分子生物

合集下载

分子生物学名词解释

分子生物学名词解释

分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。

它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。

DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。

转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。

功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。

结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。

生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。

染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。

染色质是由DNA、RNA和蛋白质形成的复合体。

染色体是一种动态结构,在细胞周期的不同阶段明显不同。

C-值(C-value):一种生物单位体基因组DNA的总量。

C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。

核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。

连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。

DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。

DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。

又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。

什么是分子生物学

什么是分子生物学

什么是分子生物学分子生物学是一门崭新的科学,由于它是20世纪发展起来的新兴学科,它在未来也将产生重大的影响。

下面将介绍分子生物学的几个基本概念并阐述它的重要性:一、什么是分子生物学?分子生物学是一门研究分子水平生命现象和自然关系的新科学。

它使用分子生物学手段,利用化学、物理和生物技术,探讨以分子和最小细胞为基础的生物学过程。

分子生物学以DNA、RNA、蛋白质和其他分子结构为框架,结合生物信息学,解析各种生物过程及其分子机制。

二、分子生物学的方法分子生物学有许多研究方法和工具,主要包括基因测序、分子标记、克隆技术、蛋白质分析、遗传学和定量PCR的技术。

(1)基因测序:基因测序是分子生物学研究最常用的技术,它是一种可以分析DNA片段顺序和检测DNA表达状态的技术。

(2)分子标记:分子标记是将一种活性体与另一种它可能与之具有共同性质的生物活性体混合,以产生一种可检测的化学反应的技术。

(3)克隆技术:克隆技术是指利用可重组DNA技术在一个宿主上复制目标DNA片段、克隆它们作为载体的技术。

(4)蛋白质分析:蛋白质分析是指利用紫外分光光度计、流式细胞仪等分析仪器,研究蛋白质结构、凝胶电泳分析、质谱分析以及免疫学方法等技术来检测蛋白质结构和性质的方法。

(5)遗传学:遗传学是指研究基因在细胞中的表达、基因间相互作用及其在不同生物间的进化变异,以及它们在适应性演化中的作用的学科。

(6)定量PCR:定量PCR是指使用定量PCR技术研究DNA序列,利用荧光基因特异性引物和特异序列来检测、建库和定量分析DNA。

三、分子生物学的重要性(1)分子生物学能够探究生命的奥秘;(2)通过分子生物学,我们可以更好地了解遗传基因是如何影响人类生理和心理行为;(3)分子生物学可以帮助我们更好地理解疾病的发展机制,进行疾病的预防和治疗;(4)分子生物学也是真核细胞和原核细胞的比较研究的基础,从而有助于我们更好地利用微生物培养;(5)分子生物学还可以帮助我们更好地利用基因工程技术实现转基因动物生物学研究和创新生物材料研究。

分子生物学

分子生物学

一、名词解释1.分子生物学:广义即在分子水平上研究生命现象;狭义即在核酸与蛋白质水平上研究基因的复制,基因的表达,基因表达的调控以及基因的突变与交换的分子机制。

2.拟等位基因:紧密连锁,控制同一性状的非等位基因定义为拟等位基因。

3.DNA:作为主要的遗传物质,从结构上讲,它是两条多聚脱氧核苷酸链以极性相反,反向平行的方式,由氢键连接而成的双螺旋结构。

4.变性:两条核苷酸链逐渐彼此分离,形成无规则的,线团,这一过程称为变性。

5.复性:已发生变性的DNA 溶液在逐渐降温的条件下,,两条核苷酸链的配对碱基间又重新形成氢键,恢复到天然DNA的双螺旋结构,这一过程称为复性。

6.碱基的增色效应:随温度升高单链状态的DNA分子不断增加而表现出A260值递增的效应被定义为碱基的增色效应或DNA的减色效应。

7.变性温度或Tm值:通过对不同DNA分子变性S曲线的分析,将增色效应达到最大值一半的温度定义为该DNA分子的变性温度或Tm 值8.间隔基因:真核生物的结构基因是由若干外显子和内含子序列,相间隔排列组成的间隔基因。

9.外显子:指DNA上与成熟mRNA对应的核苷酸区,段,或结构基因在DNA中的氨基酸编码区,或间隔基因中的非间隔区。

10.内含子是指结构基因中可转录但在mRNA成熟之前,又被剪切的核苷酸区段,即DNA与成熟mRNA中的非对应区,或结构基因在DNA中的氨基酸非编码区,或间隔基因中的间隔区。

11.R环:当一条RNA分子与其DNA分子中的一条互补链配对,同时将另一条DNA链排除而形成的环状结构被称为R环。

12.极性突变:在一个操纵子中,与操纵子基因毗连的结构基因发生终止突变后,它除了影响该基因本身产物的翻译外,还影响其后结构基因多肽的翻译,并且具有极性梯度的特征。

13.DNA复制:是亲代双链DNA分子在DNA聚合酶等相关酶的作用下,分别以每条单链DNA分子为模板,聚合与模板链碱基可以互补配对的游离的三磷酸脱氧核糖核酸dNTP,合成出两条与亲代DNA分子完全相同的子代双链DNA分子的过程。

分子生物学名词解释

分子生物学名词解释

分子生物学名词解释分子生物学考试重点一、名词解释1、分子生物学(molecular biology):分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。

2、C值(C value):一种生物单倍体基因组DNA的总量。

在真核生物中,C值一般是随生物进化而增加的,高等生物的C值一般大于低等生物。

3、DNA多态性(DNA polymorphism):DNA多态性是指DNA序列中发生变异而导致的个体间核苷酸序列的差异。

4、端粒(telomere):端粒是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。

5、半保留复制(semi-conservative replication):DNA 在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。

