概率例题

合集下载

高中数学第十章概率典型例题(带答案)

高中数学第十章概率典型例题(带答案)

高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。

条件概率例题

条件概率例题

20 道条件概率例题例题1袋中有 5 个红球和 3 个白球,从中不放回地依次摸出两个球。

已知第一次摸出红球,求第二次摸出红球的概率。

解:第一次摸出红球后,袋中还有 4 个红球和 3 个白球,所以第二次摸出红球的概率为4/7。

例题2一个盒子里有 6 个黑球和 4 个白球,从中随机取出两个球。

若已知第一个球是黑球,求第二个球也是黑球的概率。

解:第一个球是黑球后,盒子里还有 5 个黑球和 4 个白球,所以第二个球是黑球的概率为5/9。

例题3有三张卡片,分别写着数字1、2、3。

从中随机抽取一张,放回后再抽取一张。

已知第一次抽到数字2,求第二次抽到数字 3 的概率。

解:因为是有放回抽取,所以第一次抽到数字 2 后,第二次抽取时每张卡片被抽到的概率仍为1/3,所以第二次抽到数字 3 的概率为1/3。

例题4一批产品中有合格品和次品,合格品率为80%。

从中随机抽取一件产品,已知是合格品,求该产品是一等品的概率(设合格品中一等品率为60%)。

解:由条件概率公式,所求概率为合格品中的一等品率,即60%。

例题5箱子里有红色球和蓝色球,红色球占总数的40%。

从箱子里随机取出一个球,已知是红色球,求这个球上标有数字 5 的概率(设红色球中有30%标有数字5)。

解:根据条件概率公式,所求概率为红色球中标有数字 5 的比例,即30%。

例题6某班级男生占总人数的60%。

在男生中,喜欢数学的占70%。

从班级中随机抽取一名学生,已知是男生,求该学生喜欢数学的概率。

解:所求概率为男生中喜欢数学的比例,即70%。

例题7有两个盒子,盒子 A 中有 3 个红球和 2 个白球,盒子 B 中有 4 个红球和3 个白球。

从盒子 A 中随机取出一个球放入盒子B,然后从盒子 B 中随机取出一个球。

已知从盒子 B 中取出的是红球,求从盒子 A 中取出的也是红球的概率。

解:设从盒子 A 中取出红球为事件A,从盒子 B 中取出红球为事件B。

先求P(A) = 3/5,P(B|A) = (4 + 1)/(7 + 1) = 5/8。

概率论典型例题

概率论典型例题

P{ X 0} P{ X 2}
P{ X 0} P{ X 2} P{ X 5}
22 . 29
---
例2 设离散型随机变量 X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
---
例5 设某仪器上装有三只独立工作的同型号电子 元件,其寿命(单位 : 小时)都服从同一指数分布,其
中参数 1 600,试求在仪器使用的最初200小时
内,至少有一只元件损坏的概率a. [思路] 以 Ai (i 1,2,3) 分别表示三个电子元件“在 使用的最初 200 小时内损坏”的事件, 于是 a P{ A1 A2 A3 } 1 P( A1 A2 A3 )
C B AB.
---
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程}; Bi {第i次射击命中目标}, i 1,2.
故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
---
例4 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
5 份, 随机地取一个地区的报名表,从中先后抽出 两份.
(1) 求先抽到的一份是女生表的概率 p;
(2)已知后抽到的一份表是男生表,求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

条件概率经典例题

条件概率经典例题

1、一个盒子里有10个红球和5个蓝球,从中随机摸取一个球后不放回,再摸取一个球。

若第一次摸到红球,则第二次摸到蓝球的概率是?A. 1/3B. 1/4C. 5/19(答案)D. 5/182、某城市有60%的家庭拥有汽车,拥有汽车的家庭中80%至少有一辆SUV。

随机选择一个家庭,若该家庭拥有汽车,则它至少拥有一辆SUV的概率是?A. 0.6B. 0.48(答案)C. 0.8D. 0.43、一家医院接收了100名流感患者,其中60人患有A型流感,40人患有B型流感。

已知患有A型流感的患者中,70%需要住院治疗;患有B型流感的患者中,40%需要住院治疗。

若随机选择一名患者且该患者需要住院治疗,则他患有A型流感的概率是?A. 0.6B. 0.7(答案)C. 0.4D. 0.54、一个班级里有20名男生和15名女生,男生中有80%喜欢数学,女生中有60%喜欢数学。

随机选择一名学生,若该学生喜欢数学,则他是男生的概率是?A. 8/19B. 12/19C. 8/13(答案)D. 15/235、一家电子产品商店售出了100台平板电脑,其中60台是安卓系统,40台是苹果系统。

已知安卓系统平板电脑中,有10%出现了故障;苹果系统平板电脑中,有5%出现了故障。

若随机选择一台平板电脑且该平板电脑出现了故障,则它是安卓系统的概率是?A. 0.6B. 0.4(答案,考虑故障率与销量的综合影响)C. 0.1D. 0.56、一个篮子里有12个鸡蛋,其中4个是坏的。

随机取出两个鸡蛋,若第一个取出的是好鸡蛋,则第二个取出的是坏鸡蛋的概率是?A. 4/11(答案)B. 4/12C. 3/11D. 1/37、一家餐厅提供了100份外卖,其中60份是披萨,40份是汉堡。

