K=3×(-2)2-3=9∴y+2=9(x+2)Y=9x+16题型三:弄清“过某点的切线”与“在某点的切线”例3:(1)求曲线y=x3-2x在点A(1,-1)处的切线方程。

(2)求过曲线y=x3-2x上的点A(1,-1)处的切线方程。

解:(1)做法仿照例1可得切线方程为x-y-2=0(2)设切点为(x0,y0),那么有y0=x03-3x0f’(x0)=3x02-23x02-2=k=(y0+1)/(X0-1)3x02-2= (x03-3x0+1)/ (X0-1)解得x0=1或x0=-1/2当x0=1时y0=-1 切点为(1,-1)现在切线方程为x-y-2=0当x0=-1/2时y0=7/8 切点为(-1/2,7/8) 对结果进行分析可知:“在点A处”实际是指A点确实是切点,而“过点A”包括了A点是切点和A点不是切点两种情形。

以上确实是要紧的三种题型,咱们发觉求切线方程最关键的确实是求出切点,利用切线的斜率等于切点处函数的导数,但假设函数在(x0,y0)处的导数不存在时,该切线方程为y= y0。

专题一用导数求切线方程四种类

专题一用导数求切线方程四种类

用导数求切线方程的四种种类求曲线的切线方程是导数的重要应用之一,用导数求切线方程的要点在于求出切点P(x,y)及斜率,其求法为:设P(x,y)是曲线yf(x)上的一点,则以P的切点的切线方程为:yy0f(x)(x x).若曲线f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为xx.下边例析四种常有的种类及解法.种类一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f(x),并代入点斜式方程即可.例1曲线yx33x21在点(1,1)处的切线方程为()A.y3x 4B.y3x 2C.y4x3D.y4x51解:由f(x)3x26x则在点(1,1)处斜率k f(1)3,故所求的切线方程为y(1)3(x1),即y3x2,因此选B.练习:1.设f′(x0)=0,则曲线A.不存在C.与x轴垂直y=f(x)在点(x0,f(x0))处的切线(B.与x轴平行或重合D.与x轴斜交)答案B2.已知函数y=f(x)的图像如右图所示,则f′(xA )与f′(xB)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不可以确立答案B2.曲线y=-2x2+1在点(0,1)处的切线的斜率是()A.-4B.0C.4D.不存在答案B10.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于()A.2B.42D.6C.6+6·Δx+2·(Δx)答案D4.函数y=sin2x的图像在π1处的切线的斜率是() 6,4答案D剖析将函数y=sin2x看作是由函数y=u2,u=sinx复合而成的.分析∵y′=2sinxcosx,πππ3∴y′|x =6=2sincos=2661在点7)处切线的倾斜角为()2.曲线y=x3-2(-1,-33A.30°B.45°C.135°D.60°答案B6.y=x3的切线倾斜角的范围为________.π答案[0,2)分析k=y′=3x2≥0.8.设点P是曲线y=x3- 3x+23上的随意一点,点P处切线倾斜角为α,则角α的取值范围是()∪5π,π26∪π,π3π答案D分析由y′=3x2-3,易知y′≥-3,即tanα≥-3.20≤α<2或3π≤α<π.14.已知曲线C:y=x3,求在曲线C上横坐标为1的点处的切线方程.分析将x=1代入曲线C的方程得y=1,∴切点P(1,1).Δy x+Δx3-x3∵y′=lim=limΔxΔxΔx→0Δx→0πlim3x2Δx+3xΔx2+Δx3ΔxΔx→0lim[3x2+3xΔx+(Δx)2]=3x2,Δx→0y′|x=1=3.∴过P点的切线方程为y-1=3(x-1),即3x-y-2=0.114.求曲线y=sinx在点A(6,2)处的切线方程.分析∵y=sinx,∴y′=cosx.ππ331y′|x=6=cos6=2,k=2.3π∴切线方程为y-2=2(x-6).化简得6 3x-12y+6-3π=0.x6.曲线y=x-2在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1答案D例3求曲线y=1在点(4,1)处的切线方程.x2-3x2【思路剖析】将函数变形为y=(x2-3x)-12,将其看做是由函数y=u-12、u=x2-3x复合而成.【分析】∵y=1=(x2-3x)-1,x2-3x2∴y′=-1(x2-3x)-3·(x2-3x)′22=-1(x2-3x)-3·(2x-3).2211∴曲线y=在点(4,)处的切线斜率为x2-3x21 (4235k=y′|x=4=--3×4)-·(2×4-3)=-.22161∴曲线在点(4,2)处的切线方程为15y-2=-16(x-4),即5x+16y-28=0.研究3本题不要将函数y=1看做是由y=1,u=v,vx2-3xu=x2-3x三个函数复合而成的,这样求导就麻烦了.思虑题3(1)曲线y=3x2+1在点(1,2)处的切线方程为__________________.【答案】3x-2y+1=01的水平切线方程是________.(2)y=1-x2【分析】令y′=0,得x=0,∴y=1.12.求曲线y=2x-x3在点(-1,-1)处的切线的方程及此切线与x轴、y轴所围成的平面图形的面积.答案x+y+2=0;21x8.曲线y=e2在点(4,e2)处的切线与坐标轴所围三角形的面积为()e2B.4e2C.2e2D.e2答案D11x分析∵y′=·e2,2∴切线的斜率k=y′|x=4=12e2.1∴切线方程为y-e2=2e2(x-4).∴横纵截距分别为2,-e2,∴S=e2,应选D.111.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程是y=2x+2,则f(1)+f′(1)=________.答案3分析f′(1)=1,f(1)=1×1+2=5,∴f(1)+f′(1)=3.2225.如图是函数f(x)及f(x)在点P处切线的图像,则f(2)+f′(2)=________.9 答案 28分析由题图知,切线方程为4x +错误!=1,9f(2)=·(1-4)=4,f′(2)=-错误!=-错误!.9 9 9∴f(2)+f′(2)=4-8=8.