第2章 系统辨识的经典方法
系统辨识算法
系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
第2章 系统辨识的经典方法
图2.3.2 相关分析法系统辨识示意图
• 2.3.2 用M序列辨识线性系统的脉冲响应 (Np—1)Δ>T (2.3.13)
图2.3.3 M序列辨识系统的脉冲 响应与互相关函数
• 2.3.3 相关分析法的应用 • 相关辨识技术在工程中的应用、可归结为 下述几个方面: • ①系统动态特性的在线测试。包括机、炉、 电等一次设备,风机、水泵等辅机以及二 次自动控制系统; • ②对控制系统进行在线调试,使调节系统 • ③自适应控制中的非参数型模型辨识等。
第2章 系统辨识的经典方法
• • • • 2.1 阶跃响应法系统辨识 2.1.1 实验测取系统的阶跃响应 [2] 2.1.2 由阶跃响应求系统的传递函数[81] (1)近似法求一阶惯性环节系统的参数
图2.1.1 测取系统阶跃响应的实验示意图
图2.1.2 一阶惯性环节系统的阶跃惯性环节系 统的参数
• 图解法 • 计算法
图2.1.3 一阶纯滞后惯性环节系统 的阶跃响应曲线
• (3)用Laplace变换法求被辨识系统的传 递函数
图2.1.4 系统的阶跃响应曲线的一般形式
2.3 相关分析法系统辨识 • 2.3.1 相关分析法辨识系统脉冲响应的基 本原理
图2.3.1 相关分析法辨识系统脉冲响应原理图
图2.3.4 仿真系统结构图
图2.3.5 仿真曲线
图2.3.6 燃料压力与炉膛温度之间关系示意图
图2.3.7 燃料压力扰动与炉膛温度响应曲线
图2.3.8 辨识结果
系统辨识方法
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
第02讲系统辨识三要素
第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
系统辨识经典辨识方法
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
《系统辨识》课件
23
第二章
过渡响应法和频率响应法
§21 过渡响应法(时域法) 采用非周期试验信号,通过系统的动态响应研究系 统的模型。 一、非参数模型的辨识 在时域中建立线性系统非参数模型时,用很简便的 方法就可得到脉冲响应曲线,阶跃响应曲线、方波响应 曲线或它们的离散采样数据表。 脉冲响应:可以采用幅值相当大,宽度很窄的方波 来近似δ 函数 。 对于线性系统,脉冲响应,阶跃响应和方波响应之 24 间是可以相互转换的。
过程的非线性与时变性(有助于模型类的选择)
噪声水平(以便用多大的输入,使得观测量有多
大的信噪比)
变量之间的延迟(滞后环节参数) 2)输入信号的选择(阶跃、方波、脉冲、PRBS)。
16
第一章
概
述
3)采样速度的选择(要采集数据就有采样速度选择 问题)。实际上先采用较短的采样间隔,在数据分析时, 可根据需要隔几个取一个数据。 4)试验长度的确定(试验时间问题)。辨识精度与 试验时间的长短有关。 2、模型结构确定 根据辨识的目的及对被辨识系统的先验知识,确定
系统辨识
电气工程与自动化学院 陈 冲
1
课程主要内容
第一章
第二章 第三章 第四章 第五章
概
述
过渡响应法和频率响应法 辨识线性系统脉冲响应函数的相关分析法 线性系统参数估计的最小二乘法 线性系统的状态估计法
结束
2
第一章
一、建模的必要性 二、模型 三、建模方法
概
述
四、系统辨识的内容(或步骤)
系统辨识之经典辨识法