已知披萨订单中,有80%包含了饮料;汉堡订单中,有50%包含了饮料。

若随机选择一份外卖且该外卖包含了饮料,则它是披萨的概率是?A. 0.6B. 0.48(答案,利用条件概率公式计算)C. 0.5D. 0.88、一个盒子里有5张红牌和3张黑牌,随机抽取两张牌。

概率问题例题

概率问题例题

概率问题例一:有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:(1)事件A:指定的4个房间中各有1人;(2)事件B:恰有4个房间中各有1人;(3)事件C:指定的某个房间中有两人;(4)事件D:第1号房间有1人,第2号房间有3人(1)1/54(2)5/18(3)25/216 (4)1/324解析:4个人住进6个房间,所有可能的住房结果总数为:6*6*6*6(种)(1)指定的4个房间每间1人共有6*5*5*4=3600种不同住法(2)恰有4个房间每间1人共有种不同住法(3)指定的某个房间两个人的不同的住法总数为:6*5*5(种),(4)第一号房间1人,第二号房间3人的不同住法总数为:4(种),P(D)=4/1296=1/324例二:假设订一份报纸,送报人可能在6间在早上7:30至7:30把报纸送到家里,父亲离开家去工作间在早上7:30--8:00例三:一个圆周上任取3个点,求三点构成的三角形为锐角三角形的概率是多少。

【解析】就是把圆割成三段弧,每段弧长<兀因为三角形的三内角对应的就是弧的圆周角嘛设每段弧长分别为x,y,z有x+y+z=2兀且0<x<兀0<y<兀0<z<兀三维的线性规划中,x+y+z=2兀是个面就是以(0,0,2兀) (2兀,0,0) (0,2兀,0)为顶点的三角形状的一个面,其中0<x<兀, 0<y<兀,0<z<兀去截,应该是一个正三角形里再一个倒的小正三角形(就是把中位线都连好)所以小的面积除以大的面积就是概率,0.25一、特殊元素和特殊位置优先策略【例1】某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种分析:甲、乙、丙有特殊要求,可以优先考虑。

概率论例题汇总

概率论例题汇总
2 A2 1 2 A5 10
边缘分布为
7
若改为无放回摸球,则(X,Y)的联合分布律为
X
Y
0
3 10 3 10 3 5
1
3 10 1 10 2 5
3 5 2 5
X
Y
0
9 25 6 25
3 5
1
6 25 4 25 2 5 3 5 2 5
0
1
0
1
边缘分布为
与有放回的情况比较, 两者的联合分布完全不同,
i 1
5 0.1 2 0.2 1 0.3 4 0.4 1 .
EX 2 xi2 pi
i 1 4
4 0.1 1 0.2 0 0.3 1 0.4 1 .
24
例2 设随机变量 X ~ N (0,1), 求 E ( X 2 ) 解 E( X )
4 xy, 0 x 1, 0 y 1 (1) f1 ( x, y ) 其他 0,
8 xy, 0 x y, 0 y 1 (2) f 2 ( x, y ) 其他 0,
讨论X ,Y 是否独立?
16
4 xy, 0 x 1, 0 y 1 f1 ( x, y ) 其他 0, 1 解 (1)经计算得边缘密度为
( 3 ) 概 率 P{ X Y 1 } .
y x

解 (1)
1 0


x 0


f ( x , y ) dxdy
0 1 x
dx cy( 2 x ) dy
c 1 5 24 2 ( 2 x ) x dx c 1 , c . 5 2 0 24

概率计算练习题

概率计算练习题

概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。

现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。

2. 有一批产品,其中20%是次品。

从中随机抽取3个产品,求恰好有一个是次品的概率。

3. 一批产品中有30%的次品。

从中随机抽取5个产品,求至少有一个是次品的概率。

4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。

甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。

现从该批产品中随机选择一件,求其出现故障的概率。

5. 一批产品中有20%的次品。

从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。

二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。

已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。

现从该班级中随机选择一名学生,求该学生学习吉他的概率。

2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。

从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。

3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。

已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。

现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。

4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。

从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。

5. 某城市每天发生车辆事故的概率为0.03。

数学概率例题

数学概率例题

数学概率例题
例题1:在一副扑克牌中,从中随机抽取一张牌,求抽到红心的概率。

解答:一副扑克牌中有52张牌,其中有13张红心牌。

因此,抽到红心的概率为13/52,即1/4。

例题2:一个骰子被投掷一次,求投掷出6点的概率。

解答:一个骰子一共有6个面,每个面上的数字分别为1、2、3、4、5、6。

因此,投掷出6点的概率为1/6。

例题3:有一个装有5个红球和7个蓝球的盒子,从中随机抽取两个球,求抽出的两个球都是红球的概率。

解答:首先,抽取第一个球时,有5个红球和12个总球,所以第一个球是红球的概率为5/12;接着,抽取第二个球时,由于第一个球已经抽出,所以红球数量减少为4个,总球数量减少为11个,因此第二个球是红球的概率为4/11。

