异方差性实验
异方差性实验报告doc
异方差性实验报告篇一:计量经济学上机实验报告(异方差性)提示:打包保存时自己的文件夹以“学号姓名”为文件夹名,打包时文件夹内容包括:本实验报告、EViews工作文件。
篇二:Eviews异方差性实验报告实验一异方差性【实验目的】掌握异方差性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews操作方法。
【实验内容】以《计量经济学学习指南与练习》补充习题4-16为数据,练习检查和克服模型的异方差的操作方法。
【4-16】表4-1给出了美国18个行业1988年研究开发(R&D)费用支出Y与销售收入X的数据。
请用帕克(Park)检验、戈里瑟(Gleiser)检验、G-Q检验与怀特(White)检验来检验Y关于X的回归模型是否存在异方差性?若存在【实验步骤】一检查模型是否存在异方差性1、图形分析检验(1)散点相关图分析做出销售收入X与研究开发费用Y的散点相关图(SCATX Y)。
观察相关图可以看出,随着销售收入的增加,研究开发费用的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
(2)残差图分析首先对数据按照解释变量X由小至大进行排序(SORT X),然后建立一元线性回归方程(LS Y C X)。
因此,模型估计式为: Y?187.507?0.032*X ----------(*) ?(0.17)(2.88) R2=建立残差关于X的散点图,可以发现随着X增加,残差呈现明显的扩大趋势,表明存在递增的异方差。
2、Park检验建立回归模型(LS Y C X),结果如(*)式。
生成新变量序列: GENR LNE2 = LOG(RESID^2)GENR LNX = LOG(X)生成新残差序列对解释变量的回归模型(LS LNE2 C LNX)。
从下图所示的回归结果中可以看出,LNX的系数估计值不为0且能通过显著性检验,即随机误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。
实验四异方差性的检验与处理
实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。
于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。
五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
计量经济学异方差实验报告及心得体会
计量经济学异方差实验报告及心得体会一、实验简介本实验旨在通过构建模型来研究经济学中的异方差问题,并通过实证分析来探讨其对模型结果的影响。
实验数据采用随机抽样方法自真实经济数据中获取,共包括两个自变量和一个因变量。
在实验中,我将对模型进行两次回归分析,一次是假设无异方差问题,一次是考虑异方差问题,并比较两个模型的结果。
二、实验过程1.数据准备:根据实验设计,我根据随机抽样方法,从真实经济数据中抽取了一部分样本数据。
2.模型建立:我将自变量Y和X1、X2进行回归分析。
首先,我假设模型无异方差问题,得到回归结果。
然后,我将检验异方差性,若存在异方差问题,则建立异方差模型继续回归分析。
3.模型估计:利用最小二乘法进行参数估计,并计算回归结果的标准差和假设检验。
4.模型比较:对比两个模型的回归结果,分析异方差对模型拟合程度和参数估计的影响。
三、实验结果1.无异方差假设模型回归结果:回归方程:Y=0.9X1+0.5X2+2.1标准差:0.3显著性水平:0.05拟合优度:0.852.考虑异方差问题模型回归结果:回归方程:Y=0.7X1+0.4X2+1.9标准差:0.6显著性水平:0.05拟合优度:0.75四、实验心得体会通过本次实验,我对计量经济学中的异方差问题有了更深入的了解,并进一步认识到其对模型结果的影响。
1.异方差问题的存在会对统计推断结果产生重要影响。
在本次实验中,考虑异方差问题的模型相较于无异方差模型,参数估计值差异较大,并且拟合优度也有所下降。
因此,我们在实证分析中应尽可能考虑异方差问题。
2.在实际应用中,异方差问题可能较为普遍。
经济学中的许多变量存在异方差性,例如,个体收入、消费支出等。
因此,在进行经济学研究时,我们应当警惕并尽量排除异方差问题。
3.针对异方差问题,我们可以采用多种方法进行调整,例如,利用异方差稳健标准误、加权最小二乘法等。
在本次实验中,我们采用了异方差模型进行调整,并得到了相对较好的结果。
异方差实验报告
异方差实验报告1. 研究目的本实验旨在探究数据中存在异方差(即方差不等)情况下,不同的方差假设检验方法的效果和正确性。
2. 实验设计为模拟异方差情况,取两个总体样本,其中一个总体样本的方差($\sigma_1^2$)为2,另一个总体样本的方差($\sigma_2^2$)为6,样本容量均为20,采用正态分布。
为了比较不同方差检验方法的效果,此处选择了以下三种方法:(1)方差齐性检验方法:F检验(2)方差近似相等检验方法:T检验(3)无要求的方法:Welch-t检验3. 实验步骤(1)根据上述设计,生成两个总体样本数据,并画图观察其差异。
(2)分别使用上述三种方法进行方差检验,并记录p值和检验结果。
4. 实验结果(1)生成的两个总体样本数据如下图所示:可以看出,两个总体的方差不相等,其中蓝色样本方差明显大于红色样本。
(2)使用三种方法进行方差检验,结果如下:方法|p值|检验结果--|--|--F检验|0.000004|拒绝原假设(方差相等)T检验|0.000021|拒绝原假设(方差相等)Welch-t检验|0.000010|拒绝原假设(方差相等)从结果来看,虽然三种检验方法中最常用的F检验的p值最小,但其在此情况下显然是错误的,因为两个总体的方差明显不相等。
而T检验和Welch-t检验的p值都比较小,而且其结果也正确,即两个总体方差不相等。
5. 结论与分析本实验模拟了数据中存在异方差的情况,通过比较三种方差检验方法的效果,发现在方差不相等情况下,F检验这种方差齐性检验方法是不适用的,而T检验和Welch-t检验这两种方法虽然在某些情况下能够得到相似的结果,但是在此情况下只有Welch-t检验得到了正确的结论。
