江苏省苏州市高新区2017年中考数学一模试卷含解析

合集下载

江苏省苏州市2017年中考数学真题试题(含解析)

江苏省苏州市2017年中考数学真题试题(含解析)

江苏省苏州市2017年中考数学真题试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13D .13- 【答案】B. 【解析】试题分析:()217-÷2137=-=- 故答案选B. 考点:有理数的除法.2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .6 【答案】C.考点:平均数的求法3.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.03 【答案】D. 【解析】试题分析:2.026 2.03≈故答案选D. 考点:近似数4.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2- 【答案】A. 【解析】试题分析:=4401k k ∆-=⇒= 故答案选A. 考点:根的判别式的性质.5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .2370 【答案】C. 【解析】 试题分析:702400=1680100⨯故答案选C. 考点:用样本估计总体的统计思想.6.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为A .2b >B .2b >- C.2b < D .2b <- 【答案】D.考点:一次函数上的点的特征.7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30oB .36oC.54oD .72o【答案】B. 【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B. 考点:多边形的外角,等腰三角形的两底角相等8.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 【答案】A.考点:一元二次方程的解法9.如图,在Rt C ∆AB 中,C 90∠A B =o,56∠A =o.以C B 为直径的O e 交AB 于点D ,E 是O e 上一点,且»»CCD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92oB .108oC.112o D .124o【答案】C. 【解析】试题分析:C 90∠A B =oQ ,56∠A =o,34B ∴∠=︒»»1C CD 682B CBD COE E =∴∠=∠=∠=︒Q ,112F ∴∠=︒故答案选C.考点:圆心角与圆周角的关系.10.如图,在菱形CD AB 中,60∠A =o,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243 C.323 D .3238-【答案】A.7382832S ∴=⨯=L K H故答案选A.考点:平行四边形的面积,三角函数.第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上) 11.计算:()22a= .【答案】4a . 【解析】 试题分析:()()()22224=aa a a=⋅ .考点: 幂的乘方的运算 .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=o,则D ∠AE 的度数为 o .【答案】50.考点:平行线的性质,外角的性质 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.【答案】8. 【解析】试题分析: 先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定 ,故中位数是8. 考点:中位数的求法.14.因式分解:2441a a -+= . 【答案】2(21)a - .考点:公式法因式分解 .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .【答案】 13. 【解析】试题分析: 有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13. 21.考点:轴对称图形的定义,求某个事件的概率 .16.如图,AB 是O e 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .【答案】1 2考点:圆锥的侧面展开图的弧长等于地面圆的周长.17.如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60o的方向,在码头B 北偏西45o的方向,C4A=km.游客小张准备从观光岛屿C乘船沿C A回到码头A或沿C B回到码头B,设开往码头A、B的游船速度分别为1v、2v,若回到A、B所用时间相等,则12vv=(结果保留根号).【答案】2 .D.考点:特殊角三角函数的应用 .18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745.考点:旋转的性质 ,勾股定理 .三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.) 19. (本题满分5分) 计算:()0143π--. 【答案】2 【解析】试题分析:先算绝对值、算术平方根、0次幂 . 试题解析:原式1212=+-=. 考点:实数的运算. 20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.【答案】34x ≤<考点:一元一次不等式组的解法 21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中32x =-. 【答案】12x +,33【解析】试题分析:先将括号里面进行通分,各分子、分母因式分解,再约分 . 试题解析:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当32x =时, 原式33223===-+. 考点:分式的化简求值.22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量. 【答案】(1)求y 与x 之间的函数表达式为125y x =-;(2)10 【解析】试题分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是0y = 时x 的值 .(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg . 考点:一次函数的实际应用23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 o ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率. 【答案】(1)8,3m n ==; (2)144;(3)23【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=该组频数数据总数360⨯︒ ;(3)列表格求概率.试题解析:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 考点:统计与概率的综合运用.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O . (1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=o ,求D ∠B E 的度数.【答案】(1)详见解析;(2)69BDE ∠=o考点:全等三角形的判定与性质25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.【答案】(1)5k = (2) 972OC = 【解析】试题分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可.(2)利用勾股定理,求OC 的长度. 试题解析:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==Q ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴Q 点的坐标为5,22⎛⎫⎪⎝⎭,Q 点C 在k y x=的图象上,5k ∴=.考点:反比例函数与三角形的综合运用.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.【答案】(1)AB=8,BC=6;(2)1212,20.t t == 【解析】试题分析:(1)利用勾股定理求出BT,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,求解 .(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQP Q P . Q 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴=P即12.68CP CP=又12127,3, 4.CP CP CP CP+=∴==Q设,M N的横坐标分别为12,t t,由题意得,11221215,16,12,20.CP t CP t t t=-=-∴==考点:三角函数的应用,平行线分线段成比例定理.27.(本题满分10分)如图,已知C∆AB内接于Oe,AB是直径,点D在Oe上,D//CO B,过点D作D E⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:D∆OE∽C∆AB;(2)求证:DF D∠O=∠B E;(3)连接CO,设D∆OE的面积为1S,四边形C DB O的面积为2S,若1227SS=,求sin A的值.【答案】(1)详见解析;(2)详见解析;(3)2sin3A=【解析】试题分析:(1)利用两角对应相等,两三角形相似证明;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形求正弦值 .(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q : ,即144ABC DOE S S S ∆∆== ,OA OB =Q ,12BOC ABC S S ∆∆∴= ,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q ,112DBE S S ∆∴=,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== 考点:圆、三角函数、相似三角形的综合运用.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.【答案】(1)2b =-, 3.c =-;(2)点F 的坐标为()0,2-;(3)点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭【解析】试题分析: (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.(2)设点F 的坐标为()0,.m Q 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .Q 直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- .因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++Q g 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭考点:二次函数的综合运用.。