由于两次抽取是独立的事件,所以抽出的两个球都是红球的概率为(5/12) * (4/11) = 20/132 = 5/33。

概率计算的求解方法例题

概率计算的求解方法例题

概率计算的求解方法例题例题一:骰子游戏假设我们有一个六面骰子,每个面上的数字为1到6。

现在我们进行一个游戏,每次投掷骰子,并记录下投掷的结果。

问投掷一次骰子得到奇数的概率是多少?解析:首先我们需要知道骰子的总共可能结果有6个,即{1, 2, 3, 4, 5, 6}。

其中奇数的结果有3个,即{1, 3, 5}。

所以投掷一次骰子得到奇数的概率为3/6,即1/2。

例题二:抽奖活动某商店举办了一次抽奖活动,参与活动的顾客共有100人,每个人只能获得一个奖品。

活动奖品有50个,并且每个奖品只能被一个顾客获得。

问某个顾客能获得奖品的概率是多少?解析:首先我们需要计算获得奖品的总共可能结果,即50个奖品可以被100个顾客中的某一个顾客获得。

所以获得奖品的概率为50/100,即1/2。

例题三:生日问题假设在一个班级里有30个学生,问至少有两个学生生日相同的概率是多少?解析:我们可以通过概率计算来解答这个问题。

首先我们需要知道生日的可能排列情况,即365天中的一个学生生日有365种可能的结果。

所以至少有两个学生生日相同的概率为1减去没有两个学生生日相同的概率。

没有两个学生生日相同的概率可以通过以下计算得到:365/365 * 364/365 * 363/365 * ... * (365-n+1)/365其中n为班级中的学生人数,即30。

所以至少有两个学生生日相同的概率为1减去上述计算结果。

以上是几个概率计算的求解方法例题,通过这些例题我们可以发现在实际问题中,概率计算通常需要考虑可能结果的总数和具体条件的影响。

正确使用概率计算方法能够帮助我们更好地理解和分析各种概率问题,并做出合理的决策。

希望以上例题能够帮助读者更好地理解和应用概率计算的方法,提高解题的能力和水平。

概率论例题

概率论例题
解:设B 从该箱中任取4只检查, 结果都是好的 . Ai = 箱中含有i只次品 ,i 0,1,2.
据题意得:P ( A0 ) 0.8, P ( A1 ) 0.1, P ( A2 ) 0.1,
P ( B | A0 ) 1,
4 C19 4 P ( B | A1 ) 4 , C20 5 4 C18 12 P ( B | A2 ) 4 . C20 19
y 0; 0, 2 FY y P Y y lim F x, y = y , 0 y 1; x 1, y 1.
1 1 (2) P X 3, 1 Y 3 2 1 1 1 1 1 F 3, F , 1 F , F 3, 1 . 12 3 2 2 3
例3.2 :已知二维随机变量 X , Y 的联合概率分布函数为 0, 2 2 x y , 2 F ( x, y ) x , y2, 1, x 0 或 y 0; 0 x 1, 0 y 1; 0 x 1,1 y ; 1 x , 0 y 1; 1 x ,1 y .
根据题意,两人能见面 | X Y | 15 ,
y
60
y x 15
15 o 15
x y 15
x
60
所以,两人能见面的概率为 阴影图像的面积 45 45 7 P | X Y | 15 1 . 3600 3600 16
例316:已知 . X , Y 的联合概率密度为 21 2 2 x y , x y 1, f ( x, y ) 4 其他。 0,
1问至少要配备多少维修工人,才能保证当设备发生
故障时不能及时维修的概率小于0. 5%;

概率例题

概率例题

例8 袋内装有5个白球,2个黑球. (1)从中任取1个球,求取到白球的概率 . (2)从中任取2个球,求取出的2个球都是白球的概 率. 例9 将一枚均匀的骰子连掷两次,求 (1)两次点数之和为8的概率 . (2)两次点数中较大的一个不超过3的概率 . 例10 从一批由45件正品,5件次品组成的产品中任 取3件,求其中恰有1件次品家,观察其子女 的性别情况.样本空间,事件A1{第一个孩子是女 孩},事件A2{至少有一个是男孩}.
例6 在射击比赛中,一选手连续向目标射击三次, 若令 Ai ={第i次射击命中目标},i=1,2,3.试用这三 个事件表示下列各事件: B={三次射击都命中目标}, C= {三次射击至少有一次命中目标}, D = {三次射击都未命中目标}, E = {三次射击仅一次命中目标} .
例7 设A,B,C为三事件,试用事件A,B,C的运算表示 下列事件: (1) A发生,B,C不发生 , (2) A不发生,B,C发生 , (3) A发生,B与C中有一个发生 ,但不同时发生, (4) A,B,C至少有一个发生 , (5) A,B,C恰有一个发生 , (6) A,B,C恰有两个发生 , (7) A,B,C都发生 , (8) A,B,C一个也不发生 .
例11 设10把钥匙中只有3把能打开同一把锁,今任 意取出两把钥匙,求能打开这把锁的概率.
例12 从0,1,2,3这4个数中,任意取三个不同的数字进 行排列,球取得的3个数字排成的数是3位数且是 偶数的概率 .
习题5-1 1 写出下列随机试验的样本空间: (1) 箱中有3件相同的产品,分别标有1,2,3号,从 箱中一次取出2件,观察其标号 , (2)袋中有n个红球和m个白球 ,从袋中任取1个 球,观察其颜色, (3) 在交叉路口,计数每小时通过的机动车辆数, (4) 在单位圆内任取两点 ,观察这两点之间的距 离.