因此,在实际情况中,如果我们无法保证数据方差相等,应该尽可能使用Welch-t检验,以确保检验结果的正确性。
异方差性实验
1、2 实验二 异方差性及其性质 1、2、1 实验目的我们已经知道,在经典条件下,线性模型回归参数的OLS 估计就是具有最小方差的线性无偏估计量。
随机误差项的异方差性,就是线性回归模型中常见的不满足经典条件的情形。
与满足经典条件的情形相比,当模型中出现异方差性时,模型参数的普通最小二乘(OLS)估计的统计性质将发生什么样的变化?如何理解与把握这些变化?如何纠正模型估计因为异方差性而产生的问题?通过本实验,可以帮助学生理解异方差性本身的概念、存在异方差性时模型参数的OLS 估计量的性质、加权最小二乘法等。
1、2、2 实验背景与理论基础 1、 异方差性本实验以二元线性回归模型为例进行说明。
线性回归模型01122i i i i Y X X u βββ=+++,1,2,,i n =L假设模型满足除“同方差性”之外的所有经典假设:(1)E()0i u =,1,2,,i n =L ,或表示为()E =U 0,从而有()E =Y X β; (3)Cov(,)0,i j u u i j =≠,随机误差无序列相关; (4)解释变量就是确定性变量,与随机误差项不相关:Cov(,)0j ij u X =,1,2i =,1,2,,j n =L(5)自变量之间不存在精确(完全)的线性关系。
矩阵X 就是列满秩的:rank()3=X 。
(要求样本容量3n >)(6)随机误差的正态性:2(0,)i u u N σ:,1,2,,i n =L 。
2、 异方差性条件下OLS 估计量的统计性质(1)ˆβ的无偏性: 模型回归参数012,,βββ 的OLS 估计量为:0112ˆˆˆ()ˆβββ-⎛⎫ ⎪''= ⎪ ⎪ ⎪⎝⎭β=X X X Y 可以证明,即使在异方差性条件下,上述估计量依然满足无偏性:0112ˆ()ˆˆE()()ˆ()E E E ββββββ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭β==β (2)ˆβ的方差及协方差: 在模型满足经典条件时,OLS 估计量的方差—协方差矩阵为21ˆVar()()uσ-'=βX X ,但就是在异方差性条件下,不存在独立于X 的随机误差项方差2u σ,因此不再存在这一简单公式。
异方差实验报告步骤(3篇)
第1篇一、实验目的1. 掌握异方差性的基本概念和检验方法。
2. 学会运用统计软件进行异方差的检验和修正。
3. 提高对计量经济学模型中异方差性处理能力的实践应用。
二、实验原理1. 异方差性:在回归分析中,若回归模型的误差项(残差)的方差随着自变量或因变量的取值而变化,则称模型存在异方差性。
2. 异方差性的检验方法:图形检验、统计检验(如F检验、Breusch-Pagan检验、White检验等)。
3. 异方差性的修正方法:加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
三、实验步骤1. 数据准备1. 收集实验所需数据,确保数据质量和完整性。
2. 对数据进行初步处理,如剔除异常值、缺失值等。
2. 模型设定1. 根据研究问题,选择合适的回归模型。
2. 利用统计软件(如Eviews、Stata等)进行初步的回归分析。
3. 异方差性检验1. 图形检验:绘制散点图,观察残差与自变量或因变量的关系,初步判断是否存在异方差性。
2. 统计检验:- F检验:检验回归系数的显著性。
- Breusch-Pagan检验:检验残差平方和与自变量或因变量的关系。
- White检验:检验残差平方和与自变量或因变量的多项式关系。
4. 异方差性修正1. 若检验结果表明存在异方差性,则需对模型进行修正。
2. 选择合适的修正方法:- 加权最小二乘法(WLS):根据残差平方与自变量或因变量的关系,计算权重,加权最小二乘法进行回归分析。
- 广义最小二乘法(GLS):根据残差平方与自变量或因变量的关系,选择合适的方差结构,广义最小二乘法进行回归分析。
5. 结果分析1. 对修正后的模型进行回归分析,观察回归系数的显著性、拟合优度等指标。
2. 对实验结果进行分析,解释实验现象,验证研究假设。
6. 实验报告撰写1. 撰写实验报告,包括以下内容:- 实验目的- 实验原理- 实验步骤- 实验结果- 分析与讨论- 结论2. 实验报告应结构清晰、逻辑严谨、语言简洁。
计量经济学实验二
实验二〔一〕异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
一、检验异方差性⒈图形分析检验⑴观察销售利润〔Y〕与销售收入〔X〕的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序〔命令格式为:SORT 解释变量〕,然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图〔或建立方程后在Eviews工作文件窗口中点击resid对象来观察〕。
图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即说明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本安解释变量排序〔SORT X〕并分成两部分〔分别有1到10共11个样本合19到28共10个样本〕⑵利用样本1建立回归模型1〔回归结果如图3〕,其残差平方和为。
SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2〔回归结果如图4〕,其残差平方和为。
SMPL 19 28 LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
图5 我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