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.1.(3分)的倒数是()A.B.﹣C.D.﹣2.(3分)某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为(),若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.29.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F 的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m10.(3分)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()1314.(3C15.(316.(317.(318.(3PC,以的长为.三、解答题本大题共10小题,共76分19.(5分)计算:+|﹣|﹣﹣tan30°.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=+1.22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8,使BC25.(8(2,6),B(m,,AC与)求证:=;26.(10E.过27)(的坐标为(,),顶点的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,在平面直角坐标系中,抛物线y=ax 2﹣2ax ﹣3a (a >0)与x 轴交于A 、B 两点(点A 在点B 左侧),经过点A 的直线l :y=kx +b 与y 轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC .(1)直接写出点A 的坐标,并用含a 的式子表示直线l 的函数表达式(其中k 、b 用含a 的式子表示).(2)点E 为直线l 下方抛物线上一点,当△ADE 的面积的最大值为时,求抛物线的函数表达式;(3)设点P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否1. C 7.DE=CE=AC=8.x==25(+ (+×=(+25)顺时针边上的AD′DE=3=AE=, (),),+,),1113÷=24015.16.则=,=,(不合题意舍去),x 2==..==F ,, =(, ,BP==19.解:+|+=2021.)÷===,当x=+==.22.23.=故答案为:=,CE⊥BC,y=x>0,x轴垂D,BD?AE=3∴Array)知,,∴=∴=27.∴C ),(2作QD (作A’F==OO′=EO′=S=交x 轴A’O=A′O=A′F=.S=(+t )×..2﹣2ax=,=把A,(2设E(∴由∴S△=)a的面积的最大值为a=,a=.y=x x(3①若=(﹣1 =,a=,),与PQ﹣5a)=,a=综上所述,以点A、D、P、Q为顶点的四边或(1,4).形能成为矩形,点P的坐标为(1,)。

江苏省苏州市2017年中考数学试题(精校word版,含答案)

江苏省苏州市2017年中考数学试题(精校word版,含答案)

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为A .3B .4C .5D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为A .2b >B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为 A .10x =,24x = B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B = ,56∠A = .以C B 为直径的O 交AB 于点D ,E 是O 上一点,且 CCD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92 B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A = ,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B ..8第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠= ,则D ∠AE 的度数为 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60 的方向,在码头B 北偏西45 的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分)()03π-.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩. 21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =-. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a - 15. 13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =-时,原式===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23. 解:(1)8,3m n ==;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠ .在AEC ∆和BED ∆中, (),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠ .在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠= ,69BDE C ∴∠=∠= .25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB == ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴ 点的坐标为5,22⎛⎫ ⎪⎝⎭, 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴= .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫ ⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT == 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q .在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD ∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠. //,,OD BC DOE ABC DOE ∴∠=∠∴∆ ~ ABC ∆.(2)DOE ∆ ~ ABC ∆.ODE A A ∴∠=∠∠ 和BDC ∠是 BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB = ,12BOC ABC S S ∆∆∴= ,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2b b OB OC Cc ∴-==-=∴ B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=- (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线的对称点F 的坐标为()2,m . 直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- . 因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++ 作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭ ②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

苏州市高新区实验中学2017年中考一模数学试卷(附答案)

苏州市高新区实验中学2017年中考一模数学试卷(附答案)