概率论例题汇总

概率论例题汇总

求:(1) c;
0.3
1
2
0
0
1
0.1
0.1
0.1
0.2
0.2
0.3
0.4
0.3
0.5
0.5
设(X,Y)的概率密度是
*
求 (1) c的值;(2) 两个边缘密度;
解 (1)
例5
x
y
0
1
所以
y
x
(2)
所以
y
x
(2)
x
y
例1 已知 ( X, Y ) 的联合密度函数为 (1) (2) 讨论X ,Y 是否独立?
Y的边缘分布
X的边缘分布
所以 X,Y 的边缘分布律分别为
*
若改为无放回摸球,则(X,Y)的联合分布律为
边缘分布为
边缘分布为 与有放回的情况比较, 但边缘分布却完全相同。 两者的联合分布完全不同, 若改为无放回摸球,则(X,Y)的联合分布律为
例2 设二维随机变量(X,Y )的联合分布为

求:(1) c;
(2)
*
设X表示机床A一天生产的产品废品数,Y 表示机床B一天生产的产品废品数,它们的概率分布如下:
X
0
1
2
0.5
P
3
0.3
0.1
0.1
例1

Y
0
1

0.6
P
3
0.1
0.2
0.1
问:两机床哪台质量好?设两台机床的日产量相等。
均值相等, 据此不能判断优劣,再求方差.
X
0
1
2
0.5
P
3
0.3

概率例题

概率例题

二、典型例题
例5 某接待站在某一周曾接待过12次来访,已知所有这12 次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的.
【例】(约会问题)甲乙两人约定在下午6点到7点之间在某处会面,并约定先到者应等候另一人20分钟,过时即可离去,求两人能会面的概率.
例:按规定,某种型号电子元件的使用寿命超过1500小时的为一级品。

已知某一大批产品的一级品率为0.2,现在从中随机地抽查20只。

问20只元件中恰有k只(k=0,,…,20)为一级品的概率是多少?
例:某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率。

概率问题经典例题

概率问题经典例题

例 3 将 n 只球随机的放入 N (N 个盒子中去,求每个盒子至多有一只球的概率(设盒子的容量不限)。

解: 将 n 只球放入 N 个盒子中去, 共有而每个盒子中至多放一只球, 共有例4 设有 N 件产品,其中有 D 件次品,今从中任取 n 件,问其中恰有 k ( k件次品的概率是多少? 1/不放回抽样解:在 N 件产品中抽取 n 件,取法共有 又 在 D 件次品中取 k 件,所有可能的取法有在 N-D 件正品中取 n-k 件, 所有可能的取法有 由乘法原理知:在 N 件产品 中取 n 件,其中恰有 k件次品的取法共有 于是所求的概率为2、有放回抽样从N 件产品中有放回地抽取n 件产品进行排列,可能的排列数为 个,将每一排列看作基本事件,总数为。

而在 N 件产品 中取 n 件,其中恰有 k 件次品的取法共有 ,种放法n N N N N =⨯⨯⨯ ,)]1([)1(种放法n N A n N N N =--⨯⨯-⨯ .)]1([)1(n n N n NA N n N N N p =--⨯⨯-⨯= 故种,n N C 种,k D C 种,kn D N C --种,k n D N k D C C --n N k n D N k D C C C p --=n N nN k n k k n D N D C --)(于是所求的概率为例 5 袋中有 a 只白球,b 只黑球.从中任意 取出 k 只球,试求第 k 次取出的球是黑球的 概率.(作不放回抽样)解: 设:A=“第 k 次取出的球是黑球”k n k k n n k n k k n N D N D C N D N D C P ---=-=)1()()(().样本点总数种个球,有取法个球中依次取出从k b a P k b a ++.所含样本点数为种,因此事件有取法次取球,种,前次取出黑球,有取法第11111--+⋅--+-k b a P b A k b a P k b k ().所以,b a b k b a P k b a P b A P +=+--+⋅=11。

概率例题

概率例题

例 5 售报员在报摊上卖报, 已知每个过路人在报摊上买报的概率为 1/3. 令 X 是出售了 100 份报时过路人的数目,求 P (280 X 320).
例 6 检验员逐个检查某产品,每查一个需用 10 秒钟. 但有的产品需重复检查一次,再用 去 10 秒钟. 若产品需重复检查的概率为 0.5, 求检验员在 8 小时内检查的产品多于 1900 个的概率.
第四章 4.1 例 1 设射击手甲与乙在同样条件下进行射击,其命中的环数是一随机变量.假如有历史记 录可得它们分别有下面的分布律(其中 0 表示脱靶).
例 2 将 3 个球随机地放入 3 个盒子中去,球与盒子均可区分,以 X 表示空盒子数目,求 E(X)
例 3 分组验血:在一个人数很多的团体中普查某种疾病,为此要抽验 N 个人的血, 可以有两种方法进行.(1)将每个人的血分别去验,这就需要 N 次.(2)按 k 个人一组 进行分组,把从 k 个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说 明 k 个人的血都呈阴性反应,这样,这 k 个人得血就只需验一次.若呈阳性,则再对这 k 个人的血液分别进行化验.这样, k 个人的血总共要化验 k+1 次.假如每个人化验呈阳性 的概率为 p 且这些人的试验反应是相互独立的.试说明当 p 较小时,选取适当的 k,按第 二种方法可以减少化验的次数.并说明 k 取什么值时最适宜.
例 2 设 A , B 满足 P ( A ) = 0.6, P ( B ) = 0.7, 在何条件下,P(AB) 取得最大(小)值?最大(小) 值是多少?
例 1 (分房模型)设有 k 个不同的球, 每个球等可能地落入 N 个盒子中(k<=N ), 设每 个盒子容球数无限, 求下列事件的概率
(1) 某指定的 k 个盒子中各有一球; (2) 某指定的一个盒子恰有 m 个球( m<=k ) (3) 某指定的一个盒子没有球; (4) 恰有 k 个盒子中各有一球; (5) 至少有两个球在同一盒子中; (6) 每个盒子至多有一个球.