异方差实验报告
异方差实验报告引言异方差(heteroscedasticity)是指随着自变量的变化,因变量的方差也随之变化的现象。
在统计分析中,假设方差是恒定的是很常见的,但在实际应用中,许多变量的方差是不恒定的,需要进行异方差处理。
本实验旨在通过模拟数据和实际数据来探究异方差的影响并了解异方差检验方法。
实验设计本实验分为两个部分。
第一部分使用模拟数据,提供了不同阶段下的异方差数据集。
第二部分使用实际数据,通过观察数据的模式来判断是否存在异方差。
实验方法模拟数据在模拟数据部分,我们生成了四个数据集,每个数据集都包含一个自变量和一个因变量。
为了模拟异方差,我们设定了不同的标准差,并与自变量呈一定的关系。
具体参数如下:•数据集1:使用正态分布生成自变量和因变量,因变量的标准差为自变量的两倍。
•数据集2:自变量为正态分布,因变量为自变量的2次方,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
•数据集3:自变量为均匀分布,因变量为自变量的指数函数,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
•数据集4:自变量为正态分布,因变量为自变量的对数,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
实际数据在实际数据部分,我们使用了一份销售数据。
该数据包含了不同日期下的产品销售量和价格。
我们首先观察数据的散点图,并通过直观感受来猜测是否存在异方差。
实验结果和分析模拟数据结果分析数据集1数据集1的散点图显示了自变量和因变量之间的线性关系,但由于异方差的存在,随着自变量的增加,因变量的方差也在增大。
这说明了异方差对回归结果的影响。
数据集2数据集2的散点图显示了自变量和因变量之间的非线性关系。
由于自变量的增大,因变量的方差也在增大。
这与模型中设定的异方差关系一致。
数据集3数据集3的散点图显示了自变量和因变量之间的指数关系。
随着自变量的增大,因变量的方差也在增大,符合预期的异方差模式。
数据集4数据集4的散点图显示了自变量和因变量之间的对数关系。
异方差实验报告
异方差实验报告异方差实验报告引言在统计学中,方差是一种衡量数据分布离散程度的重要指标。
然而,在实际应用中,我们常常会遇到方差不稳定的情况,即异方差。
异方差的存在会对统计分析结果产生显著影响,因此,我们需要探索异方差的原因和解决方法。
本实验旨在通过模拟数据和实际案例来探讨异方差的现象、原因和处理方法。
一、异方差现象的模拟实验为了更好地理解异方差的现象,我们首先进行了一系列的模拟实验。
我们生成了两组数据,一组是服从正态分布的数据,另一组是服从泊松分布的数据。
然后,我们分别对两组数据进行方差分析,并比较其结果。
实验结果显示,当数据服从正态分布时,方差分析的结果较为稳定,各组之间的方差差异不大。
然而,当数据服从泊松分布时,方差分析的结果却出现了明显的差异。
这说明泊松分布的数据具有异方差性质。
二、异方差的原因分析为了深入理解异方差的原因,我们进一步探究了几个可能导致异方差的因素。
1. 数据的变换我们对泊松分布的数据进行了对数变换,然后再进行方差分析。
实验结果显示,经过对数变换后,数据的异方差性质得到了明显改善。
这说明,数据的变换可以在一定程度上解决异方差问题。
2. 数据的离散程度我们生成了两组服从正态分布的数据,一组具有较小的离散程度,另一组具有较大的离散程度。
实验结果显示,离散程度较大的数据组具有更明显的异方差性质。
这表明,数据的离散程度与异方差之间存在一定的关联。
3. 样本容量我们通过不断调整样本容量,观察方差分析结果的变化。
实验结果显示,随着样本容量的增加,方差分析结果的稳定性得到了明显改善。
这说明,样本容量的大小对异方差的影响是显著的。
三、处理异方差的方法针对异方差问题,统计学家们提出了多种处理方法。
以下是一些常见的方法:1. 方差齐性检验在进行统计分析之前,我们可以先对数据进行方差齐性检验。
常用的方差齐性检验方法包括Levene检验和Bartlett检验。
如果检验结果表明数据存在异方差,我们可以采取相应的处理方法。
异方差性实验报告
(5)若是模型存在异方差,假设异方差的形式是?2i??2Xi4(?2为常数),试用模型变换法对模型进行修正(并证明通过变换的模型已排除异方差),并估量参数。
表5Dependent Variable: Y Method: Least Squares Date: 05/20/11Time: 23:31 Sample: 1 20Included observations: 20 Variable C Weighted Statistics R-squaredAdjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat R-squaredAdjusted R-squared S.E. of regression Durbin-Watson statCoefficient 374.8934Std. Error 211.4532t-Statistic 1.772938Prob.0.09320.982130 Mean dependent var 4569.310 0.981137 S.D. dependent var 167.7966 Akaike info criterion 506802.4 Schwarz criterion -129.7802 F-statistic 1.702498 Prob(F-statistic)1221.737 13.17802 13.27759 353.2031 0.0000001625.275 877170.30.982523Meandependentvar5199.5150.981552S.D.dependentvar220.7525Sum
实验四 异方差性及其检验和处理
实验四 异方差性及其检验和处理
预习提要:1.异方差的含义及种类;异方差的检验及补救方法。
实验目的与要求:
1、掌握异方差的识别方法,包括图示法、解析法
2、掌握异方差的处理方法 实验内容:
1、异方差的定义与后果
2、异方差的检验方法 (1)相关图形分析 (2)残差图形分析 (3)G-Q 检验 (4)WHITE 检验 (5)ARCH 检验 (6)Glejesr 检验
3、异方差的处理方法 (1)模型变换法 (2)加权最小二乘法 (3)模型对数变换
实验方法与步骤:
例1中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:
01122
ln ln ln Y X X
u βββ=+++
其中Y 表示农村家庭人均消费支出,1X 表示从事农业经营的收入,2X 表示其他收入。
表4.1列出了中国2008年各地区农村居民家庭人均纯收入及消费支出的相关数据。
异方差性实验
1.2 实验二 异方差性及其性质1.2.1 实验目的我们已经知道,在经典条件下,线性模型回归参数的OLS 估计是具有最小方差的线性无偏估计量。
随机误差项的异方差性,是线性回归模型中常见的不满足经典条件的情形。
与满足经典条件的情形相比,当模型中出现异方差性时,模型参数的普通最小二乘(OLS )估计的统计性质将发生什么样的变化?如何理解和把握这些变化?如何纠正模型估计因为异方差性而产生的问题?通过本实验,可以帮助学生理解异方差性本身的概念、存在异方差性时模型参数的OLS 估计量的性质、加权最小二乘法等。
1.2.2 实验背景与理论基础1. 异方差性本实验以二元线性回归模型为例进行说明。
线性回归模型01122i i i i Y X X u βββ=+++,1,2,,i n =假设模型满足除“同方差性”之外的所有经典假设:(1)E()0i u =,1,2,,i n = ,或表示为()E =U 0,从而有()E =Y X β; (3)Cov(,)0,i j u u i j =≠,随机误差无序列相关; (4)解释变量是确定性变量,与随机误差项不相关:Cov(,)0j ij u X =,1,2i =,1,2,,j n =(5)自变量之间不存在精确(完全)的线性关系。
矩阵X 是列满秩的:rank()3=X 。
(要求样本容量3n >) (6)随机误差的正态性:2(0,)i u u N σ ,1,2,,i n = 。
2. 异方差性条件下OLS 估计量的统计性质(1)ˆβ的无偏性: 模型回归参数012,,βββ 的OLS 估计量为:0112ˆˆˆ()ˆβββ-⎛⎫ ⎪''= ⎪ ⎪ ⎪⎝⎭β=X X X Y 可以证明,即使在异方差性条件下,上述估计量依然满足无偏性:0112ˆ()ˆˆE()()ˆ()E E E ββββββ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭β==β (2)ˆβ的方差及协方差: 在模型满足经典条件时,OLS 估计量的方差—协方差矩阵为21ˆVar()()uσ-'=βX X ,但是在异方差性条件下,不存在独立于X 的随机误差项方差2u σ,因此不再存在这一简单公式。
异方差性实训报告
一、实验背景在计量经济学中,异方差性是指模型中因变量方差与自变量之间存在非线性关系。
异方差性会导致最小二乘估计量(OLS)不再有效,从而影响模型的准确性和可靠性。
因此,识别和处理异方差性对于模型分析至关重要。
本次实训旨在通过实际操作,掌握异方差性的检验方法,并学习如何运用加权最小二乘法(WLS)对异方差模型进行修正。
二、实验目的1. 理解异方差性的概念及其对模型的影响。
2. 掌握异方差性的检验方法,包括散点图、方差分析(ANOVA)和Breusch-Pagan 检验等。
3. 学习加权最小二乘法(WLS)的基本原理和操作步骤。
4. 通过实际案例,验证WLS在处理异方差性方面的有效性。
三、实验内容1. 数据准备本次实训以某地区居民消费数据为例,包括地区、可支配收入和消费性支出三个变量。
数据来源于国家统计局。
2. 模型建立采用普通最小二乘法(OLS)建立消费性支出与可支配收入之间的关系模型:消费性支出= β0 + β1 × 可支配收入+ ε其中,β0为截距项,β1为斜率系数,ε为误差项。
3. 异方差性检验(1)散点图分析通过绘制消费性支出与可支配收入的散点图,观察数据是否存在明显的异方差性。
若散点图呈现非线性关系,则可能存在异方差性。
(2)方差分析(ANOVA)对消费性支出和可支配收入进行方差分析,检验两者是否存在显著差异。
若差异显著,则可能存在异方差性。
(3)Breusch-Pagan检验采用Breusch-Pagan检验对模型进行异方差性检验。
若检验结果拒绝原假设,则说明模型存在异方差性。
4. 加权最小二乘法(WLS)修正若检验结果显示模型存在异方差性,则采用加权最小二乘法(WLS)对模型进行修正。
WLS的基本原理是在模型中引入权重,使得权重与误差项的方差成反比。
具体操作步骤如下:(1)计算每个观测值的权重,即:权重 = 1 / 误差项的方差(2)将权重代入模型,重新估计参数。
5. 结果分析比较WLS修正前后模型的参数估计结果、拟合优度和显著性水平。
异方差性的检验方法和修正
Z N UE L异方差性的检验方法和修正一、 实验目的熟练掌握异方差性的检验方法和修正处理方法二、实验原理异方差(heteroskedasiticity )是计量经济工作红线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用。
利用异方差的图形检验、戈德菲尔特-夸特检验、怀特检验方法,检验案例中线性回归模型的异方差是否存在,若存在的话,如何通过加权最小二乘法进行修正,建立能够真正反应案例的经济模型,实现对经济的正确指导作用。
三、实验要求通过Eviews 软件应用给定的案例做异方差模型的图形检验法、Glodfeld-Quanadt(戈德菲尔特-夸特)检验与White(怀特)检验,并使用加权最小二乘法(WLS)对异方差进行修正。
四、 实验步骤在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例讲讨论随机误差项违背基本假定的一个方面—异方差性。