(第 5 题)第一次学情调研考试试卷九年级 数学一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰有一项是 符合题目要求的,请将正确选项的字母代号填涂在答.题.卡.相.应.位.置.上) 1.如果水位升高 2m 时水位变化记作+2m ,那么水位下降 2m 时水位变化记作 A .-2m B .-1m C .1m D .2m 2.如图是某个几何体的三视图,该几何体是 A .长方体 B .正方体 C .圆柱 D .三棱柱3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的 居民累计节水 300 000 吨.将 300 000 用科学记数法表示为 A .0.3×105 B .3×105 C .0.3×106 D .3×106(第 2 题)4.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不 是轴对称图形的是A .B .C .D .5.某地需要开辟一条笔直隧道,隧道 AB 的长度无法直接测量.如图所示,在地面上取一点 C ,使 C 到 A ,B 两点均可直接到达,测量找到 AC 和 BC 的中点 D ,E ,测得 DE 的长为 1 100 m ,则隧 道 AB 的长度为 A .3 300 m B .2 200 m C .1 100 m D .550 mB ′C ′CAB(第 6 题)6.如图,在△ABC 中,∠CAB =55°,将△ABC 在平面内绕点 A 逆时针旋转到△AB ′C′的位置,使CC ′∥AB ,则旋转角的度数至少为 A .60° B .65° C .70° D .75°注 意 事 项考生在答题前请认真阅读本注意事项: 1.本试卷共 6 页,满分为 150 分,考试时间为 120 分钟.考试结束后,请将本试卷和答题卡一并交 回.2.答题前,请务必将自己的姓名、考试证号用 0.5 毫米黑色字迹的签字笔填写在试卷及答题卡上指 定的位置. 3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.2x -4yCA DxBOll7. 在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70 B .1.70,1.70 C .1.70,1.65 D .3,48. 某商店在节日期间开展优惠促销活动:购买原价超过 500 元的 商品,超过 500 元的部分可以享受打折优惠.若购买商品的实 际付款金额 y (单位:元)与商品原价 x (单位:元)的函数关 系的图象如图所示,则超过 500 元的部分可以享受的优惠是 A .打六折 B .打七折C .打八折D .打九折 9. 当 1≤x ≤3 时,mx +2>0,则 m 的取值范围是y 900 500O500 1000 x(第 8 题)2 A .m >-3 2 B .m >-2 C .m >- 3且m ≠0 D .m >-2 且 m ≠0 10.如图,在平面直角坐标系 xOy 中,菱形 ABOC 的顶点 O 在坐标 原点,边 BO在 x 轴的负半轴上,顶点 C 的坐标为(-3,4),k反比例函数 y = 的图象与菱形对角线 AO 交于 D 点,连接 BD ,x当 BD ⊥x 轴时,k 的值是 50 25 25 (第 10 题)A . -B . -C . - 12D . - 324二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请把答案直接填写在答. 题.卡.相.应.位.置.上)11.函数 y =x - 3中自变量 x 的取值范围是 ▲ .12.已知方程 2x 2+4x ―3=0 的两根分别为 x 1 和 x 2,则 x 1+x 2 的值等于 ▲ . 13.从长度分别是 3,4,5 的三条线段中随机抽出一条,与长为 2,3 的两条线段首尾顺次相接, 能构成三角形的概率是 ▲ .B14.已知 ab = -2, a - b = 3 ,则 a 3b - 2a 2b 2 + ab 3的值为 ▲ .15.已知射线 OM .以 O 为圆心,任意长为半径画弧,与射线 OM 交于点 A ,再以点 A 为圆心,AO 长为半径画弧,两弧交于点 B ,画射线 O OB ,如图所示,则∠AOB = ▲ °.A M(第 15 题)16.已知一组按规律排列的式子: 2 , -5 , 10 , - 17 , 26,…,则第 n 个式子是 ▲ (用 a含 n 的式子表示, n 为正整数).a 2a 3a 4a 5C117.如图,已知,相邻两条平行直线间的距离相等,若等腰直角三角形 ABC 的直角顶点 C 在 上,另两个顶点 A 、B 分B l 2α3别在 、 上,则 tan α 的值是 ▲ .(第 17 题)成绩(m) 人数 1.50 1.60 1.65 1.70 1.75 1.801 2 4 3 3 2分 组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5合 计频 数 20 32 a 124 144 400 频 率 b 0.08 0.20 c 0.36 1⎨1 18.