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班XX学号2021 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型构造辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型构造;采集数据;然后进展模型参数和构造辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体构造,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a) a−1 (a)a a aa a a aa(1-2) 面积法原那么上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){ aa|a→∞ =aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式〔1〕中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式〔1-3〕条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7) 由式〔1-,3〕条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:G〔s〕=kb s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,〔n m〕〔1-11〕1a s n +其中,K h= ( )/ U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i〔1-12〕m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h〔*1 t ]〕,并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
系统辨识的经典方法
⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T
+τ
,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法
系统辨识实验报告
实验一:系统辨识的经典方法一、实验目的掌握系统的数学模型与输入、输出信号之间的关系,掌握经辨辨识的实验测试方法和数据处理方法,熟悉MATLAB/Simulink环境。
二、实验内容1、用阶跃响应法测试给定系统的数学模型在系统没有噪声干扰的条件下通过测试系统的阶跃响应获得系统的一阶加纯滞后或二阶加纯滞后模型,对模型进行验证。
2、在被辨识系统中加入噪声干扰,重复上述1的实验过程。
三、实验方法在MATLAB环境下用Simulink构造测试环境,被测试的模型为水槽液位控制对象。
利用非线性水槽模型(tank)可以搭建单水槽系统的模型,也可以搭建多水槽系统的模型,多水槽模型可以是高低放置,也可以并排放置。
1.噪声强度0.5,在t = 20的时候加入阶跃测试信号相应曲线2.乘同余法产生白噪声A=19;N=200;x0=37;f=2;M=512; %初始化;for k=1: N %乘同余法递推100次;x2=A*x0; %分别用x2和x0表示xi+1和xi-1;x1=mod(x2,M); %取x2存储器的数除以M的余数放x1(xi)中;v1=x1/M; %将x1存储器中的数除以256得到小于1的随v(:,k)=(v1-0.5 )*f;x0=x1; % xi-1= xi;v0=v1;end %递推100次结束;v2=v;k1=k;h=k1;%以下是绘图程序;k=1:1:k1;plot(k,v,'r');grid onset(gca,'GridLineStyle','*');grid(gca,'minor')3.白噪声序列图像020406080100120140160180200-1-0.8-0.6-0.4-0.20.20.40.60.81四、 思考题(1) 阶跃响应法测试系统数学模型的局限性。
答:只适用于某些特殊对象或者低阶简单系统;参数估计的精度有限,估计方法缺乏一般性。
系统辨识原理及其应用(第二章)
韩 华 中南大学信息院
第2章 传递函数的辨识
经典的传递函数辨识方法可以分为时域法和频率域法 两种。
2.1传递函数辨识的时域法