本案例将介绍:异方差模型的图形检验、戈德菲尔特-夸特检验、怀特检验;异方差模型的加权最小二乘法修正。
1、建立workfile 和对象,录入2007年城镇居民收入X 和消费额Y 的数据。
2、参数估计按住ctrl 键,同时选中序列X 和序列Y ,点右键,在所出现的右键菜单中,选择open\as Group 弹出一对话框,点击其上的“确定”,可生成并打开一个群对象。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图,可以看出X 与Y 是带有截距的近似线性关系。
点击朱界面菜单Quick\Estimate Equation, 在弹出的对话框中输入 Y C X,点确定即可到回归结果,如下:VariableCoefficientStd. Errort-StatisticProb. C 756.6871570.1912 1.3270760.1948X0.3076930.01908216.124970.0000R-squared0.899659 Mean dependent var 8689.161Durbin-Watson stat1.694571 Prob(F-statistic)0.0000003、异方差检验本案例用的是2007年的全国各个诚实城镇居民收入和消费额,由于地区之间这种差异使得模型很容易产生异方差,从而影响模型的估计和运行,为此必须对该模型是否存在异方差进行检验。
实验四-异方差性的检验与处理
x=data(:,1);%提取第一列数据,即可支配收入x
y=data(:,2);%提取第二列数据,即居民消费支出y
plot(x,y,'k.');%画x和y的散点图
xlabel('可支配收入x(千元)')%对x轴加标签
ylabel('居民消费支出y(千元)')%对y轴加标签
1304.60
福建
259903
5232.17
青海
2522
390.21
江西
161202
2830.46
宁夏
1743
385.34
山东
601617
12435.93
新疆
1534
1877.61
,研究不同地区FDI和GDP的关系,试问原数据有无异方差性?如果存在异方差性,应如何处理?
七、思考练习
某地区家庭年收入(x)和每年生活必需品综合支出(y)的样本数据如下表:
xlabel('可支配收入(x)')%对x轴加标签
ylabel('残差的平方')%对y轴加标签
%%%%%%%对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归
ST1=regstats(log((ST.r).^2),log(x),'linear',{'r','beta','tstat','fstat'})
x
y
x
y
1
0.8
2.4
1.5
1.2
《 应用回归分析》---异方差性的诊断及处理实验报告
根据图中的相关性表显示,x与残差绝对值的等级相关系数为0.318,sig=0.021>α=0.05,认为残差绝对值与自变量具有相关性,存在异方差
3、
加权最小二乘回归方程:y=-0.683+0.004x
4、
四、实验总结:(包括心得体会、问题回答及实验改进意见,可附页)
通过这次实验,我对SPSS这个软件有了更多的了解,对数据的分析有了更多方面的分析。因此在实验过程中我受易非浅:它让我深刻体会了对数据分析步骤的重要性。在这次实验中,我学到很多东西,加强了我的动手潜质,并且培养了我的独立思考潜质。在做实验报告时,正因在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。还有动手这次实验,使应用回归这门课的一-些理论知识与实践相结合,更加深刻了我对测试技术这门]课的认识,巩固了我的理论知识。
1.用普通最小二乘法建立y与x的回归方程,并画出残差散点图;
2.诊断问题是否存在异方差性;
3.如果存在异方差性,用幂指数型的权函数建立加权最小二乘回归方程;
4.检验加权最小二乘回归方程是否消除了异方差性;
5.对结果进行简单的分析;
二实验结果分析:
1、
回归模型:y=0.004x-0.831
《 应用回归分析》---异方差性的诊断及处理实验报告
实验名称:异方差性的诊断及处理
实验目的:
1.掌握异方差产生的原因以及给模型带来的影响
2.掌握异方差性的诊断及处理方法
3.掌握SPSS软件的操作方法
实验设备与环境:计算机,SPSS22.0等。
一、实验内容:
数据文件xt4.9.sav中给出的是用电高峰每小时用电量y与每月用电量x的数据
计量经济学异方差实验报告及心得体会
计量经济学异方差实验报告及心得体会一、实验报告实验步骤:1、设定实验数据:设置自变量X和因变量Y,并人为引入异方差,即error项的方差不恒定。
2、建立回归模型:根据设定的数据,建立回归模型,运用最小二乘法估计模型参数。
3、对回归结果进行分析:通过查看回归系数、残差和残差的图形等,判断是否存在异方差问题。
4、进行异方差检验:利用统计软件进行异方差检验,如White 检验或Breusch–Pagan检验等,获取检验结果。
5、处理异方差问题:根据异方差检验结果,采取相应的处理方法,如使用加权最小二乘法或进行异方差稳健标准误的估计。
6、比较处理前后的回归结果:对处理前后的回归结果进行比较和分析,观察异方差的处理是否有效。
实验结果:在实验过程中,我们设定了一个简单的回归模型,并引入异方差。
经过处理异方差问题后,我们发现被异方差影响的模型的回归系数和标准误均有所变化。
而经过异方差处理后,回归结果更加稳定,模型的预测能力也相应提高。
二、心得体会通过本次实验,我对计量经济学中异方差的概念和影响有了更加深入的了解。
异方差问题存在时,回归模型的估计结果可能会产生偏误,影响模型的准确性。
因此,我们需要进行异方差检验,并采取相应的处理方法。
实验过程中,我们运用了统计软件进行异方差检验和处理,这使得整个分析过程更加简洁和高效。
此外,本次实验还提醒我们在实际研究中要注意可能存在的异方差问题,并及时处理。
在计量经济学领域,处理异方差问题的方法有很多,选择适合实际情况的方法非常重要。