概率经典例题和解析、近年高考题50道带答案解析

概率经典例题和解析、近年高考题50道带答案解析

【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .1-2π B . 12 - 1π C . 2π D . 1π【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2=π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12为扇形面积减去三角形OAC 面积和S 22, S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )A. 126125B. 65C. 168125D. 75 【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x-y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2 【例5】(2013江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为________. 【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013山东)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x+1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【答案】213;1213;3月5日【解析】设Ai 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,P(Ai)=113,且Ai∩Aj=.(1)设B 为事件“此人到达当日空气重度污染”,则B =A5∪A8. 所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且P(X =1)=P(A3∪A6∪A7∪A11) =P(A3)+P(A6)+P(A7)+P(A11)=413,P(X =2)=P(A1∪A2∪A12∪A13) =P(A1)+P(A2)+P(A12)+P(A13)=413,P(X =0)=1-P(X =1)-P(X =2)=513.所以X 的分布列为故X 的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A ,则事件A 的对立事件为“X=5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝ ⎛⎭⎪⎫2,23,X2~B ⎝ ⎛⎭⎪⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X=0”“X=2”“X=3”三个两两互斥的事件,因为P(X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P(X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P(X =3)=⎝ ⎛⎭⎪⎫1-23×25=215,所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.【答案】3∶2∶1 【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13,P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19,P(ξ=6)=1×16×6=136,所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c =53,Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a∶b∶c=3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433kkkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=.【课堂练习】1.(2013广东)已知离散型随机变量则X 的数学期望E(X)=( )A. 32 B .2 C. 52D .3 2.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ) A .1-π4 B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47B .37C .27D .3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A .175 B . 275 C .375 D .4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181 B .3381 C .4881 D .5081. 6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F I 的值等于A .0B .116C .14D .12∙A ∙∙∙∙∙BC D EF8.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A .12 B .1532 C .1732 D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172B .136C .124D .11210.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

概率论例题讲解

概率论例题讲解

2
y3 3
1
(y3)

(x)在区间[0,1]上的均匀分布时,
(
x)
1 0
0 x 1 否则
2
3的密度函数
( y)
y3 3
1
0
1
0 y3 1
否则
2
y 3
3
0
0 y 1 否则
七、(4 5) 求出服从在B上均匀分布的随机变量(X ,Y )的分布 密度及分布函数,其中B为x轴、y轴及直线y 2x 1所围 成的三角形区域。
(i=1,2,3,4,5) (3)* 若将(2)中的这个硬币再抛掷1次,又出现字面。
解:设A "任取一个硬币抛掷出现字面"事件; Bi "被选出的是第i个硬币"事件 i=1,2,3,4,5
B1 B2 B3 B4 B5 P(Bi ) 1/ 5 i=1,2,3,4,5 P( A | Bi ) pi i=1,2,3,4,5 (1) 任取一个硬币抛掷出现字面的概率=P( A)
0
1
分布函数:F
(
x)
6 2
3
1
x 1 1 x 2
2 x3 x3
五、(3 23) 设电子管的寿命具有密度的函数
100
(x)
x2
x 100
(单位:h)
0 x 100
问:在150h内:
(1)三只管子没一只损坏的概率是多少?
(2)三只管子全损坏的概率是多少?
解:设A "任抽取1只管子,该管子在150h内会损坏"
P(Ci ) P(Bi | A) i 1, 2,3, 4,5
5
5
P(D) P(Ci )P(D | Ci ) P(Bi | A)P( A | Bi )

概率例题

概率例题
第四章
4.1
例1设射击手甲与乙在同样条件下进行射击,其命中的环数是一随机变量.假如有历史记录可得它们分别有下面的分布律(其中0表示脱靶).
例2将3个球随机地放入3个盒子中去,球与盒子均可区分,以X表示空盒子数目,求E(X)
例3分组验血:在一个人数很多的团体中普查某种疾病,为此要抽验N个人的血,
可以有两种方法进行.(1)将每个人的血分别去验,这就需要N次.(2)按k个人一组进行分组,把从k个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明k个人的血都呈阴性反应,这样,这k个人得血就只需验一次.若呈阳性,则再对这k个人的血液分别进行化验.这样,k个人的血总共要化验k+1次.假如每个人化验呈阳性的概率为p且这些人的试验反应是相互独立的.试说明当p较小时,选取适当的k,按第二种方法可以减少化验的次数.并说明k取什么值时最适宜.
5.2
例1炮火轰击敌方防御工事100次,每次轰击命中的炮弹数服从同一分布,其数学期望为2 ,均方差为.若各次轰击命中的炮弹数是相互独立的,求100次轰击
(1)至少命中180发炮弹的概率;
(2)命中的炮弹数不到200发的概率.
例2
例3某保险公司的老年人寿保险有1万人参加,每人每年交200元.若老人在该年内死亡,公司付给家属1万元.设老年人死亡率为,试求保险公司在一年内的这项保险中亏本的概率.
例5 “分房模型”的应用
生物系二年级有n个人,求至少有两人生日相同(设为事件A)的概率.
例2袋中有a只白球,b只红球,从袋中按不放回与放回两种方式取m个球(m<=a+b),
求其中恰有k个(k<=a,k<=m)白球的概率
例3在0,1,2,3, ,9中不重复地任取四个数,求它们能排成首位非零的四位偶数的概率.