2.1.1一阶惯性滞后环节的辨识 2.1.2二阶自衡对象的辨识 2.1.3二阶欠阻尼自衡对象的辨识 2.1.4高阶自衡对象的辨识 2.1.5自衡等容对象的辨识 2.1.6无自衡对象的辨识 2.1.7面积法
2.1传递函数辨识的时域法
传递函数辨识的时域法包括阶跃响应法、脉冲响 应法和矩形脉冲响应法等,其中以阶跃响应法最 为常用。阶跃响应法利用阶跃响应曲线对系统传 递函数进行辨识,阶跃响应曲线即输入量作阶跃 变化时,系统输出的变化曲线。在工业工程控制 系统的辨识中,阶跃响应曲线又常被称为飞升曲 线或系统的飞升特性。如果系统不含有积分环节 ,那么阶跃输入下,系统的输出将渐进于一新的 稳定状态,称系统具有自平衡特性,或称为自衡 对象。否则,系统 称为无自衡对象,输出无限地 扩大或减小,说明系统至少有一个纯积分环节。
用阶跃响应辨识的传递函数有以下几种形式:
Ke −τ s G(s) = Ts + 1 Ke −τ s G(s) = (T1s + 1)(T2 s + 1) Ke −τ s G(s) = (T1s + 1)(T2 s + 1)(T3s + 1) Ke −τ s G(s) = (Ts + 1) n Ke −τ s G(s) = s(T1s + 1) n (1) (2) (3) (4)
ln y (t ) − 1 − Ae
− t T1
= ln B − t T2
− t T1
(26)
采用同样的方法可得到 B 和 T2 。y (t ) − 1 − Ae 同理可得 C 和 T3 。 最后:
系统辨识 分类
集员系统辨识 4.2.1 集员系统辨识
2.应用 在实际应用中,飞行器系统是一个较复杂的非线性系统,噪 声统计分布特性难以确定,要较好地描述未知参数的可行解, 用统计类的辨识方法辨识飞行器动参数很难达到理想效果。 采用集员辨识可解决这种问题。首先用迭代法给出参数的中 心估计,然后对参数进行集员估计(即区间估计)。这种方法能 处理一般非线性系统参数的集员辨识,已经成功地应用于飞行 器动参数的辨识。
4.2 现代辨识方法
随着智能控制理论研究的不断深入及其在控制领域的广 泛应用,从逼近理论和模型研究的发展来看,非线性系统建模 已从用线性模型逼近发展到用非线性模型逼近的阶段。由于 非线性系统本身所包含的现象非常复杂,很难推导出能适应 各种非线性系统的辨识方法,因此非线性系统的辨识还没有 构成完整的科学体系。下面简要介绍几种方法。 ① 集员系统辨识法 ② 多层递阶系统辨识法 ③ 神经网络系统辨识法 ④ 遗传算法系统辨识法 ⑤ 模糊逻辑系统辨识法 ⑥ 小波网络系统辨识法
4.2.1 集员系统辨识
1.简介 在1979年集员辨识首先出现于Fogel撰写的文中,1982 年Fogel和Huang又对其做了进一步的改进。集员辨识是假 设在噪声或噪声功率未知但有UBB(Unknown But Bounded) 的情况下,利用数据提供的信息给参数或传递函数确定一个 总是包含真参数或传递函数的成员集(例如椭球体、多面体、 平行六边体等)。不同的实际应用对象,集员成员集的定义也 不同。集员辨识理论已广泛应用到多传感器信息融合处理、 软测量技术、通讯、信号处理、鲁棒控制及故障检测等方 面。
4.2.3 神经网络系统辨识法
3.特点 与传统的基于算法的辨识方法相比较,人工神经网络 用于系统辨识具有以下优点: ① 不要求建立实际系统的辨识格式,可以省去对系统 建模这一步骤; ② 可以对本质非线性系统进行辨识; ③ 辨识的收敛速度仅与神经网络的本身及所采用的学 习算法有关; ④ 通过调节神经元之间的连接权即可使网络的输出来 逼近系统的输出; ⑤ 神经网络也是系统的一个物理实现,可以用在在线 控制。 因此,人工神经网络在非线性系统辨识中的应用具有 很重要的研究价值和广泛的应用前景。
系统辨识的基本概念课件
实际应用与改进
将建立的模型应用于实际问题中,并根据实际应用的效果和反馈,对模型进行必要的调整和优化。模型的优化可以通过改进模型结构、调整参数或采用更先进的算法来实现。
系统辨识的挑战与解决方案
05
数据噪声和异常值是系统辨识中的常见问题,对辨识精度和稳定性产生影响。