这样形成的两个DNA分子与原来DNA 分子的碱基顺序完全一样。

一次,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA 的半保留复制。

6、复制子(replicon):复制子是指生物体的复制单位。

一个复制子只含一个复制起点。

7、半不连续复制(semi-discontinuous replication):DNA 复制过程中,一条链的合成是连续的,另一条链的合成是中断的、不连续的,因此称为半不连续复制。

8、前导链(leading strand):与复制叉移动的方向一致,通过连续的5W聚合合成的新的DNA链。

9、后随链(lagging strand):与复制叉移动的方向相反,通过不连续的5\T聚合合成的新的DNA链。

10、AP位点(AP site):所有细胞中都带有不同类型、能识别受损核酸位点的糖昔水解酶,它能特异性切除受损核昔酸上N-B糖昔键,在DNA链上形成去嘌吟或去嘧啶位点,统称为AP位点。

11、cDNA(complementary DNA):在体外以mRNA 为模板,利用反转录酶和DNA聚合酶合成的一段双链DNA。

分子生物学

分子生物学

分子生物学分子生物学(Molecular Biology)是生物学的一个分支学科,主要研究生物体内分子的结构、功能、相互作用和调控机制。

分子生物学的发展推动了对于基因和蛋白质的研究,为我们对生物体内的生命活动以及人类疾病的认识提供了重要的基础。

分子生物学的研究主要是从分子层面探究生物体的组成和功能。

在分子生物学的视角下,生物体被看作是由各种复杂的分子组成的。

这些分子包括核酸(DNA和RNA)、蛋白质、细胞膜和其他生物分子。

通过研究这些分子的结构和功能,我们可以深入了解生物体内的一系列生物过程,如DNA复制、基因表达、蛋白质合成等。

在分子生物学的研究中,DNA是一个重要的研究对象。

DNA是三个硝基酸组成的核酸分子,它携带着生物体的遗传信息。

在细胞分裂过程中,DNA会通过复制过程产生两个完全相同的分子。

这种DNA的复制是生物体生长和繁殖的基础。

通过研究DNA的结构和复制机制,分子生物学家可以理解细胞遗传信息的传递和维持。

分子生物学的另一个重要研究对象是蛋白质。

蛋白质是生物体最重要的功能分子之一,它在细胞的结构、功能和代谢过程中起到了关键作用。

分子生物学研究了蛋白质的合成和调控机制,以及蛋白质在细胞内的运输、定位和降解过程。

通过研究蛋白质的结构和功能,分子生物学家可以揭示蛋白质如何参与细胞和组织的功能调节,进而理解生物体的正常生理活动和疾病的发生机制。

除了DNA和蛋白质,分子生物学还研究其他类型的分子。

例如,分子生物学研究了细胞膜的组成和运输机制,了解了细胞如何通过细胞膜与外界进行交流和物质交换。

此外,分子生物学还研究了一些小分子信号物质,如激素和信号分子,它们在细胞间的通讯和调节中扮演重要角色。

分子生物学的技术和方法也得到了快速发展。

例如,PCR(聚合酶链反应)技术可以快速复制DNA,并且已经成为了基因工程和基因诊断的关键技术。

基因测序技术则使得我们能够快速高效地获取DNA的序列信息,进一步推动了基因组学和遗传学的发展。

分子生物学概述

分子生物学概述

分子生物学概述概念:分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。

分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。

阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

发展历史:一、准备和酝酿阶段19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。

在这一阶段产生了两点对生命本质的认识上的重大突破:确定了蛋白质是生命的主要基础物质19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。

20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。

随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。

在此期间对蛋白质结构的认识也有较大的进步。

1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger 和Thompson完成了第一个多肽分子--胰岛素A链和B链的氨基全序列分析。

分子生物学基础

分子生物学基础

分子生物学基础分子生物学是研究生物分子结构、功能和相互作用的学科,是现代生物学的重要组成部分。

通过对生物分子的研究,可以深入了解细胞的机制、生命的起源和演化,以及疾病的发生和治疗等方面。

本文将介绍分子生物学的基本概念、研究方法和应用领域等。

一、基本概念1. 生物分子:生物体内存在着许多不同种类的分子,如蛋白质、核酸、碳水化合物和脂质等。

这些分子构成了细胞的基本单位,参与了各种生物过程。

2. DNA:脱氧核糖核酸(DNA)是生物体中重要的遗传物质,携带了生物个体遗传信息的蓝图。

DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞嘌呤)组成,以双螺旋结构存在。

3. RNA:核糖核酸(RNA)是DNA的姐妹分子,具有多种功能。

其中信使RNA(mRNA)通过转录过程将DNA编码的信息转化为蛋白质合成的模板。

4. 蛋白质:蛋白质是生物体内最重要的功能性分子。

它们由氨基酸组成,通过肽键连接成链状结构。

蛋白质不仅构成了细胞的结构,还具有调节代谢、传递信号和催化反应等生物功能。

二、研究方法1. 分子克隆:分子克隆是指将DNA或RNA片段插入载体(如质粒)中,通过细菌或其他生物体来复制这些分子片段。

这一技术可以用于生物工程、基因治疗等领域。

2. PCR:聚合酶链反应(PCR)是一种体外扩增DNA片段的方法。

它利用特定引物和DNA聚合酶,通过一系列温度循环反复合成DNA的同源链,扩增目标序列。

3. 凝胶电泳:凝胶电泳是一种常用的分离生物分子的方法。

通过在凝胶中施加电场,根据分子的大小和电荷来分离DNA、RNA和蛋白质等。

4. 聚合酶链式反应(PCR):PCR是一种常用的体外扩增DNA片段的方法。

通过引物的特异性与DNA片段的互补性,聚合酶可以复制和扩增模板DNA。

三、应用领域1. 基因工程:分子生物学的发展为基因工程提供了基础。

通过基因重组、转基因等技术,可以克隆和改造DNA,生产重组蛋白质、植物转基因等。

2. 遗传疾病诊断:分子生物学的方法在遗传疾病的诊断中起着关键作用。

分子生物学

分子生物学

第一章绪论1、分子生物学简史:分子生物学是研究核酸、蛋白质等所有生物大分子形态、结构特征及其重要性、规律性而相互联系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动的适应自然界到主动的改造和重组自然界的基础科学。