典型例题_概率论

典型例题_概率论

第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。

1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。

例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。

解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。

1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。

假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。

设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 4.1例1 设射击手甲与乙在同样条件下进行射击,其命中的环数是一随机变量.假如有历史记录可得它们分别有下面的分布律(其中0表示脱靶).例2 将3个球随机地放入3个盒子中去,球与盒子均可区分,以 X 表示空盒子数目,求 E (X )例3分组验血:在一个人数很多的团体中普查某种疾病,为此要抽验 N 个人的血, 可以有两种方法进行.(1)将每个人的血分别去验,这就需要N 次.(2)按 k 个人一组进行分组,把从k 个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明k 个人的血都呈阴性反应,这样,这k 个人得血就只需验一次.若呈阳性,则再对这k 个人的血液分别进行化验.这样, k 个人的血总共要化验 k+1次.假如每个人化验呈阳性的概率为 p 且这些人的试验反应是相互独立的.试说明当 p 较小时,选取适当的 k ,按第二种方法可以减少化验的次数.并说明k 取什么值时最适宜.例4 设随机变量X 的密度函数为 求 E (X )例5 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?例6 设随机变量的分布律为例7 设随机变量(X,Y )的联合概率密度例8Xp1-022.03.05.0⎪⎩⎪⎨⎧<≤-<≤=其它,021,210,)(x x x x x f )1(2-+X X E 求()()3231 ,12(,) 0 1,y x x x x yf x y E Y EXY ⎧<<>⎪=⎨⎪⎩其他求数学期望。