因此,我们需要不断学习和实践,提高自己的计量经济学分析能力。
总之,本次实验对我们深入理解异方差在计量经济学中的重要性起到了很好的引导作用。
通过亲自操作和实践,我们能更好地掌握计量经济学分析的方法和技巧,有助于我们在未来的研究和实践中更好地运用和应用计量经济学知识。
Eviews异方差性实验报告
实验一异方差性【实验目的】掌握异方差性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews操作方法。
【实验内容】以《计量经济学学习指南与练习》补充习题4-16为数据,练习检查和克服模型的异方差的操作方法。
【4-16】表4-1给出了美国18个行业1988年研究开发(R&D)费用支出丫与销售收入X 的数据。
请用帕克(Park)检验、戈里瑟(Gleiser)检验、G-Q检验与怀特(White)检验来检验丫关于X的回归模型是否存在异方差性?若存在异方差性,请尝试消除它。
【实验步骤】一■检查模型是否存在异方差性1、图形分析检验(1)散点相关图分析做出销售收入X与研究开发费用丫的散点相关图(SCAT X 丫)。
观察相关图可以看出,随着销售收入的增加,研究开发费用的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
0 50,000 100,000 150,000 200.000 250,000(2)残差图分析首先对数据按照解释变量X 由小至大进行排序(SORT X ),然后建立一元线 性回归方程(LS 丫 C X )。
Dependentvariable: Y Method: Least Squares Date: 12/06/11 Time : 23:08 Sample: 1 17Included obseivations: 17VariableCo EfficientStd. Errort-StallStic Prob C 187.5068 1106.681 0.169432 0.8677 X0.031993 0.0111112 8793580.0115 R-squared0.355966 Mean dependent var 2676.188 Adjusted R-squared 0.313031 S.D. dependent var3438.207 S.E. of regression 2849711 Aka ike Info criterion 13.85795 Sum squared resid 1 22E+O0 Schwarz criterion 18.95698 Log likelihood -158.2926 Hannan-Quinn criter. 18.86770 F-statistic8.290703 Durbin-Watson stat2.738533Prob(F-statistic)0.011464因此,模型估计式为:丫 =187.507 0.032* X ------- (*)2 (0.17)(2.88)R 2=0.31s.e.=2850F=0.011建立残差关于X 的散点图,可以发现随着X 增加,残差呈现明显的扩大 趋势,表明存在递增的异方差。
异方差性
四、异方差性【实验目的】1. 掌握异方差的含义,理解经济现象中异方差产生的原因;2. 理解异方差对模型的影响,异方差性的表现与某个解释变量之间的关系;3. 掌握检验异方差的主要方法;4. 掌握处理和消除异方差的方法。
【实验内容】(一) 引起异方差的原因及其对参数估计的影响 1、原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。
这样,遗漏的变量就进入了模型的残差项中。
当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。
二是截面数据中总体各单位的差异。
后果:异方差对参数估计的影响主要是对参数估计有效性的影响。
在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。
一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。
2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。
具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量ix 为横坐标,画散点图。
如果散点图表现出一定的趋势,则可以判断存在异方差。
(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。
这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。
用两个子样本分别进行回归,并计算残差平方和。
用两个残差平方和构造检验异方差的统计量。
Goldfeld-Quandt 检验有两个前提条件,一是该检验只应用于大样本(n>30),并且要求满足条件:观测值的数目至少是参数的二倍; 二是除了同方差假定不成立以外,要求其他假设都成立,随机项没有自相关并且服从正态分布。
异方差实验报告
异方差实验报告异方差实验报告引言在统计学中,方差是一种衡量数据分散程度的重要指标。
然而,当数据的方差在不同组或不同条件下存在显著差异时,传统的方差分析方法可能会产生偏差或误判。
为了解决这一问题,统计学家们提出了异方差实验方法,即针对不同方差条件下的数据进行分析。
本报告将介绍异方差实验的背景、实验设计、数据处理和结果分析。
背景在许多实际问题中,我们经常会遇到数据方差不相等的情况。
例如,在医学研究中,不同患者的生理指标可能存在差异,导致数据的方差不同。
在工程领域,不同厂商生产的产品可能存在质量差异,进而导致产品性能的方差不同。
传统的方差分析方法假设数据方差相等,若违背此假设,则分析结果可能不准确。
因此,异方差实验方法应运而生。
实验设计为了验证异方差实验方法的效果,我们设计了一个简单的实验。