2、分子生物学发展阶段第一阶段:分子生物学发展的萌芽阶段第二阶段:分子生物学的建立和发展阶段第三阶段:分子生物学的深入发展和应用阶段3、分子生物学的主要研究内容DNA重组技术;基因表达调控研究;生物大分子的结构与功能的研究;基因组、功能基因组与生物信息学的研究第二章染色体与DNA1、名词解释:不重复序列:在单倍体基因组中只有一个或几个拷贝的DNA序列。

真核生物的大多数基因在单倍体中都是单拷贝。

中度重复序列:每个基因组中10~104个拷贝。

平均长度为300 bp,一般是不编码序列,广泛散布在非重复序列之间。

可能在基因调控中起重要作用。

常有数千个类似序列,各重复数百次,构成一个序列家族。

高度重复序列:只存在于真核生物中,占基因组的10%~60%,由6~10个碱基组成。

卫星DNA(satellite DNA):又称随体DNA。

卫星DNA是一类高度重复序列DNA。

这类DNA是高度浓缩的,是异染色质的组成部分。

微卫星DNA(microsatellite DNA):又称短串联重复序列,是真核生物基因组重复序列中的主要组成部分,主要由串联重复单元组成。

重叠基因(overlapping gene,nested gene):具有部分共同核苷酸序列的基因,及同一段DNA携带了两种或两种以上不同蛋白质的编码信息。

重叠的序列可以是调控基因也可以是结构基因部分。

多顺反子(polycistronic mRNA ) :编码多个蛋白质的mRNA称为多顺反子mRNA 。

单顺反子(monocistronic mRNA) :只编码一个蛋白质的mRNA称为单顺反子mRNA。

DNA的转座:又称移位(transposition),是由可移位因子介导的遗传物质重排现象。

分子生物学简介

分子生物学简介

分子生物学(molecHarbiology)从分子水平研究作为生命活动主要物质基础的生物大分子结构与功能,从而阐明生命现象本质的科学。

重点研究下述领域:(1)蛋白质(包括酶)的结构和功能。

(2)核酸的结构和功能,包括遗传信息的传递。

(3)生物膜的结构和功能。

(4)生物调控的分子基础。

(5)生物进化。

分子生物学是第二次世界大战后,由生物化学,、遗传学,微生物学,病毒学,结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学。

目前分子生物学已发展成生命科学中的带头学科。

随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。

如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA 重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。

这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个基因与那种生物的那个基因重新施工,组装成新的基因组合,创造出新的生物。

这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为基因工程,或者说是遗传工程”生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。

本世纪50年代以前的生物学研究,虽然有些已进入了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞这些东西之间的相互关系。

50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。

到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。

顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。

分子生物学最新研究进展

分子生物学最新研究进展
推动产学研合作
加强分子生物学领域的产学研合作 ,促进科研成果的转化和应用,推 动相关产业的发展和创新。
THANKS
非编码RNA功能的揭示
越来越多的研究表明,非编码RNA在基因表达调控、细胞发育和疾病发生等过程中发挥 重要作用,为深入理解生命过程和疾病机制提供了新的视角。
未来发展趋势预测和挑战分析
精准医疗的快速发展
随着基因测序和分子诊断技术的进步,精准医疗将成为未来医学发展 的重要方向,为个体化治疗和预防提供有力支持。
未来,随着技术的不断发展和完善,基 因编辑技术有望成为疾病治疗的新手段 。
03
单细胞测序技术最新进展
单细胞测序技术原理及优势
原理
单细胞测序技术是一种高通量的单细胞基因组、转录组或表观组测序技术,能 够在单细胞水平上对基因表达、变异和表观遗传修饰进行精确测量。
优势
相比传统的群体细胞测序,单细胞测序技术具有更高的分辨率和灵敏度,能够 揭示细胞间的异质性和复杂性,为精准医学和个性化治疗提供有力支持。
细胞命运调控的深入研究
随着单细胞测序和基因编辑技术的发展,细胞命运调控将成为研究热 点,有助于解析细胞发育和再生医学等领域的关键问题。
数据驱动的生物医学研究
大数据和人工智能技术的融合将推动生物医学研究向数据驱动的方向 发展,提高研究效率和精准度。
伦理和法规的挑战
分子生物学研究的快速发展将带来伦理和法规方面的挑战,如基因编 辑技术的潜在风险、数据安全和隐私保护等问题需要引起重视。
分子生物学最新研究进展
汇报人:XX
汇报时间:2024-01-22
目录
• 引言 • 基因编辑技术最新进展 • 单细胞测序技术最新进展 • 表观遗传学最新研究进展

分子生物学课件(共51张PPT)