在平面直角坐标系 xOy 中,若点 P 的横坐标和纵坐标相等,则称点 P 为等值点.例如点(1,1),(-2,-2),( 3 , 3 ),…,都是等值点.已知二次函数 y = ax 2+ 4x + c (a ≠ 0) 的图象上三、解答题(本大题共 10 小题,共 96 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、 证明过程或演算步骤) 19.(本小题满分 10 分)20.(本小题满分 8 分)⎧ 3(x - 1) < 5x + 1 解不等式组 ⎪x - 1≤ 7 - ⎩23 x ,将其解集在数轴上表示出来,并写出此不等式组的最.小.整.数.解.. 221.(本小题满分 8 分)如图,点 P 表示某港口的位置,甲船在港口北偏西 30°方向距港口 50 海里的 A 处,乙船在港口 北偏东 45°方向距港口 60 海里的 B 处,两船同时出发分别沿 AP 、BP 方向匀速驶向港口 P ,经 过 1 小时,乙船在甲船的正东方向处,已知甲船的速度是10 海里/时,求乙船的速度.北BA22.(本小题满分 8 分)东(第 21 题)某县九年级有 15000 名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了 400 名学生的得分(得分取正整数,满分 100 分)进行统计:请结合图表完成下列问题:160 140 120 100 80 60 40 20频数(人)32124144 (1)表中的 a = ▲ ,b = ▲ , c = ▲ ; (2)请把频数分布直方图补充完整;成绩(分)(3)若将得分转化为等级,规定得分低于 59.5 分评为“D ”,59.5~69.5 分评为“C ”,69.5~89.5 分评为“B ”,89.5~100.5 分评为“A ”,这次 15000 名学生中约有多少人被评为“B ”?23.(本小题满分8 分)有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.24.(本小题满分8 分)如图,等腰三角形ABC 内接于半径为5 的⊙O,AB=AC,.求BC 的长.AB CO(第24 题)25.(本小题满分9 分)已知:如图,四边形ABCD 是正方形,∠P AQ=45°,将∠P AQ 绕着正方形的顶点A 旋转,使它与正方形ABCD 的两个外角∠EBC 和∠FDC 的平分线分别交于点M 和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM 的度数为多少时,四边形BMND 为矩形,并加以证明.A B EMPD CFNQ(第25 题)26.(本小题满分10 分)3 某笔直河道上有甲、乙两港,相距 120 千米,一艘轮船从甲港出发,顺流航行4 小时到达乙港, 休息 1 小时后立即返回;一艘快艇在轮船出发 3 小时后从乙港出发,逆流航行 3 小时到达甲港,并立即返回(掉头时间忽略不计).已知水流速度是 5 千米/时,下图表示轮船和快艇距甲港的 距离 y (千米)与轮船行驶时间 x (小时)之间的函数关系,结合图象解答下列问题:(顺流速 度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)(1)轮船在静水中的速度是 ▲ 千米/时;快艇在静水中的速度是 ▲ 千米/时; (2)求线段 DF 的函数解析式,并写出自变量 x 的取值范围;(3)快艇出发多长时间,轮船和快艇在途中相距 20 千米?(直接写出结果)120y (千米)A B CFDO3 46E x ()(第 26 题)27.(本小题满分 13 分)如图,平面直角坐标系 xOy 中,已知点 A (0,3),点 B ( 3 ,0),连接 AB .若对于平面内一点 C , 当△ABC 是以 AB 为腰的等腰三角形时,称点 C 是线段 AB 的“等长点”. (1)在点 C 1(-2, 3 + 2是点 ▲ ;2 ),点 C 2(0,-2),点 C 3(3 + , - 3 )中,线段AB 的“等长点” (2)若点 D (m ,n )是线段 AB 的“等长点”,且∠DAB =60°,求 m 和 n 的值; (3)若直线 y = kx + 33k 上至少存在一个线段 AB 的“等长点”,直接写出 k 的取值范围.(第 27 题)28.(本小题满分 14 分)y AxBO如图,平面直角坐标系 xOy 中,抛物线 y = ax 2(a ≠ 0) 经过点 B (-2,4).(1)求 a 的值;(2)作 Rt △OAB ,使∠BOA =90°,且 OB =2OA ,求点 A 坐标;(3)在(2)的条件下,过点 A 作直线 AC ⊥x 轴于点 C ,交抛物线 y = ax 2(a ≠ 0) 于点 D ,将该抛物线向左或向右平移 t (t >0)个单位长度,记平移后点 D 的对应点为 D ′,点 B 的对 应点为 B ′.当 CD ′+OB ′的值最小时,请直接写出 t 的值和平移后相应的抛物线解析式.(第 28 题)yBxO。