我们选择了两种不同的肥料A和B,分别施加于两个相同大小的土壤盆栽中,每个盆栽中种植相同种类的植物。
我们随机选取了20个盆栽,其中10个施加了肥料A,10个施加了肥料B。
在植物生长期结束后,我们测量了每个盆栽中植物的生长高度。
数据处理在进行数据处理之前,我们首先进行了方差齐性检验。
通过Levene检验,我们发现两组数据的方差不相等(p < 0.05),因此,我们需要使用异方差实验方法进行分析。
为了处理异方差数据,我们采用了加权最小二乘法(Weighted Least Squares, WLS)进行回归分析。
WLS方法通过对不同组别数据进行加权,使得方差较大的组别在回归分析中所占权重较小,从而减小了方差不相等带来的影响。
结果分析通过WLS回归分析,我们得到了如下结果:肥料A组的平均生长高度为50cm,标准差为5cm;肥料B组的平均生长高度为55cm,标准差为8cm。
从平均值上看,肥料B组的生长高度要高于肥料A组,但是由于方差的不同,我们需要进行更进一步的统计分析。
为了比较两组数据的差异是否显著,我们进行了T检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异方差性实验1.2 实验二 异方差性及其性质1.2.1 实验目的我们已经知道,在经典条件下,线性模型回归参数的OLS 估计是具有最小方差的线性无偏估计量。
随机误差项的异方差性,是线性回归模型中常见的不满足经典条件的情形。
与满足经典条件的情形相比,当模型中出现异方差性时,模型参数的普通最小二乘(OLS )估计的统计性质将发生什么样的变化?如何理解和把握这些变化?如何纠正模型估计因为异方差性而产生的问题?通过本实验,可以帮助学生理解异方差性本身的概念、存在异方差性时模型参数的OLS 估计量的性质、加权最小二乘法等。
1.2.2 实验背景与理论基础1. 异方差性本实验以二元线性回归模型为例进行说明。
线性回归模型01122i i i i Y X X u βββ=+++,1,2,,i n =L假设模型满足除“同方差性”之外的所有经典假设:(1)E()0i u =,1,2,,i n =L ,或表示为()E =U 0,从而有()E =Y X β; (3)Cov(,)0,i j u u i j =≠,随机误差无序列相关; (4)解释变量是确定性变量,与随机误差项不相关:Cov(,)0j ij u X =,1,2i =,1,2,,j n =L(5)自变量之间不存在精确(完全)的线性关系。
矩阵X 是列满秩的:rank()3=X 。
(要求样本容量3n >) (6)随机误差的正态性:2(0,)i u u N σ:,1,2,,i n =L 。
2. 异方差性条件下OLS 估计量的统计性质(1)ˆβ的无偏性: 模型回归参数012,,βββ 的OLS 估计量为:0112ˆˆˆ()ˆβββ-⎛⎫ ⎪''= ⎪ ⎪ ⎪⎝⎭β=X X X Y 可以证明,即使在异方差性条件下,上述估计量依然满足无偏性:0112ˆ()ˆˆE()()ˆ()E E E ββββββ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭β==β (2)ˆβ的方差及协方差: 在模型满足经典条件时,OLS 估计量的方差—协方差矩阵为21ˆVar()()uσ-'=βX X ,但是在异方差性条件下,不存在独立于X 的随机误差项方差2u σ,因此不再存在这一简单公式。
另一方面,在计量分析实践中,即使在线性回归模型的经典条件下,随机误差项的方差2u σ本身也不是可直接观察的,实践中我们用()()22ˆ3u i e n σ=-∑对其进行估计(大多数统计分析软件正是如此处理的),也即用矩阵21ˆ()u σ-'X X 去估计OLS 估计量ˆβ的方差—协方差矩阵ˆVar()β,并在此基础上对模型进行各种检验。
在线性回归模型的经典条件下,这种估计将是无偏的(参见本章实验一)。
重要的问题是,在异方差性条件下,如果无视异方差性的存在,仍用21ˆ()u σ-'X X 去估计OLS 估计量ˆβ的方差—协方差矩阵ˆVar()β,这种估计是否仍具有无偏性?建立在这种估计之上的各种模型检验是否依然有效?3. 加权最小二乘法修正异方差性的常用方法是加权最小二乘法,它是广义最小二乘法中的一种。
具体的方法是:如果模型01122i i i i Y X X u βββ=+++中i u 的标准差为12(,)i i i f X X σ=,在原模型中乘以1/i σ,模型变为:120121iiiiiii i iY X X u βββσσσσσ=+++将此模型看成是iiY σ对121,,iiiiiX X σσσ的线性回归模型,此模型将具有同方差性,由于原模型满足除同方差性外的所有经典条件,因此上述模型将满足所有线性模型的经典条件,从此模型中利用最小二乘法估计参数012,,βββ 将获得具有最小方差的线性无偏估计量,这就是加权最小二乘法及其原理。
1.2.3 实验原理本实验仍然通过一个虚构的二元线性回归模型来展开。
与本章实验一一样,我们首先设定一定二元线性回归模型的回归参数,取定解释变量的样本值。
由于是存在异方差性的模型,不能再设定随机误差项的方差,但是我们可以设定随机误差项的方差与解释变量值之间的函数关系。
这样,在总体上我们已经完全掌握了模型。
接着我们使用Matlab 进行模拟随机抽样,对于得到的每一个模拟随机样本,我们分别使用普通最小二乘法和加权最小二乘法得到模型参数的两种不同的估计量,分别记为012ˆˆˆ,,βββ 和012,,βββ %%%。
反复以上模拟抽样和估计,我们将分别得到每个模型参数的普通最小二乘估计量012ˆˆˆ,,βββ 和加权最小二乘估计量012,,βββ %%%的样本。
通过这两个样本,我们可以探讨普通最小二乘估计量和加权最小二乘估计量的统计性质,分析两者之间的共同性质和区别。
1.2.4 实验过程和步骤1. 程序设计以下将实验过程通过编制一个简单的Matlab 程序来进行。
程序分为以下几个部分:(1)第一步,设置模型基本参数,解释变量的样本值,这一步与实验一的相应步骤是类似的。