(),X Y 设二维随机变量的联合分布律为01200.10.250.1510.150.20.15X Y ()sin 2X Y Z π+=求随机变量的数学期望。

例9 国际市场上每年对我国某种出口商品的需求量是随机变量X (单位:吨),它服从[2000,4000]上的均匀分布.设每售出这种商品一吨,可为国家挣得外汇3千元,但如果销售不出二积压于仓库,则每吨需花费保养及其它各种损失费用1千元,问需要组织多少货源,才能使国家的收益期望最大?例 设 ( X , Y ) 的分布律为4.2例1 设X 为掷一颗骰子出现的点数,试求D(X)例2:设随机变量X 具有数学期望例3 例44.3例1 XY1231-012.01.01.01.01.01.0003.0].)[(,)(),(),(:2Y X E X Y E Y E X E -求.),()(,,.10,2010 互独立并设各旅客是否下车相可能的下车是等设每位旅客在各个车站求表示停车的次数以客下车就不停车如到达一个车站没有旅车站可以下车个旅客有位旅客自机场开出一机场班车载有例X E X 2*()0X D X X μσσ-=≠=方差,记***()0()1E X D X X X ==证明:,,称为的标准化变量}10{1023)4,60(~),1,50(~>--=Z P Y X Z Y X N Y N X 求,独立,记与,设.,,.,),04.0,50.22(~),03.0,40.22(~)cm (22的概率求活塞能装入气缸任取一只气缸任取一只活塞相互独立气缸的直径计以设活塞的直径Y X N Y N X ||)3(|;|)2()1()4,2(,5Y X D Y X E Y X N Y X ---的分布,试求:独立同分布设例.),,,,,(~),(222121相关系数的与试求设Y X ρσσμμN Y X例2例3 设随机变量(X,Y )具有概率密度 求第五章 5.1例1 设有一大批种子,其中良种占1/6. 试估计在任选的 6000 粒种子中, 良种所占比例与1/6 比较上下小于1%的概率.例2 设每次试验中,事件 A 发生的概率为 0.75, 试用 Chebyshev 不等式估计, n 多大时, 才能在 n 次独立重复试验中, 事件 A 出现的频率在0.74 ~ 0.76 之间的概率大于 0.90? 5.2例1 炮火轰击敌方防御工事 100 次, 每次轰击命中的炮弹数服从同一分布, 其数学期望为 2 , 均方差为1.5. 若各次轰击命中的炮弹数是相互独立的, 求100 次轰击 (1) 至少命中180发炮弹的概率; (2) 命中的炮弹数不到200发的概率. 例2.}105{,,)1,0(,,)20,2,1(20201的近似值求记上服从均匀分布且都在区间机变量设它们是相互独立的随个噪声电压一加法器同时收到>==∑=V P V V k V k k k .23,2),4,0(),3,1(,22Y X Z ρN N Y X XY +=-=设分别服从 已知随机变量⎩⎨⎧=012),(2y y x f 其它10≤≤≤x y XYY X Cov Y E X E ρ),,(),(),(例3 某保险公司的老年人寿保险有1万人参加,每人每年交200元. 若老人在该年内死亡,公司付给家属1万元. 设老年人死亡率为0.017,试求保险公司在一年内的这项保险中亏本的概率.例4对于一个学生而言, 来参加家长会的家长人数是一个随机变量. 设一个学生无家长、1名家长、 2名家长来参加会议的概率分别为0.05,0.8,0.15. 若学校共有400名学生, 设各学生参加会议的家长数相互独立, 且服从同一分布. (1) 求参加会议的家长数 X 超过450的概率; (2) 求有1名家长来参加会议的学生数不多于340的概率.例5 售报员在报摊上卖报, 已知每个过路人在报摊上买报的概率为1/3. 令X 是出售了100份报时过路人的数目,求 P (280 ≤ X ≤ 320).例6 检验员逐个检查某产品,每查一个需用10秒钟. 但有的产品需重复检查一次,再用去10秒钟. 若产品需重复检查的概率为 0.5, 求检验员在 8 小时内检查的产品多于1900个的概率.例7 某车间有200台车床,每台独立工作,开工率为0.6. 开工时每台耗电量为 r 千瓦. 问供 电所至少要供给这个车间多少电力, 才能以 99.9% 的概率保证这个车间不会因供电不足而影响生产?例8 设有一批种子,其中良种占1/6. 试估计在任选的6000粒种子中,良种比例与 1/6 比较上下不超过1%的概率. 例9第四、五章习题 例1例2从数字0, 1, 2, …, n 中任取两个不同的数字, 求这两个数字之差的绝对值的数学期望.).( )( ,,2,1,)1(}{ , 1X D X E k p p k X P X k 和求它的分布律为服从几何分布设 =-==-.,1,),,,2,1()1,1(,,,,1221并指出其分布参数正态分布近似服从随机变量充分大时证当试上服从均匀分布在区间且相互独立设随机变量∑===-n i n i n i X n Z n n i X X X X例3例4例5例6例7计算器在进行加法时, 将每个加数舍入最靠近它的整数, 设所有误差相互独立且在(–0.5, 0.5)上服从均匀分布. (1) 将1500个数相加, 问误差总和的绝对值超过15的概率是多少? (2) 最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?例8 售报员在报摊上卖报, 已知每个过路人在报摊上买报的概率为1/3. 令X 是出售了100份报时过路人的数目,求 P (280 ≤ X ≤ 320).例9有一批建筑房屋用的木柱, 其中 80% 的长度不小于 3m, 现从这批木柱中随机地取 100 根, 求其中至少有 30 根短于 3m 的概率.).(. ,0,21 ,2,10,)( )3(].)1[(),(π~)2()].2[ln(),(125124123620 )1( 21X E x x x x x f X X E X X E X E p X X k 求其他的概率密度为设随机变量求设求的分布律为设随机变量⎪⎩⎪⎨⎧<≤-<≤=++-λ . ),( ,0,20,10),21(76),( ),( 2数的协方差矩阵及相关系求其他函数为的联合密度设二维连续型随机变量Y X y x xy x y x f Y X ⎪⎩⎪⎨⎧<<<<+=.,, 22的数学期望求正态分布且都服从标准相互独立和设随机变量Y X Z Y X +=.. ,0,10 ,2)(.,0,10 ,3)(,,,,,00:13~00:12 2时间的数学期望求先到达者需要等待的其他其他的概率密度分别为已知立相互独和且设间分别是甲、乙到达的时设会面在甲、乙两人相约于某地⎩⎨⎧<<=⎩⎨⎧<<=y y y f x x x f Y X Y X Y X Y X例10第一章例3 化简事件 例1 小王参加某智力游戏节目, 他能答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王(1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率(3) 两类问题都答不出的概率例1 中小王他能答出第一类问题的概率为0.7 , 答出第二类问题的概率为0.2, 两类问题都能答出的概率为0.1. 为什么不是0.7*0.2 ?例2 设A , B 满足 P ( A ) = 0.6, P ( B ) = 0.7, 在何条件下,P (AB ) 取得最大(小)值?