分子生物学课件(共51张PPT)
二级结构
蛋白质局部主链的空间结构, 包括α-螺旋、β-折叠等。
三级结构
整条肽链中全部氨基酸残基的 相对空间位置Байду номын сангаас即整条肽链每 一原子的相对空间位置。
四级结构
由两条或两条以上的多肽链组 成的一类结构,每一条多肽链
都有完整的三级结构。
蛋白质的功能与分类
结构蛋白:作为细胞的结构,如膜蛋白,染色体蛋白等 。 酶:催化生物体内的化学反应。
分子生物学是生物学的重要分支
01
分子生物学以生物大分子为研究对象,揭示生命现象的分子基
础,是生物学的重要分支之一。
分子生物学推动生物学的发展
02
分子生物学的发展推动了生物学的研究从细胞水平向分子水平
深入,为生物学的发展提供了新的理论和技术支持。
分子生物学与其他学科的交叉融合
03
分子生物学与遗传学、生物化学、微生物学、免疫学等学科存

表观遗传学调控
通过改变染色质结构和DNA 甲基化等方式来调控基因表达

05
蛋白质的结构与功能
蛋白质的分子组成
氨基酸
蛋白质的基本组成单元,共有20 种标准氨基酸。
肽键
连接氨基酸之间的主要化学键。
辅基与辅酶
某些蛋白质还包含辅基或辅酶, 以辅助其功能的发挥。
蛋白质的结构层次
一级结构
指蛋白质中氨基酸的排列顺序 。
重组DNA分子的构建和 筛选
PCR技术及其应用
01
02
PCR技术的基本原理和步骤
引物的设计和选择
03
04
PCR反应体系和条件优化
PCR技术在DNA扩增、突变 分析、基因分型等领域的应用
基因克隆与基因工程

分子生物学

分子生物学

1.广义分子生物学:广义的分子生物学概念包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。

例如,蛋白质的结构、运动和功能,酶的作用机理和动力学,膜蛋白结构与功能和跨膜运输等。

2.狭义分子生物学:是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平阐明蛋白质与核酸、蛋白质与蛋白质之间相互作用的关系及其基因表达调控机理的学科。

3.基因:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位。

包括编码蛋白质和tRNA、rRNA的结构基因,以及具有调节控制作用的调控基因。

基因可以通过复制、转录和决定翻译的蛋白质的生物合成,以及不同水平的调控机制,来实现对遗传性状发育的控制。

基因还可以发生突变和重组,导致产生有利、中性、有害或致死的变异。

4.基因组:基因组是指细胞或生物体中,一套完整单体的遗传物质的总和;或指原核生物染色体、质粒、真核生物的单倍染色体组、细胞器、病毒中所含有的一整套基因。

5.断裂基因:在真核生物基因组中,基因是不连续的,在基因的编码区域内部含有大量的不编码序列,从而隔断了对应于蛋白质的氨基酸序列。

这一发现大大地改变了以往人们对基因结构的认识。

这种不连续的基因又称断裂基因或割裂基因。

6.外显子:基因中编码的序列称为外显子。

7.内含子是在信使RNA被转录后的剪接加工中去除的区域。

8.C值与C值矛盾:C值指生物单倍体基因组中的DNA含量,以pg表示(1pg=10-12g)。

C 值矛盾(C value paradox)是指真核生物中DNA含量的反常现象。

9.半保留复制:在DNA复制程程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式称为半保留复制。

10.半不连续复制-半不连续复制是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。

11.转座子是在基因组中可以移动的一段DNA序列。

分子生物学知识点

分子生物学知识点

分子生物学知识点1、分子生物学:研究核酸等生物大分子的功能、形状结构等特点及其重要性和规律性的科学,是人类从分子水平上真正掀开生物世界的隐秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。

一个典型的真核基因包括:编码序列-外显子;内含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。

基因组的大小用全部的DNA的碱基对总数表示5、分子生物学进展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。

1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。

1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分说明遗传信息的传递规律铺平了道路。

1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调剂细菌细胞代谢的分子机制。

此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。

这一学说对分子生物学的进展起到了十分重要的作用。

1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的奉献,与Holley和Khorana 等人分享了诺贝尔生理医学奖。

Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA 具有相似结构,而Khorana第一个合成了核苷酸分子,同时人工复制了酵母基因6、中心法那么内容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也能够自我复制,同时还发觉在一些病毒蛋白质的合成过程中,RNA能够在逆转录酶的作用下合成DNA.7、分子生物学的3条差不多原理:构成生物体各类有机大分子的单体在不同生物中差不多上相同的;生物体内一切有机大分子的构成都遵循共同的规那么;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

分子生物名词解释

分子生物名词解释

1.克隆(clone)来自同一始祖的相同副本或拷贝的集合.2.克隆化(cloning),获取同一拷贝的过程称为克隆化即无性繁殖。

3.DNA克隆:应用酶学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA接合成一具有自我复制能力的DNA分子——复制子(replicon)或重组体,继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一DNA分子,也称基因克隆或重组DNA (recombinant DNA)。

4.基因工程(genetic engineering)实现基因克隆所用的方法及相关的工作称基因工程,又称重组DNA工艺学。

5.限制性内切酶(restriction endonuclease , RE):基因工程的手术刀,是识别DNA的特异序列, 并在识别位点或其周围切割双链DNA的一类内切酶。