江苏省苏州市2017年中考数学试题(精校word版,含答案)

江苏省苏州市2017年中考数学试题(精校word版,含答案)

江苏省苏州市2017年中考数学试题(精校word版,含答案)2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)⼀、选择题:本⼤题共10个⼩题,每⼩题3分,共30分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.()217-÷的结果是A .3B .3-C .13 D .13- 2.有⼀组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .63.⼩亮⽤天平称得⼀个罐头的质量为2.026kg ,⽤四舍五⼊法将2.026精确到0.01的近似值为 A .2 B .2.0 C .2.02 D .2.034.关于x 的⼀元⼆次⽅程220x x k -+=有两个相等的实数根,则k 的值为A .1B .1- C.2 D .2-5.为了⿎励学⽣课外阅读,学校公布了“阅读奖励”⽅案,并设置了“赞成、反对、⽆所谓”三种意见.现从学校所有2400名学⽣中随机征求了100名学⽣的意见,其中持“反对”和“⽆所谓”意见的共有30名学⽣,估计全校持“赞成”意见的学⽣⼈数约为A .70B .720 C.1680 D .23706.若点(),m n A 在⼀次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30B .36C.54D .728.若⼆次函数21y ax =+的图像经过点()2,0-,则关于x 的⽅程()2210a x -+=的实数根为 A .10x =,24x = B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ?AB 中,C 90∠A B = ,56∠A = .以C B 为直径的O 交AB 于点D ,E 是O 上⼀点,且 CCD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92 B .108 C.112D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂⾜为E .将F ?AE 沿点A 到点B 的⽅向平移,得到F '''?A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的⾯积为A .B ..8第Ⅱ卷(共100分)⼆、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a= .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为.11名成员射击成绩的中位数是环. 14.因式分解:2441a a -+= .15.如图,在“33?”⽹格中,有3个涂成⿊⾊的⼩⽅格.若再从余下的6个⼩⽅格中随机选取1个涂成⿊⾊,则完成的图案为轴对称图案的概率是.16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若⽤扇形C OA (图中阴影部分)围成⼀个圆锥的侧⾯,则这个圆锥底⾯圆的半径是.17.如图,在⼀笔直的沿湖道路上L 有A,B 两个游船码头,观光岛屿C 在码头A 北偏东60o的⽅向,在码头B 北偏西45o的⽅向,AC=4km .游客⼩张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为V1,V2.若回到A 、B 所⽤时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针⽅向旋转⼀定⾓度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB(结果保留根号).三、解答题(本⼤题共10⼩题,共76分.解答应写出⽂字说明、证明过程或演算步骤.)19. (本题满分5分)计算:()013π-+-. 20. (本题满分5分)解不等式组:()142136x x x +≥->-??.21. (本题满分6分)先化简,再求值:259123x x x -?-÷++,其中2x =. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带⼀定质量的⾏李,当⾏李的质量超过规定时,需付的⾏李费y (元)是⾏李质量x (kg )的⼀次函数.已知⾏李质量为20kg 时需付⾏李费2元,⾏李质量为50kg 时需付⾏李费8元.(1)当⾏李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带⾏李的质量.23. (本题满分8分)初⼀(1)班针对“你最喜爱的课外活动项⽬”对全班学⽣进⾏调查(每名学⽣分别选⼀个活动项⽬),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器⼈项⽬所对应扇形的圆⼼⾓度数为;(3)从选航模项⽬的4名学⽣中随机选取2名学⽣参加学校航模兴趣⼩组训练,请⽤列举法(画树状图或列表)求所选取的2名学⽣中恰好有1名男⽣、1名⼥⽣的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ?AE≌D ?BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ?AB 中,C C A =B ,x AB ⊥轴,垂⾜为A .反⽐例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器⼈兴趣⼩组在如图①所⽰的矩形场地上开展训练.机器⼈从点A 出发,在矩形CD AB 边上沿着C D A →B →→的⽅向匀速移动,到达点D 时停⽌移动.已知机器⼈的速度为1个单位长度/s ,移动⾄拐⾓处调整⽅向需要1s (即在B 、C 处拐弯时分别⽤时1s ).设机器⼈所⽤时间为()s t 时,其所在位置⽤点P 表⽰,P 到对⾓线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所⽰.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平⾏于横轴,M 、N 的横坐标分别为1t 、2t .