最大(小)值是多少?例1 (分房模型)设有 k 个不同的球, 每个球等可能地落入 N 个盒子中(k<=N ), 设每个盒子容球数无限, 求下列事件的概率(1) 某指定的 k 个盒子中各有一球;(2) 某指定的一个盒子恰有 m 个球( m<=k ) (3) 某指定的一个盒子没有球; (4) 恰有 k 个盒子中各有一球; (5) 至少有两个球在同一盒子中; (6) 每个盒子至多有一个球.例5 “分房模型”的应用生物系二年级有 n 个人,求至少有两人生日相同(设为事件A ) 的概率.例2 袋中有a 只白球,b 只红球,从袋中按不放回与放回两种方式取m 个球(m<=a+b), 求其中恰有 k 个 (k<=a,k<=m )白球的概率例3 在0,1,2,3, ,9中不重复地任取四个数,求它们能排成首位非零的四位偶数的概率.例4 在1,2,3, ,9中重复地任取 n (n>=2)个数, 求 n 个数字的乘积能被10整除的概率.例5 在1~2000的整数中随机地取一个数,问取到的整数既不能被6整除, 又不能被8整除的概率是多少 ?.30)2(;50~40)1(9.,5,的概率人多于人人个月内接受的患者求一年中前相互独立接受破伤风患者的人数各月的泊松分布它服从参数个随机变量风患者的人数是一某医院一个月接受破伤=λACC B A )(例6 某接待站在某一周曾接待过12次来访,已知所有这12 次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的例8某人的表停了,他打开收音机听电台报时,已知电台是整点报时的,问他等待报时的时间短于十分钟的概率例9 (会面问题)甲、乙两人相约在0 到T 这段时间内, 在预定地点会面. 先到的人等候另一个人, 经过时间t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻到达该地是等可能的, 且两人到达的时刻互不牵连. 求甲、乙两人能会面的概率.例9 甲、乙两人相约在0 到T 这段时间内, 在预定地点会面. 先到的人等候另一个人, 经过时间t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻到达该地是等可能的, 且两人到达的时刻互不牵连. 求甲、乙两人能会面的概率.例10 两船欲停同一码头, 两船在一昼夜内独立随机地到达码头. 若两船到达后需在码头停留的时间分别是1 小时与2 小时,试求在一昼夜内,任一船到达时,需要等待空出码头的概率.例将15 名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问(1) 每一个班级各分配到一名优秀生的概率是多少? (2) 3 名优秀生分配在同一个班级的概率是多少?例1 一盒子装有4 只产品, 其中有3 只一等品、1只二等品. 从中取产品两次, 每次任取一只, 作不放回抽样. 设事件A为“第一次取到的是一等品” 、事件B 为“第二次取到的是一等品”.试求条件概率P(B|A).例1 一盒子装有4 只产品, 其中有3 只一等品、1只二等品. 从中取产品两次, 每次任取一只, 作不放回抽样. 设事件A为“第一次取到的是一等品” 、事件B 为“第二次取到的是一等品”.试求条件概率P(B|A).例3某厂生产的灯泡能用1000小时的概率为0.8, 能用1500小时的概率为0.4 , 求已用1000小时的灯泡能用到1500小时的概率.例4从混有5张假钞的20张百元钞票中任意抽出2张, 将其中1张放到验钞机上检验发现是假钞. 求2 张都是假钞的概率.例5盒中装有5个产品, 其中3个一等品,2个二等品, 从中不放回地取产品, 每次1个, 求(1)取两次,两次都取得一等品的概率;(2)取两次,第二次取得一等品的概率;(3)取三次,第三次才取得一等品的概率;(4)取两次,已知第二次取得一等品,求第一次取得的是二等品的概率例 6 设某光学仪器厂制造的透镜, 第一次落下时打破的概率为1/2,若第一次落下未打破, 第二次落下打破的概率为7/10 , 若前两次落下未打破, 第三次落下打破的概率为9/10.试求透镜落下三次而未打破的概率.例7 有一批同一型号的产品,已知其中由一厂生产的占 30% ,二厂生产的占 50% ,三厂生产的占 20%,又知这三个厂的产品次品率分别为2% , 1%,1%,问从这批产品中任取一件是次品的概率是多少?例8 每100件产品为一批, 已知每批产品中次品数不超过4件, 每批产品中有 i 件次品的概率为i 0 1 2 3 4 P 0.1 0.2 0.4 0.2 0.1从每批产品中不放回地取10件进行检验,若发现有不合格产品,则认为这批产品不合格,否则就认为这批产品合格. 求(1) 一批产品通过检验的概率;(2) 通过检验的产品中恰有 i 件次品的概率. 例9例10(选择题的合理性)现在几乎所有的考试试卷中,都会有选择题.一般地,每个选择题有4个答案,其中只有1个是正确的.当学生不会做时可以随机猜测,假如一个学生会做题与不会做题的概率相等.现在从卷面上看该题答对了,求此学生确实会做该题的概率.例11例1 已知袋中有5只红球, 3只白球.从袋中有放回地取球两次,每次取1球.设第 i 次取得白球为事件 Ai ( i =1, 2 ) .求例 3 一个均匀的正四面体, 其第一面染成红色,第二面染成白色 , 第三面染成黑色,而第四面同时染上红、白、黑三种颜色.现以 A , B ,C 分别记投一次四面体出现红、白、黑颜色朝下的事件,问 A ,B ,C 是否相互独立? 例4 已知事件 A , B , C 相互独立,证明事件).(,005.0)(,005.0,.95.0)(,95.0)(,,:,A C P C P C A P C A P C A 试求即的概率为设被试验的人患有癌症进行普查现在对自然人群有则有癌症”表示事件“被诊断者患以为阳性”表示事件“试验反应若以验具有如下的效果某种诊断癌症的试根据以往的临床记录===?,.%95,.%55,,%98,,概率是多少机器调整得良好的品时早上第一件产品是合格试求已知某日机器调整良好的概率为时每天早上机器开动其合格率为种故障时而当机器发生某产品的合格率为良好时当机器调整得明对以往数据分析结果表,)(,)(21A P A P ,)(12A A P ,)(12A A P例5 同时抛掷一对骰子,共抛两次,求两次所得点数分别为7与11的概率.例7 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中而被击落的概率为0.2 ,被两人击中而被击落的概率为 0.6 , 若三人都击中飞机必定被击落, 求飞机被击落的概率.例8 要验收一批(100件)乐器.验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件在测试中被认为音色不纯,则这批乐器就被拒绝接收.设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95;而一件音色纯的乐器经测试被误认为不纯的概率为0.01.如果已知这100件乐器中恰有4件是音色不纯的.试问这批乐器被接收的概率是多少?例3 设随机变量X 的分布函数为 试求常数A ,B例4 一个靶子是半径为2m 的圆盘,设击中靶上任一同心圆盘上的点的概率与该圆盘的面积成正比,并设射击都能中靶,以X 表示弹着点与圆心的距离。

相关文档
最新文档