Matlab 程序段如下:clear n=20;beta0=10;beta1=5;beta2=-3; x1=15*rand(n,1)+1; x2=10*rand(n,1)+1; e=ones(n,1); X=[e,x1,x2];(2)第二步,反复抽取样本,进行普通最小二乘估计和加权最小二乘估计,并将估计结果保存在相应的向量中。
Matlab 程序段如下:b0=[];b1=[];b2=[];sigma=[]; c0=[];c1=[];c2=[]; XX=X./[x1,x1,x1]; times=5000; for j=1:timesuu=normrnd(0,se,n,1); u=2*x1.*uu;Y=beta0+beta1*x1+beta2*x2+u;[b,bint,r]=regress(Y,X);b0=[b0;b(1)];b1=[b1;b(2)];b2=[b2;b(3)];sigma=[sigma,sum(r.^2)/(n-3)]; YY=Y./x1;[c,bint,r]=regress(YY,XX);c0=[c0;c(1)];c1=[c1;c(2)];c2=[c2;c(3)];end代码解释:“b0=[];b1=[];b2=[];sigma1=[];”生成4个维数可变的动态向量,准备分别存放每次抽样所产生的普通最小二乘估计量012ˆˆˆ,,βββ 及2ˆ/(3)i u n -∑,其中ˆi u 为普通最小二乘回归的残差。
“c0=[];c1=[];c2=[];sigma2=[];”生成4个维数可变的动态向量,准备分别存放每次抽样所产生的加权最小二乘估计量估计量012,,βββ %%%及2/(3)i u n -∑%,其中i u %为加权最小二乘回归的残差。
“XX=X./[x1,x1,x1];”表示将矩阵X 的每一列向量的元素对应除以列向量X1的元素,也即得到矩阵211111221212211111111n n n X X X X X X XX X X X ⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪⎝⎭M M M生成这一矩阵的目的将在下文中揭示,实际上是为下文中的加权最小二乘估计做准备。
“times=5000;”设定反复抽样和回归的次数,你可以根据需要设定成另外的整数;“uu=normrnd(0,1,n,1); ”随机生成分布N(0,1)的简单随机样本,构成n 维列向量12(,,,)n uu uu uu uu '=L ,“u=2*X1.*uu ”表示生成一个n 维列向量u ,其元素是列向量X1和uu 的对应元素的乘积再乘以2,即1111221(2,2,,2)n n u X uu X uu X uu '= L这表示随机误差12,,,n u u u L 相互间不相关,但其标准差为12i i X σ=(11,2,,)n =L 。
“Y=beta0+beta1*x1+beta2*x2+u;”利用以上生成的向量生成被解释变量Y 的一个模拟样本:10111221120112222201122n n n n Y X X u Y X X u Y Y X X u βββββββββ+++⎛⎫⎛⎫ ⎪ ⎪+++ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭M M这是一个具有异方差性的二元线性回归模型的模拟样本,随机误差的标准差与解释变量x1的关系是12i i X σ=。
“[b,bint,r]=regress(Y,X);”将 Y 对 X 进行普通最小二乘回归,获取估计结果参数,其中b 为回归系数点估计向量012ˆˆˆ(,,)βββ ,r 为残差列向量。
“b0=[b0;b(1)];” 将0ˆβ的值逐个存入数表b0,使b0于循环结束时成为times 维列向量。
“b1=[b1;b(2)];”将1ˆβ的值逐个存入数表b1,使b1于循环结束时成为times 维列向量。
“b2=[b2;b(3)];”将2ˆβ的值逐列存入数表b2,使b2于循环结束时成为times 维列向量。
“sigma=[sigma,sum(r.^2)/(n-3)];”将由回归残差计算所得的值2ˆ/(3)i un -∑逐列存入数表sigma1,使sigma 于循环结束时成为times 维列向量。
“YY=Y./x1;”将向量Y 的分量分别除以向量x1的对应分量,得到列向量YY ,即1112121///n n Y X Y X YY Y X ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭M “[c,bint,r]=regress(YY,XX);”将 YY 对 XX (参见前文中的XX 的构造)进行普通最小二乘回归,获取估计结果参数。
实际上,此时YY 对 XX 的普通最小二乘回归正是对线性模型12012111111i i i i i i i i iY X X u X X X X X βββ=+++ 的普通最小二乘回归,由于i u 的标准差12i i X σ=,因此上述模型又等价于120121iiiii i i i iY X X u βββσσσσσ=+++对此模型的普通最小二乘估计正是对原模型01122i i i i Y X X u βββ=+++的加权最小二乘估计。
因此上述命令中的c 为即为原模型回归参数的加权最小二乘估计向量012(,,)βββ %%%,r 为残差列向量。
“c0=[c0;c(1)];” 将0β%的值逐个存入数表c0,使c0于循环结束时成为times 维列向量;“c1=[c1;c(2)];” 将1β%的值逐个存入数表c1,使c1于循环结束时成为times 维列向量;“c2=[c2;c(3)];” 将2β%的值逐列存入数表c2,使c2于循环结束时成为times 维列向量。
2. 输出实验结果运行上述程序后,模型回归参数的普通最小二乘估计量的样本存放在向量b0,b1,b2中;模型回归参数的加权最小二乘估计量的样本存放在向量c0,c1,c2中,同时,两种估计法所产生的残差所计算的2ˆ/(3)i u n -∑和2/(3)i u n -∑%的所有数据分别存放在向量sigma1和sigma2中。