数据噪声是由于测量设备、环境等因素引起的数据随机误差。为了减小噪声对辨识结果的影响,可以采用滤波器对数据进行预处理,如低通滤波器去除高频噪声。对于异常值,可以采用统计学方法进行检测和剔除,如基于距离的异常值检测算法。
通过系统辨识,确定控制系统的参数,提高控制效果。
控制系统设计
故障诊断
信号处理
通过系统辨识,确定设备的故障模式和参数变化,实现故障预警和诊断。
在信号处理中,系统辨识用于确定信号的传输特性,如滤波器设计等。
03
02
01
通过系统辨识,可以优化系统的性能参数,提高系统的稳定性和动态响应能力。
提高系统性能
通过系统辨识,可以预测系统的寿命和故障模式,提前进行维护和修复,降低维护成本。
系统辨识的基本概念课件
系统辨识简介系统辨识的基本原理系统辨识的方法与技术系统辨识的步骤与流程系统辨识的挑战与解决方案系统辨识的案例分析
系统辨识简介
01
系统辨识是根据系统的输入和输出数据来估计系统动态行为的过程。
定义
通过分析系统的输入和输出数据,建立系统的数学模型,用于描述系统的动态行为。
概念
详细描述
多变量系统的辨识需要同时估计多个参数,并且需要考虑变量之间的耦合关系。可以采用基于状态空间模型的辨识方法,通过建立状态方程和观测方程来描述系统动态,并采用优化算法对参数进行估计。此外,基于独立分量分析的方法也可以用于多变量系统的辨识,通过分离出各个独立分量来降低系统维度,简化辨识问题。
自动控制原理系统辨识知识点总结
自动控制原理系统辨识知识点总结自动控制原理是研究控制系统基本原理和设计方法的学科,系统辨识则是其中重要的一部分内容。
系统辨识是通过观察和实验数据,对被控对象的动态特性进行建模与参数估计,以便更好地设计控制器并改进系统性能。
本文将对自动控制原理中的系统辨识知识点进行总结。
一、系统辨识的基本概念系统辨识是指通过一系列观测数据,从中提取出系统的模型和参数。
它包括输入信号设计、实验数据采集、模型结构的选择以及参数估计等步骤。
通过系统辨识,我们可以了解系统的动态特性,为控制器的设计提供基础。
二、系统辨识的方法1. 时域方法:时域方法是最常用的系统辨识方法之一,通过观察系统的时域响应,建立系统的数学模型。
常用的时域方法包括脉冲响应法、阶跃响应法和冲激响应法等。
2. 频域方法:频域方法是基于系统的频域响应进行辨识的方法,常用的频域方法有频率响应函数法、自相关函数法和协方差方法等。
频域方法适用于稳态条件下的系统辨识。
3. 参数估计法:参数估计法通过处理观测数据,估计系统的参数。
常用的参数估计方法有最小二乘法、极大似然法和最大熵法等。
参数估计法的优势在于可以考虑系统的随机性。
三、系统辨识的常用模型1. 一阶惯性环节模型:一阶惯性环节模型是最简单的系统模型,用于描述系统的惯性和滞后特性。
其传递函数形式为:G(s) = K / (Ts + 1)其中K表示传递函数的增益,T表示系统的时间常数。
2. 二阶惯性环节模型:二阶惯性环节模型适用于具有较强固有振荡特性的系统。
其传递函数形式为:G(s) = K / (T^2s^2 + 2ξTs + 1)其中ξ表示系统的阻尼比。
3. 传递函数模型:传递函数模型是一种常用的系统模型表示方法,通过系统的输入和输出之间的传递函数来描述系统的动态特性。
四、系统辨识的实验设计为了进行系统辨识,我们需要设计实验来获取系统的输入和输出数据。
在实验设计中,需要考虑以下几个方面:1. 输入信号的选择:输入信号应具有一定的激励性能,可以包含多种频率成分。
系统辨识之经典辨识法
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
第02讲 系统辨识三要素
3 系统辨识的步骤和参数估计 系统辨识的步骤和参数估计(8/20)
离线或在线辨识等. Step 5. 实验 实验. 根据所设计的实验方案,确定输入信号(或称激励信号),进 行实验并检测与记录输入输出数据. Step 6. 数据的预处理 数据的预处理. 输入输出数据通常都含有直流成分以及我们在建模中不 关心的某些低频段或高频段的成分. 因此,为使所辨识的模型不受这些成分的影响,我们可对这 些数据进行预处理. 若处理得好,就能显著提高辨识的精度和辨识模型的可用 性.