6.酶活性:在50μl反应条件下(包括温度、pH、离子强度等)1小时内完全酶解1μg噬菌体λDNA底物所需要的限制性内切酶的量,即为1个酶单位。

7.DNA连接酶(DNA ligase) :基因工程的缝纫针,催化两条双链DNA分子的互补粘性末端或平末端的5`磷酸基团与3`羟基形成磷酸酯键。

8.基因工程中的载体: 为携带目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

9.质粒 (plasmid)存在细菌染色体以外的环状DNA分子。

10.克隆型质粒:为使插入的外源DNA序列被扩增而特意设计的载体称为克隆载体。

11.表达型质粒:指一类能使外源目的基因在宿主细胞中转录和表达的功能性质粒载体。

12.穿梭型质粒:在原核细胞中复制,继而在真核细胞中进行外源基因的表达。

质粒载体最大可以克隆10kb左右的外源DNA片段.13.插入型载体:含有单个限制性内切酶位点供外源片段插入,而不删除噬菌体中央区的DNA片段。

14.替换型载体:含有两个或两组排列相反的多克隆位点,其中央区的DNA片段可被外源DNA取而代之,替换型载体比插入型载体具有更大的外源基因容量。

分子生物学

分子生物学

第一章绪论名词解释1.分子生物学广义:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规侓性和互相关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

狭义:研究范畴偏重于核酸(或基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程。

2.信号传导:外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其他细胞功能的应答过程。

3.转录因子:一群能与基因5’端上特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。

4.RNA剪辑:当基因转录成pre—mRMA后,除了在5’端加帽及3’端加多聚A(ployA)之外,还要切去隔开各个相邻编码区的内含子,使外显子(编码区)相连后成为成熟MRNA。

简答题1.简述分子生物学的含义及研究内容(1)广义:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规侓性和互相关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

狭义:研究范畴偏重于核酸(或基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过(1)分子生物学的三条基本原理:构成生物体各类有机大分子的单体在不同的生物体中都是相同的。

生物体内一切有机大分子的建成都遵循共同的规则。

某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

(2)研究内容DNA重组技术基因表达调控研究生物大分子的结构、功能研究2.简述DNA重组技术的应用前景用于大量生产某种在正常细胞代谢中产量很低的多肽:如激素、抗生素、酶类、抗体等,提高产量,降低成本,使许多有用多肽得到广泛的应用。

用于定向改造某些生物基因组结构,使其具备的特殊经济价值或功能提高、扩大用于基础研究3.简述真核生物基因表达调控的三个水平。

调控:三个水平上信号传导:外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其他细胞功能的应答过程。

什么是分子生物学?

什么是分子生物学?

什么是分子生物学?分子生物学是一门研究生物系统中分子结构和功能的学科。

它主要关注于生命中的基本分子、如蛋白质、核酸、糖等,以及这些分子之间的相互作用和反应。

分子生物学已成为现代生物学的重要分支之一,不仅对于解释生命现象、揭示生命本质有着重要作用,还对于药物研发以及生物技术的应用具有重要意义。

以下是分子生物学相关的细节介绍:1.分子生物学的起源分子生物学主要起源于20世纪50年代,当时科学家们开始使用分离、分析并重组生物分子来探究生命现象。

这个时期,人类首次将DNA重组到另一个生物的细胞中。

之后,随着技术的进步和研究的深入,分子生物学迅速发展成为一个独立的学科门类。

2.分子生物学的重点研究内容分子生物学的研究方向涉及到上千种生物分子的组成、功能以及相互作用。

比如,DNA 序列、基因表达、蛋白质结构和功能、酶学、免疫学等。

这些研究方向对于我们理解生物机理以及开发新的医学和生物技术有着至关重要的作用。

3.分子生物学的主要技术随着科技的发展,研究人员不断开发各种高精度、高通量的技术手段来探究分子生物学中的诸多问题。

其中,PCR 技术、DNA 测序技术、原位杂交和蛋白质免疫共沉淀等技术成果对这个领域产生了重大的影响。

4.分子生物学的应用前景研究人员经过多年的努力,已经将分子生物学应用到众多生物领域中,比如医学、生物工程、生物化学等。

例如,利用基因编辑技术对遗传病进行治疗以及生物制药等。

这些都是分子生物学研究成果的重要体现。

总之,分子生物学是生命科学的重要组成部分,它为广泛的学科提供了有力的工具和理论支持,也为开发更好的药物和改变人类命运提供了重要的思路和方法。

分子生物知识点总结

分子生物知识点总结

分子生物知识点总结1. DNADNA(脱氧核糖核酸)是生物体内存储遗传信息的一种生物分子。

DNA分子由磷酸、五碱基、核糖和脱氧核糖等部分组成。

DNA的功能主要包括两个方面:遗传物质和蛋白质合成。

DNA的双螺旋结构由Watson和Crick在1953年提出,并由此得到了诺贝尔奖。

通过基因复制,DNA可以在细胞分裂时实现自我复制,确保遗传信息的传递。

2. RNARNA(核糖核酸)是存在于细胞内的一种核酸分子。

它在生物体内主要担负信息传递、蛋白质合成和基因调控等功能。

RNA分子与DNA有很多相似之处,但也有很多独特的结构和功能。

RNA分子在翻译过程中负责传递DNA上的遗传信息,并将其转化成蛋白质序列。

3. 蛋白质蛋白质是生物体内最基本的大分子,也是一种最为复杂的生化分子。

蛋白质在生物体内担任着多种不同的功能,包括酶的催化作用、结构支持、运输作用、调节功能等。

蛋白质的合成是通过翻译过程实现的,翻译将mRNA上的信息转化为氨基酸序列,后者进而折叠成特定的三维结构,从而体现出蛋白质特定的功能和生物学意义。

4. 基因组基因组是指生物体内全部基因的总和,既包括编码基因,也包括非编码序列。

基因组学是对基因组进行研究的学科,主要研究基因组的结构、功能和调控。

研究发现,不同物种之间的基因组具有很大的相似性,但也存在着显著的差异。

人类基因组计划的开展将有助于我们更深入地了解基因组的组成和功能。

5. 克隆技术克隆技术是指通过人工手段将生物体的某一部分分离出来,并培养出完整的个体。

其中最重要的技术是核移植技术,它包括质体移植、细胞核移植和胚胎分裂等技术手段。

克隆技术的应用,既有助于生物学研究的深入,也对农业、医学等领域有着重要的应用价值。

6. PCR技术PCR(聚合酶链式反应)技术是一种重要的核酸扩增技术,它可以在体外模拟DNA的复制过程,以此扩增DNA片段。

PCR技术的应用范围非常广泛,包括基因分型、疾病诊断、法医学鉴定等领域。

分子生物学(完美版)