种类二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2x y40的平行的抛物线y x 2的切线方程是() A.2xy30B.2xy30C.2xy10D.2xy1 02解:设P(x0,y0)为切点,则切点的斜率为y|xx 0 2x 0 2.∴x 0 1.由此获得切点(11),.故切线方程为y12(x 1),即2x y1 0,应选D. 评注:本题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22xb0,又因为0,得b1,应选D.练习:3.曲线y=x3在点P处的切线斜率为3,则点P的坐标为() A.(-2,-8)B.(1,1),(-1,-1)C.(2,8)11 D.(-,-)28答案B13.若曲线y=2x3上某点切线的斜率等于6,求此点的坐标.2x0+Δx3-2x30分析∵y′|x=x0=lim=6x 20,Δx→06x20=6.∴x0=±1故.(1,2),(-1,-2)为所求.3.已知曲线y=x2-3lnx的一条切线的斜率为1,则切点的横坐42标为()A.3B.2C.1答案A分析1x-31131 y′=x,由x-=.22x2得x=3或x=-2.因为x>0,因此x=3.3.已知曲线y=f(x)在点P(x0,f(x0))处的切线方程为2x+y+1=0,那么() A.f′(x0)=0B.f′(x0)<0C.f′(x0)>0D.f′(x0)不可以确立答案B5.假如曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f′(x0)>0B.f′(x0)<0C.f′(x0)=0D.f′(x0)不存在答案B7.在曲线y=x2π上切线的倾斜角为的点是()4A.(0,0)B.(2,4)11)11)C.(,16D.(,424答案D2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0答案A分析∵l与直线x+4y-8=0垂直,∴l的斜率为4.∵y′=4x3,∴由切线l的斜率是4,得4x3=4,∴x=1.∴切点坐标为(1,1).∴切线方程为y-1=4(x-1),即4x-y-3=0.应选A.11.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,则与直线PQ平行的曲线y=x2的切线方程是________.答案4x-4y-1=04-1分析k=2--1=1,又y′=2x,令2x=1,得1x=2,从而1y=4,∴切线方程为y-14=1·(x-12),即4x-4y-1=0.13.假如曲线y=x2+x-3的某一条切线与直线y=3x+4平行,求切点坐标与切线方程.答案切点坐标为(1,-1),切线方程为3x-y-4=013.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为______________.答案3x-y-11=0分析y′=3x2+6x+6=3(x+1)2+3≥3,当且仅当x=-1时取等号,当x=-1,时y=-14.∴切线方程为y+14=3(x+1),即3x -y-11=0.19.设直线y=2x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为________.答案ln2-14.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.11C.-2D.-1答案A14.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=________.答案2分析由题意得y′=ae ax,y′|x ==ae a×0=2,a=2.10.函数f(x)=asinax(a∈R)的图像过点P(2π,0),而且在点P处的切线斜率为4,则f(x)的最小正周期为()A.2πB.π答案B分析22πa. f′(x)=acosax,∴f′(2=π)acos2又asin2πa=0,∴2πa=kπ,k∈Z.f′(2=π)a2coskπ=4,∴a=±2.2π∴T=|a|=π.6.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是() B.25C.3 5D.0答案A2分析y′=2x-1=2,∴x=1.∴切点坐标为(1,0).由点到直线的距离公式,得d=|2×1-0+3|=5.22+1219.曲线y=x(x+1)(2-x)有两条平行于y=x的切线,则两切线之间的距离为________.16答案272分析y=x(x+1)(2-x)=-x3+x2+2x,y′=-3x2+2x+2,令-3x2+2x+2=1,得1x1=1或x2=-3.114∴两个切点分别为(1,2)和(-3,-27).切线方程为x-y+1=0和x-y-275=0.5|1+|2d=2=27.27种类三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说法正确的选项是()A.曲线的切线和曲线有交点,这点必定是切点B.过曲线上一点作曲线的切线,这点必定是切点C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)不必定存在答案D例3求过曲线yx32x上的点(1,1)的切线方程.3解:假想P(x0,y0)为切点,则切线的斜率为y|x x03x022.∴切线方程为yy0(3x22)(x x).y(x32x)(3x22)(xx0).又知切线过点(1,1),把它代入上述方程,得1(x032x)(3x22)(1x).解得1.x1,或x02故所求切线方程为y (12)(32)(x1),或y1132x1,842即xy20,或5x4y10.评注:能够发现直线 5x 4y 10其实不以(1,1)为切点,其实是经过了点(1,1)且以 1 7为切点的直线.这说明过曲线上一点的切线,, 2 8该点未必是切点,解决此类问题可用待定切点法. 练习:种类四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4求过点(2,0)且与曲线y1相切的直线方程. x4解:设P(x0,y0)为切点,则切线的斜率为 y|xx 0 1.x 20 ∴切线方程为yy 0 1(x x 0) ,即 y 1 1(xx 0) .x 0 2 x 0 x0 2又已知切线过点(2,0),把它代入上述方程,得 1 1x0 2(2x 0).x0 解得x 01,y 0 1 1,即xy20.x 0评注:点(2,0)其实是曲线外的一点,但在解答过程中却无需判 断它确实切地点,充足反应出待定切点法的高效性例5 已知函数yx 33x ,过点A(016), 作曲线yf(x)的切线,求此切线方程.5解:曲线方程为yx 33x ,点A(016),不在曲线上.