2 系统辨识的定义 系统辨识的定义--等价准则(2/5)
一般等价准则可记作
J(Θ = ∑f (ε(k)) )
k= 1
L
(1 )
其中 f(ε(k))是某种误差ε(k)的正定函数. 在系统辨识中的参数估计领域,为便于求等价准则的最优化以 及便于理解和度量系统与模型的距离(误差),通常用得最多的 函数f(·)为平方函数,即 f(ε(k))=ε2(k) (2)
2 系统辨识的定义 系统辨识的定义--等价准则(3/5)
随着对系统的认识的深入,对所辨识的模型的需求多样性,或 系统本身的复杂性,近年来,在控制界已经开始深入研究鲁棒 辨识和结构辨识方法. 鲁棒辨识方法主要是通过引入能提高模型鲁棒性和泛化 鲁棒辨识 能力的不同的辨识准则函数及相应的求解方法,来实现 鲁棒辨识. 如
辨识目的及先验知识 实 验 设 计 输 入 输 出 数 据 检 测 数 据 预 处 理 确定模型结构和准则 模型参数的估计 模型验证 满意 最终模型 图1a 辨识的一般步骤(步骤间的数据流逻辑关系)
实 验
不满意
3 系统辨识的步骤和参数估计 系统辨识的步骤和参数估计(12/20) --辨识步骤 时间逻辑 流程图 辨识步骤(时间逻辑 辨识步骤 时间逻辑)流程图
系统辨识经典辨识方法
系统辨识经典辨识方法经典辨识方法报告1. 面积法1.1 辨识原理1.1.1 分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn ……………………………………………(1.1)由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n n ……………………………(1.2)面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………(1.3)将式(2.1.2)的y(t)项移至右边,在[0,t]上积分,得-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………(1.4)定义-=tdt t y t F 01)](1[)(……………………………………………………………(1.5)则由式(2.1.3)给出的条件可知,在t →∞∞-=01)](1[a dt t y ……………………………………………………………(1.6)将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+?…………………………………(1.7)利用初始条件(2.1.3)当t →∞时)(a 22∞=F …………………………………………………………………… (1.8)同理有a 3=F 3(∞)以此类推,若n≥2,有a n =F n (∞)1.1.2 分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=---- …………………………………(1.9) 定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ………………………………(1.10)由于∞--=-0**)](1[)](1[dte t h t h L st …………………………………………(1.11)则)](1[*t h -的Laplace 变换为:∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………(1.12)定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c s C sC t h L dt t h A i ii i i i s s =+=-=-=∑∑?∞=∞=-→∞→………(1.13)令 )1(1)]([1*1s c s t h L +=……………………………………………………………(1.14)定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑??∞=∞=-→∞τττ…(1.15)同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L …………………………………… (1.16)定义i 阶面积为i i c A =。
系统辨识
方法
经典方法
现代方法
经典方法
经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析 法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的 方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基 础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等。
其次,建模的目的对于确定模型的结构和辨识方法也有重要意义。用于不同目的的模型可能会有很大的差别。 在估计具有特定物理意义的参数时,主要考虑模型的参数值与真实的参数值是否一致。在建立预测模型时,只需 要考虑预测误差。在建立仿真模型时,就要根据应用的要求去决定仿真的深度,也就是决定模型结构的复杂程度。 而对于设计控制系统的模型,则出于不同的控制目的可选择不同的模型类。
系统辨识
数学模型
01 简介
03 辨识目的
目录
02 基本步骤 04 方法
05 检验07 参考书目目录06 应用
基本信息
系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通 过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测 量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间 函数和系统的特性来确定输出信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2.3.4 仿真系统结构图
图2.3.5 仿真曲线
图2.3.6 燃料压力与炉膛温度之间关系示意图
图2.3.7 燃料压力扰动与炉膛温度响应曲线
图2.3.8 辨识结果
• 图解法 • 计算法
图2.1.3 一阶纯3)用Laplace变换法求被辨识系统的传 递函数
图2.1.4 系统的阶跃响应曲线的一般形式
2.3 相关分析法系统辨识 • 2.3.1 相关分析法辨识系统脉冲响应的基 本原理
图2.3.1 相关分析法辨识系统脉冲响应原理图
第2章 系统辨识的经典方法
• • • • 2.1 阶跃响应法系统辨识 2.1.1 实验测取系统的阶跃响应 [2] 2.1.2 由阶跃响应求系统的传递函数[81] (1)近似法求一阶惯性环节系统的参数
图2.1.1 测取系统阶跃响应的实验示意图
图2.1.2 一阶惯性环节系统的阶跃响应曲线
• (2)近似法求带纯滞后的一阶惯性环节系 统的参数
图2.3.2 相关分析法系统辨识示意图
• 2.3.2 用M序列辨识线性系统的脉冲响应 (Np—1)Δ>T (2.3.13)
图2.3.3 M序列辨识系统的脉冲 响应与互相关函数
• 2.3.3 相关分析法的应用 • 相关辨识技术在工程中的应用、可归结为 下述几个方面: • ①系统动态特性的在线测试。包括机、炉、 电等一次设备,风机、水泵等辅机以及二 次自动控制系统; • ②对控制系统进行在线调试,使调节系统 • ③自适应控制中的非参数型模型辨识等。