分子生物学(完美版)

分子生物学绪论一、学科定义分子生物学是在分子水平研究生物结构和功能,研究生命现象的物质基础和揭示生命过程的基本活动规律的学科。

主要是指遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

二、研究对象、主要内容1. 对象:从广义的讲:蛋白质及核酸等所有生物大分子结构和功能的研究都属于分子生物学的范畴。

2. 主要内容我们学习的基础分子生物学主要包括以下内容:DNA 、染色体及基因组(分子生物学的物质基础)DNA 的复制与修复(遗传信息的世代传递,确保其精确的机制) 基因重组(生物变异与进化)RNA 的生物合成(遗传信息传递中的转录过程,转录后的加工) 蛋白质的生物合成(遗传信息传递中的翻译过程,遗传密码子)基因表达调控(基因的时序表达;3~4万个蛋白质编码基因是否意味着只有3万种蛋白质) DNA 操作技术(分子生物学发展的基础、工具)三、发展简史1.理论基础阶段分子生物学是一门深层的理论与实验科学,它必须在自然科学发展到一定的深度后才逐渐形成。

尤其得益于细胞学、遗传学和生物化学的发展。

2.形成发展阶段由于核酸化学的发展,1953年美国科学家Watson 和英国科学家Crick 在前人的基础上(Chargaff, Wilkins 及Franklin 等),提出了DNA 的双螺旋结构模型,为充分揭示遗传信息的传递规律铺平了道路(即本课程中第二章的基础)。

分子生物学的研究对生命科学的发展起着巨大的推动作用,受到国际科学界的高度重视,据统计从1910年到2001年,约50多人次科学家荣获诺贝尔化学奖及生理医学奖。

3.未来发展阶段就基因组研究来说,它遵循的基本思路是:基因组→转录组→蛋白质组。

四、分子生物学在生命科学中的位置1.分子生物学是从生物化学发展出来的一门科学。

2.分子生物学与微生物关系密切,曾认为分子生物学主要是E.coli 的分子生物学。

3.与遗传学的关系,均涉及到遗传信息的载体及传递过程,为相辅相成的学科。

分子生物

分子生物

名词解释:半保留复制:复制时,母链DNA解开成两股单链,每股各作为一个子代细胞复制的模板。

使子代DNA与母链DNA有相同碱基序列。

冈崎片段:DNA复制过程中,两条新生链都只能从5'端向3'端延伸,前导链连续合成,滞后链分段合成。

这些分段合成的新生DNA片段称冈崎片段。

密码子:DNA编码链或mRNA上的核苷酸,以三个为一组(三联体)决定一个氨基酸,称为三联体密码。

转录和翻译是连续的,因此遗传密码也决定蛋白质的一级结构信号肽:是未成熟分泌性蛋白质中可被细胞转运系统识别的特征性氨基酸序列。

可将肽链向胞外分泌,有碱性N-末端区、疏水核心区及加工区三个区段。

分子克隆:将核酸分子(DNA)插入到可在原核或真核细胞中无性繁殖的载体(如质粒、噬菌体或病毒载体)中,经过筛选获得单一克隆群体的技术。

是基因工程的核心技术。

由于只有核酸分子能够以自己为模板进行复制,因而分子克隆实际上是核酸分子克隆。

基因克隆:经无性繁殖获得基因许多相同拷贝的过程。

通常是将单个基因导入宿主细胞中复制而成。

DNA克隆:应用酶学的方法,在体外将各种来源的遗传物质——同源或异源、原核或真核、天然或人工的DNA与载体DNA相结合成一具有自我复制能力的DNA分子——复制子,继而通过转化或转染宿主细胞、筛选出含有目的基因的转化子细胞,再进行扩增、提取获得大量同一DNA分子,即DNA克隆。

限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。

基因表达:使基因所携带的遗传信息表现为表型的过程。

包括基因转录成互补的RNA 序列。

对于结构基因,信使核糖核酸(mRNA)继而翻译成多肽链,并装配加工成最终的蛋白质产物。

顺势作用元件:是指可影响自身基因表达活性的真核DNA序列。

根据顺势作用元件在基因中的位置、转录激活作用的性质及挥发作用的方式,可将真核基因的顺式作用元件分为启动子、增强子及沉默子。

反式作用因子:大多数真核转录调节因子由某一基因表达后,通过与特异的顺式作用元件相互作用(DNA-蛋白质相互作用)激活另一基因的转录,称反式作用蛋白或反式作用因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.基因诊断:利用分子生物学技术,通过检测基因及基因表达产物的存在状态,对人体疾病作出诊断的方法。

基因诊断检测的目标分子是DNA、RNA,也可以是蛋白质或者多肽2.基因诊断依据:①DNA、RNA或蛋白质水平变化,如病毒基因及其转录产物在体内从无到有、癌基因表达水平从低到高;②基因结构变化,如点突变引起基因失活、染色体转位引起基因异常激活或灭活。