设切点为M(x 0,y 0),则点M 的坐标知足y 0x033x 0.因f(x 0)3(x2 1),故切线的方程为yy 03(x21)(x x0).点A(016),在切线上,则有16(x 0 3 3x 0) 3(x0 2 1)(0x 0).化简得x 038,解得x0 2.因此,切点为M(2,2),切线方程为9x y 160.评注:此类题的解题思路是,先判断点A能否在曲线上,若点A在曲线上,化为种类一或种类三;若点A不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y=x2,求过A(3,5)点且与曲线相切的直线方程.分析解法一设过A(3,5)与曲线y=x2相切的直线方程为y-5k(x-3),即y=kx+5-3k.y=kx+5-3k由y=x2,得x2-kx+3k-5=0.k2-4(3k-5)=0,整理得(k-2)(k-10)=0.k=2或k =10.所求的直线方程为2x-y-1=0,10x-y-25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.y′|x=x0=2x0.5-y0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=由已知kPA=2x0,即3-x05.18.已知曲线S:y=3x-x3及点P(2,2),则过点P可向S引切线,其切线条数为()A.0B.1 C.2D.3答案D分析明显P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).P(2,2)在切线上,2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1±3.∵有三个切点,∴由P向S作切线能够作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.-4C.-2D.2答案B分析f′(x)=2x+2f′(1),令x=1,得f′(1)=2+2f′(1),∴f′(1)=-2.f′(0)=2f′(1)=-4.12.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()1A.4B.-41C.2D.-2答案A分析依题意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4,选A.15.(1)求过曲线y=e x上点P(1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y=15x5上一点M处的切线与直线y=-x+3垂直,求此切线方程.分析(1)∵y′=e x,∴曲线在点P(1,e)处的切线斜率是y′|x=1=e.1∴过点P且与切线垂直的直线的斜率为k=-e.1∴所求直线方程为y-e=-e(x-1),即x+ey-e2-1=0.(2)∵切线与y=-x+3垂直,∴切线斜率为 1.又y′=x4,令x4=1,∴x=±1.∴切线方程为5x-5y-4=0或5x-5y+4=0.4.y=ax2+1的图像与直线y=x相切,则a=()D.1答案B分析由已知{y =ax 2+1,y =x 有独一解,即x =ax 2+1,ax 2-x +1=0有独一解,1∴Δ=1-4a =0,∴a =4.15.点P 在曲线y =f(x)=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.分析 设P(x 00 2 +1. 00,y),则y =x0 x 0+Δx 2+1- x 02+1 =2x 0. f′(x)=lim ΔxΔx→0因此过点P 的切线方程为y -y0=2x0(x -x0),即y =2xx +1-x 2.00而此直线与曲线y =-2x 2-1相切,因此切线与曲线y =-2x 2-1只有一个公共点.由{ y =2x 02 2 0 y =-2x -1, 得x +1-x ,2 22x +2x0x +2-x0=0.2 2即=4x 0-8(2-x)=0.±23 7解得x 0= 3 ,y0=.3因此点P 的坐标为(23,7 )或(- 2 3 3,7 ).3 3 3 17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值.分析 设切点坐标为(x 0 0 0 20 0,y),y′|x=x =3x -6x +2=k.若x 0 0 0 0y0 .=0,则k =2.若x ≠0,由y =kx ,得k = x ∴3x 02-6x 0+2=y,x0即3x0203203x-3x+2x000-6x+2=x0.解之,得x=2.3231∴k=3×(-6×+2=-4.2)2综上,k=2或k=-1.416.已知函数f(x)=2x3+ax与g(x)=bx2+c的图像都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.分析∵f(x)=2x3+ax的图像过点P(2,0),a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.关于g(x)=bx2+c的图像过点P(2,0),则4b+c =0.又g′(x)=2bx,∴g′(2)=4b=f′(2)=16.b=4.∴c=-16.∴g(x)=4x2-16.综上可知,f(x)=2x3-8x,g(x)=4x2-16.1.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l1,l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.剖析(1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出1直线方程;(2)求面积用S=2a·h即可达成.分析(1)因为y′=2x+1,则直线l1的斜率k1=2×1+1=3,则直线l1的方程为y=3x-3,设直线l2过曲线y=x2+x-2上的点B(x0,y0),因为l1⊥l2。