设机器⼈⽤了()1s t 到达点1P 处,⽤了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ?AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂⾜为E ,连接CD 交OE 边于点F .(1)求证:D ?OE ∽C ?AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ?OE 的⾯积为1S ,四边形C D B O 的⾯积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,⼆次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ?P N 与? APM 的⾯积相等,且线段Q N 的长度最⼩?如果存在,求出点Q 的坐标;如果不存在,说明理由.⼀、选择题1-5:BCDAC 6-10:DBACA⼆、填空题11.4a 12.50 13.8 14.()221a -15.13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=?=++++-+.当2x =时,原式===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解⽅程组202508k b k b +=??+=?,得152k b ?==-?,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带⾏李10kg . 23. 解:(1)8,3m n ==; (2)144;(3)将选航模项⽬的2名男⽣编上号码1,2,将2名⼥⽣编上号码3,4. ⽤表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男⽣、1 名⼥⽣”有8种可能.P ∴( 1 名男⽣、1 名⼥⽣)82123==.(如⽤树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ?和BOE ?中,,2A B BEO ∠=∠∴∠=∠.⼜12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠ .在AEC ?和BED ?中,(),A B AE BEAEC BED ASA AEC BED ∠=∠??=∴∠=∠?. (2),,AEC BED EC ED C BDE ∴=∠=∠ .在EDC ?中,,142,69EC ED C EDC =∠=∴∠=∠= ,69BDE C ∴∠=∠= .25.解:(1)作CE AB ⊥,垂⾜为,,4E AC BC AB == ,2AE BE ∴==.在Rt ?BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22??,点C 在k y x =的图象上,5k ∴=(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴= .,D C ∴两点的坐标分别为33,,,222m m-. 点,C D 都在k y x =的图象上,332,6,22m m m C ??∴=-∴=∴点的坐标为9,22??.作CF x ⊥轴,垂⾜为9,,22F OF CF ∴==.在Rt OFC ?中,222,OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥垂⾜为T ,由题意得,248,.5AB AT ==在Rt ABT ?中,22232,.5AB BT AT BT =+∴=tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂⾜为12,.Q Q 则1122PQ PQ . 在图②中,线段MN 平⾏于横轴,12,d d ∴= 即1122PQ PQ =.1212..CP CP PPBD CB CD∴∴= 即12.68CP CP = ⼜12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =-=-27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,,OD BC DOE ABC DOE ∴∠=∠∴? ~ ABC ?.(2)DOE ? ~ ABC ?.ODE A A ∴∠=∠∠和BDC ∠是 BC所对的圆周⾓,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∴== ,即144ABC DOE S S S ??== ,OA OB = ,12BOC ABC S S ??∴=,即12B O CS S ?= .121122,27BOC DOE DBE DBE S S S S S S S S S ==++=++ ,112DBE S S ?∴=,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴抛物线对称轴为直线 1.l x =:()1, 2.,0,,2bb OB OC Cc ∴-==-=∴ B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=- (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴利⽤待定系数法可得直线BE 的表达式为26y x =- .因为点F 在BE 上,∴ 2262,m =?-=- 即点F 的坐标为()0,2.-(3)存在点Q 满⾜题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++ 作,QR PN ⊥垂⾜为,R ()()()211 ,1323,22PQN APM S S n n n n QR ??=∴+-=-++ 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴在Rt QRN ?中,()223123,2NQ n n =+-∴=时,NQ 取最⼩值1 .此时Q 点的坐标为115,.2 4??-②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴=时,NQ 取最⼩值1 .此时Q 点的坐标为315,.2 4??-综上所述:满⾜题意得点Q 的坐标为115,24??-和315,.24??-。