3.基因诊断的特点:高特异性、高灵敏性、早期诊断性、应用广泛性4.基因诊断中常用的分子生物学技术:⏹核酸分子杂交(Nucleic acid hybridization)⏹聚合酶链式反应(PCR)⏹单链构象多态性(SSCP):DNA 的突变造成DNA片段中碱基序列不同,变性为单链后在中性聚丙烯酰胺凝胶中的构象不同(单链构象多态性),利用迁移率的差别可使各种序列不同的单链分离开来⏹限制性片段长度多态性(RFLP):由于DNA 变异产生新的酶切位点或原有的酶切位点消失,在用限制性核酸内切酶消化时产生不同长度或不同数量的片段。

⏹DNA序列测定(DNA sequencing)⏹生物芯片(biochips)⏹Western免疫印迹(Western blotting)⏹免疫组织化学诊断5.核酸分子杂交概念:以DNA的变性、复性为理论基础,指具有一定同源序列的两条核酸单链(DNA或RNA),在一定条件下按碱基互补配对原则经过复性处理后,形成异源双链的过程原理:在DNA复性过程中,如果把不同DNA单链分子放在同一溶液中,或把DNA与RNA放在一起,只要在DNA或RNA的单链分子之间有一定的碱基配对关系,就可以在不同的分子之间形成杂化双链(heteroduplex)6.核酸分子杂交分类:Southern 印迹杂交、Northern印迹杂交、斑点杂交、反向斑点杂交、原位分子杂交、固相夹心杂交法7.基因治疗:指将目的基因通过基因转移技术(病毒载体介导或者非病毒载体介导的基因转移技术)导入靶细胞内,目的基因表达产物对疾病起治疗作用。

8.基因治疗的策略:(一)基因置换:指将特定的目的基因导入特定细胞,通过定位重组,导入的正常基因,以置换基因组内原有的缺陷基因。

目的:将缺陷基因的异常序列进行桥正。

基因同源重组技术又称为基因打靶:基因打靶通常是指用含已知序列的DNA片段与受体细胞基因组中序列相同或相近的基因发生同源重组,整合至受体细胞基因组中并得以表达的一种外源DNA导入技术。

基因打靶原理:首先获得ES细胞系,利用同源重组技术获得带有研究者预先设计突变的中靶ES细胞。

通过显微注射或者胚胎融合的方法将经过遗传修饰的ES细胞引入受体胚胎内。

经过遗传修饰的ES细胞仍然保持分化的全能性,可以发育为嵌合体动物的生殖细胞,使得经过修饰的遗传信息经生殖系遗传。

获得的带有特定修饰的突变动物提供研究者一个特殊的研究体系,使他们可以在生物活体中研究特定基因的功能(二)基因添加:通过导入外源基因使靶细胞表达其本身不表达的基因。

(三)基因干预:采用特定的方式抑制某个基因的表达,或者通过破坏某个基因的结构而使之不能表达,以达到治疗疾病的目的。

(四)自杀基因治疗:将“自杀”基因导入宿主细胞中,这种基因编码的酶能使无毒性的药物前体转化为细胞毒性代谢物,诱导靶细胞产生“自杀”效应,从而达到清除肿瘤细胞的目的。

(五)基因免疫治疗: 通过将抗癌免疫增强细胞因子或MHC基因导入肿瘤组织,以增强肿瘤微环境中的抗癌免疫反应。

9.基因治疗的技术应用:(一)遗传病基因治疗(二)恶性肿瘤基因治疗研究: 基因干预技术、自杀基因治疗、肿瘤的免疫基因治疗、提高化疗效果的辅助基因治疗:药物增敏基因治疗;耐药基因治疗(三)病毒性疾病的基因治疗研究:调节机体免疫应答、抗病毒复制10.基因表达分析分为:封闭性系统研究方法:例如DNA微阵列、Northern印迹、实时RT-PCR等方法,其应用范围仅限于已测序的物种,只能研究已知的基因。

开放性系统研究方法: 如差异显示PCR、双向基因表达指纹图谱、分子索引法、随机引物PCR指纹分析等,可以发现和分析未知的基因。

11.检测mRNA常用的实验方法及原理:(一)基于杂交原理的方法可检测mRNA表达水平1.Northern印迹:既可分析mRNA表达又可验证cDNA新序列,是一种基于RNA-DNA 杂交原理建立的一种RNA分析技术2.核糖核酸酶保护实验:可用于mRNA定量和RNA剪接分析,是一种基于杂交原理分析mRNA的方法,既可对mRNA进行定量分析又可研究其结构特征,灵敏度和特异性都很高。

3.原位杂交:①可对mRNA进行区域定位②是利用杂交原理建立的组织原位mRNA检测技术,可对细胞或组织中原位表达的mRNA进行区域定位。

同时也可作为定量分析的补充。

③通过设计与目标mRNA碱基序列互补的寡核苷酸序列,标记后作为探针;该探针能够特异性地与目标靶序列杂交,检测标记信号来确定基因在组织和细胞内表达的区位信息。

④虽然原位杂交在功能性方面提供的信息较少,但是该技术还是被广泛用于组织中的基因表达分析,这是因为其较高的稳定性、较广泛的靶点和组织适用性。

(二)两种变换的聚合酶链式反应是常用的mRNA检测方法1.反转录PCR(RT-PCR):可用于mRNA的半定量分析。

它是以mRNA为模板,体外扩增cDNA,再以cDNA为模板进行特定基因转录产物的PCR扩增。

RT-PCR技术一般用于RNA的定性分析;如果设置阳性参照,则可对待测RNA样品进行半定量分析2.实时定量PCR(RQ-PCR):常用于mRNA的定量分析是定量分析mRNA的最通用、最快速、最简便的方法,该方法是对PCR反应进行实时监测,具有很高的灵敏度和特异性。