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考:求曲线
y x 上斜率为3的切线方程
3
问题1:
解:∵曲线方程为 ∴
' 2
y x x2
3
y 3x 1
k y |x1 4
'

∴切线方程为
4x y 0
归纳 (1)一类题型为对于求曲线上某切点的 切线方程 可直接利用导数的几何意义求切 线斜率,再利用点斜式求解. (2)另一类题型为求过曲线外一点的切线方程 可利用设切点坐标构造切线方程再联立曲线方 程求切点坐标,再求切线方程.
又点P在曲线S上,故 y 0 3x 0 x 0 ②代①入上式得
3
3

2
3x 0 x 0 (3 3x 0 )(2 x 0 ) 2 3 2 整理得 x 0 3x 0 4 0 (x 0 2) 2 (x 0 1) 0 ,所以 x 0 2 或 x 0 1 即
问题1:在曲线 y x x 2 上以(-1, -4) 为切点的切线方程是
3
问题2:过(0,-4)与曲线 y
的直线方程是 问题3:过(1,0)与曲线 程是
x x 2 相切
3
y x 相切的直线方
3
1 3
问题4:过(0,2)与曲线 y x 相切的直线方
程是 3 y 问题5:求曲线S: x 3x 通过点A(2,-2) 的切线方程.
曲线上某定点切线定义
yx
1 3
y x3
y
l1 N
M
x
小结:
过定点求函数曲线切线方程,具体步骤和方法: 步骤:1.判断是否给出切点 2.若未给出,求出切点,求出斜率 3.根据点斜式求出直线方程 方法:确定切点求出切线方程
思考:(2004,重庆,文,15)
1 3 4 已知曲线 y x ,则过P(2,4)的 3 3 切线方程为 y 4x 4 0 和 x y 2 0
2 解:设切点P (x 0 , y 0 ) ,则 k y ' | x x 0 3 3x 0
2 ∵过(2,-2),P处的切线方程为l: y 2 (3 3x 0 )(x 2) 2 (x 0 , y 0 ) 在切线上∴ y0 (3 3x 0 )(x 0 2) 2 ① 又∵切点
当 x 0 2 时,P为(2,-2),切线方程为 y 9x 16 当 x 0 1 时,P为(-1,-2),切线方程为
y 2
综上所述,过点A的切线方程为 9x y 16 0 或 y 2 0
解:对于曲线
yx
3
设切点为
'
( x 0 , y0 )
2
由斜率为3得知 ∴ x0
2
k y |x x 0 3x 0 3
1 , 即 x 0 1
∴切点坐标为 (1,1) 和 (1,1) ∴切线方程为 3x y 2 0 和 3x y 2 0
y
y x3
o
xyx3源自
相关文档
最新文档