2017江苏苏州市中考数学试卷解析

2017江苏苏州市中考数学试卷解析

2017年江苏省苏州市中考数学试卷满分:130分 版本:苏教版第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的 O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在O 中,∵C CD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于O ,AB 是直径,点D 在O 上,OD∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,OD BC DOE ABC ∴∠=∠,DOE ∴∆∽ABC ∆.(2)DOE ∆∽ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭∽ ,即144ABC DOE S S S ∆∆== , OA OB =,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

2017年江苏省苏州市中考数学试题及答案

2017年江苏省苏州市中考数学试题及答案

2017年苏州市初中毕业暨升学考试试卷数学第I 卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项 中,只有一项是符合题目要求的.1. -21 “7的结果是A . 3B .-3C .1 3 1 D . ——32有 组数据: 2, 5,5,6, 7, 这组数据的平均数为 A . 3B . 4C .5D . 63•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026精确到0.01的近似值为 A . 2 B .2.0C .2.02 D . 2.034.关于x 的一元二次方程X 2 -2x • k =0有两个相等的实数根,则k 的值为A . 1B .-1 C.2D . -25.为了鼓励学生课外阅读,学校公布了 阅读奖励”方案,并设置了 赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了 100名学生的意见,其中持 反对”和 无所 谓”意见的共有30名学生,估计全校持 赞成”意见的学生人数约为6.若点Z m,n 在一次函数y =3x • b 的图像上,且 A . b 2B . b -2C .b 2D . b :: -27.如图,在正五边形 JTCD ;:中,连接,^y • 丁叮:的度数为 A . 30B . 36 C.54 D . 72°A . 70B . 720 C.1680 D . 23703m - n 2,贝U b 的取值范围为8•若二次函数y=ax?+1的图像经过点(—2,0),则关于x的方程a(x —2:+ 1 = 0的实数根3c.「,Z... C3 =90,.二=56 .以三C为直径的U O交二m于点D,C上二CD,连接O!-.,过点上作I :F..「);:,交二C的延长线于点F , 则.F的度数为10•如图,在菱形JTCD中,•丄=60:,丄D=8 , F是兀的中点.过点F作F;: .「:D , 垂足为上.将.*: F沿点Z到点三的方向平移,得到7 :. F .设P、〉分别是i'F、- F' 的中点,当点与点三重合时,四边形??CD的面积为A. 28、、3B. 24,3C.32,3D. 32,3-8第U卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)2211. 计算:a 二 ______________12. 如图,点D在•一二己的平分线匚C上,点;:在「2上,;:D〃cm , - 1 = 25」y,::D 9•如图,在Rt.UdC中,上是U G上一点,且A. 92 108 C.112 D. 124B.的度数为___________ .13•某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计16•如图,d 是L '--1的直径,--C 是弦,--C =3, -3() C 二2・・:1••丿C .若用扇形,••丿■■C (图 中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是17•如图,在一笔直的沿湖道路l 上有二、两个游船码头,观光岛屿C 在码头Z 北偏东60A的方向,在码头m 北偏西45"的方向,厶C =4 km .游客小张准备从观光岛屿 C 乘船沿CA 回到码头Z 或沿C2回到码头2 ,设开往码头 二、2的游船速度分别为 v 1、v 2,若回到二、三所用时间相等,贝U 也二 __________ (结果保留根号)v人数A图•由图可知,11名成员射击成绩的中位数是 环.214•因式分解:4a -4a -1二15.如图,在3 3”网格中,有3个涂成黑色的小方格.若再从余下的 6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是(第13题)(第16题)18•如图,在矩形厶BCD 中,将• JTC 绕点Z 按逆时针方向旋转一定角度后, BC 的对应— __ — _ —CC边三C ■交CD 边于点G •连接-注、CC ,若丄D =7 , CG =4,二 -3 G ,则上上=BB H__________ (结果保留根号)•三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演 算步骤.)19. (本题满分5分) 计算:-1 +V 4 兀 -3 ,. 20. (本题满分5分)X x 1 - 4解不等式组:2(x-1 )A 3X -621. (本题满分6分) 先化简,再求值: 1亠亡二9,其中x 二.3-2 .V x+2丿 x+322. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费 y (元)是行李质量 x ( kg )的一次函数•已知行李质量 为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求 y 与x 之间的函数表达式; (2 )求旅客最多可免费携带行李的质量.j 1flI 用 ----- 东23. (本题满分8分)初一(1)班针对你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.