12.通过蛋白质检测揭示基因翻译水平的表达特征实验方法与原理:(一)采用特异抗体经Western印迹可直接测定基因编码多肽:Western印迹(Western blot)是一种免疫印迹技术,其基本原理与核酸分子杂交相似,只是以偶联标记物的抗体分子作为探针,检测转移到固相支持物上的蛋白质/多肽分子。

当在蛋白质水平上检测特定基因的表达活性时,最常用的方法就是利用Western印迹对细胞或组织的总蛋白质中的特异蛋白质进行定性和半定量分析。

(二)酶联免疫吸附分析:是一种建立在抗原-抗体反应基础上的蛋白质分析基本方法。

该方法不需经电泳分离待检样品蛋白质,而是预先将样品包被在支持体上,以后反应过程与Western印迹大致相同——顺序结合(即“吸附”)特异抗体(一抗)及与酶连接的第二抗体(也可预先包被抗体,“吸附”抗原),再进行酶-底物反应。

反应后通过专门的酶标仪测定、记录数据。

(三)免疫组化实验可对组织/细胞表达的蛋白质进行原位检测:免疫组织化学(immunohistochemistry)与免疫细胞化学(immunocytochemistry)原理相同,都是利用标记的特异性抗体通过抗原-抗体反应和显色反应,在组织或细胞原位检测特定抗原(即目标蛋白质)的方法,简称为免疫组化实验。

近年来由于荧光标记抗体的广泛应用,这两种方法又被统称为免疫荧光法。

(四)流式细胞术用于分析表达特异蛋白质的阳性细胞:流式细胞术(flow cytometry)在细胞水平分析特定蛋白质的基本原理也是抗原-抗体反应,它利用荧光标记抗体与抗原的特异性结合,经过流式细胞仪分析荧光信号,从而根据细胞表达特定蛋白质的水平对某种蛋白质阳性细胞(即特异基因表达的细胞)作出判断。

13.高通量检测技术高通量筛选(High throughput screening,HTS)技术是在大量核酸、多肽信息累计(即资料库)基础上,采用微板作为分子载体,制作集成“芯片”,以自动化操作系统进行分子杂交的试验过程14.高通量检测技术成为基因表达研究的有力工具(一)基因芯片和高通量测序技术可在基因水平高通量地分析基因表达1.基因芯片已成为基因表达谱分析的常用方法基因芯片(gene chip)又称DNA微阵列(DNA microarray)、DNA芯片(DNA chip), 是将大量已知序列的核酸片段(包括寡核苷酸、cDNA、基因组DNA、microRNA等) 集成在同一基片上,组成密集分子排列,通过与标记样品进行杂交,检测、获取细胞或组织的基因信息。

2. 高通量测序技术是新一代基因表达谱分析方法(二)蛋白质芯片和双向电泳可在蛋白质水平高通量地分析基因表达1.蛋白质芯片;是一种对蛋白质的表达和功能进行高通量分析的技术。

是将具有高度亲和特异性的探针分子(如单克隆抗体)固定在基片上,用以识别复杂生物样品溶液中的目标多肽;蛋白质功能芯片可用来研究蛋白质修饰、蛋白质-蛋白质/DNA-蛋白质/RNA-蛋白质,以及蛋白质与脂质、蛋白质与药物、酶与底物、小分子-蛋白质等的相互作用。

根据蛋白质芯片制作方法和用途不同,可将其分为1. 蛋白质检测芯片2. 蛋白质功能芯片两大类蛋白质检测芯片包括:1.抗体芯片2.抗原芯片3.配体芯片4.碳水化合物芯片等2.双向电泳结合质谱普遍用于蛋白质表达谱的分析和鉴定原理: 根据蛋白质分子的两个属性——等电点和分子质量——将蛋白质混合物进行分离。

电泳结果经染色后,即可对不同样品中蛋白质的表达谱进行比较;还可从凝胶中将特定的蛋白质点切下,经胰蛋白酶消化后得到短肽片段,利用质谱(mass spectrum)技术进行定性分析,对差异表达的蛋白质进行鉴定。

15.利用生物信息学方法进行基因功能注释(一)通过序列比对预测基因功能(二)利用生物信息学方法分析基因芯片数据(三)通过生物信息学方法分析蛋白质结构来预测蛋白质功能16.利用生物网络全面系统地了解基因的功能(一)利用生物网络研究基因调控(二)利用生物网络研究信号转导(三)利用生物网络研究代谢途径(四)利用生物网络研究蛋白质相互作用17.基因的生物学功能鉴定技术一、采用功能获得策略鉴定基因的功能基因功能获得策略即通过将目的基因直接导入某一细胞或个体中,使其获得新的或更高水平的表达,通过细胞或个体生物性状的变化来研究基因的功能。

常用的方法有转基因和基因敲入技术等。

(一)用转基因技术获得基因功能转基因技术(transgenic technology)是指将外源基因导入受精卵或胚胎干细胞中,通过随机重组使外源基因插入细胞染色体DNA,再将受精卵或胚胎干细胞植入受体动物的子宫,使得外源基因能够随细胞分裂遗传给后代(二)基因敲入可以实现基因的定向插入基因敲入( gene knock-in)是通过同源重组的方法,用某一基因替换另一基因, 或将一个设计好的基因片段插入到基因组的特定位点,使之表达并发挥作用。

通过基因敲入,可以研究特定基因在体内的功能;也可以与之前基因的功能进行比较;或将正常基因引入基因组中置换突变基因以达到靶向基因治疗的目的。

相关文档
最新文档