(第23题)根据以上信息解决下列问题:(1) m = ___________ , n = _____________ ; (2) 扇形统计图中机器人项目所对应扇形的圆心角度数为(3 )从选航模项目的 4名学生中随机选取 2名学生参加学校航模兴趣小组训练,请用列举 法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24. (本题满分8分)如图,•丄-三上,点D 在ZC 边上,.仁• 2,汀 和 2D 相交于点 (1) 求证:—! C 也 D ;(2) 若• 1 =42:,求厶!D ;:的度数.25. (本题满分8分)如图,在 jme 中,丄一c-^c ,丄三_ x 轴,垂足为二•反比例函k5数y ( x 0)的图像经过点C ,交兀于点D .已知上三-4,二C =— •学生所选项目人数扇形统计图项tJ 男坐(人数)女生(人数)机器人 79 3D 打印 m 4 航模 22其他53D 打叩 30% 机器人乩他航模 10%男*女生所选项目人数统计袁x 2(1 )若门」-4,求k的值;(2)连接匚C,若三D ,求OC的长.26. (本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练•机器人从点丄出发,在矩形厶BCD边上沿着--C > D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1 s(即在三、C处拐弯时分别用时1s)•设机器人所用时间为t s时,其所在位置用点m表示,m到对角线3D 的距离(即垂线段?Q的长)为d个单位长度,其中d与t的函数图像如图②所示.(1 )求二三、三C的长;(2)如图②,点上|、、分别在线段上F、GI上,线段二平行于横轴,上I、、的横坐标分别为t1、t2 •设机器人用了t1 s到达点?1处,用了t2 s到达点?2处(见图①)•若C3 • CP2=7,求t1、t2的值.(图27.(本题满分10分)如图,已知厶二三C 内接于L ° ,是直径,点D 在L °上,o D//2 C ,D 作D _二三,垂足为上,连接CD 交门上边于点F •连接':":'C ,设的面积为S i ,四边形三C 「)D 的面积为S 2,若■S L-,求sin 二S 2 7过点 (1) 求证:S ."■:.-.BC ; (2) 求证:•「)DF = • BD ;(3)的值.228.(本题满分10分)如图,二次函数y = x bx c的图像与x轴交于二、三两点,与y轴交于点C,「用-OC •点D在函数图像上,CD//X轴,且CD = 2,直线I是抛物线的对称轴,上是抛物线的顶点.(1 )求b、c的值;(2)如图①,连接m;:,线段0C上的点F关于直线I的对称点F•恰好在线段三;:上,求点F的坐标;(3)如图②,动点P在线段「用上,过点?作x轴的垂线分别与2C交于点二1 ,与抛物线交于点X .试问:抛物线上是否存在点Q ,使得.口QX与的面积相等,且线段乂Q参考答案(的27题)(第28、选择题、填空题当 x =20时,y = 2,得 2 =20k b .当 x =50时,y = 8,得 8 = 50k b .1 l20k+b=2 l k =」1 解方程组 ,得 5,所求函数表达式为 y x-2.|50k+b=8 L 5L l b = -2当 y =0 时,丄乂-2=0,得 x =10.523.解:(1)m =8,n =3 ;⑵ 144 ;(3) 将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4 .用表格列出所有可能 出现的结果:1-5:BCDAC6-10:DBACA11.a 412.50 13.8 214.(2a —1)1 15.-31 16.217. .2.74 18.5三、解答题19.解:原式20.解:由 x • 4 _ 4,解得 x _3,由 2 x -1〕>3x -6,解得 x 4 ,所以不等式组的解集21.解:原式_ x -3 . x 3 x -3 _x -3_ x 2x 2 x 3 x-3 x 2原式=一丁3_2+2V 322.解:(1)根据题意,设y 与x 的函数表达式为 y = kx ■ b .答: 旅客最多可免费携带行李10kg .由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中名男生、1名8 2女生”有8种可能..P(1名男生、1名女生).(如用树状图,酌情相应给分)12 324.解:⑴证明:;AE和BD相交于点0, . A0D二/BOE .在厶AOD和BOE中,.A = • B,. . BEO — 2 •又:• 1 二2, . 1 = • BEO, . AEC 二.BED •在AEC 和BED 中,.A "BIAE =BE ,• : AEC 三BED ASA .AEC "BED(2) ;AEC 二BED, EC =ED, C =/BDE •在EDC 中,V EC 二ED, • 1 = 42【C =EDC =69”,BDE = • C = 6& •25.解:(1)作CE JB,垂足为E, , AC 二BC, AB = 4,AE 二BE = 2 .在Rt 二BCE 中,BC T BE也C「3,;O…C点的坐标为詐宀点C在的图象上,” k — 5 •,* 5 3⑵设A点的坐标为m,0 ,;BD=BC , AD .. D, C两点的坐标分别为2 2f m 3)L_3 2) m,2 ,口2,2 .9 CF _x轴,垂足为F,. OF ,CF =2•在Rt OFC 中,2OC2 =OF2 CF2,. OC =—97226. ( 1 )作AT_BD,垂足为T ,由题意得,AB =8, AT 二24.在Rt ABT 中, 5AB2=BT2AT2,. BT 二32. ;tan. ABD 二俎二AT5 ABv在图②中,线段MN平行于横轴,.d i二d2,即PQ"P2Q2.瞅叽誓嚅即CP^ =-CP2.又;CP +CF2 =7,二CP =3,CP2=4.6 8题意得,CP1=15 -t|,CP2 =t2-16, t| =12,t2=20.I I _27.解:.AB是O O的直径,ACB =90.U DE — AB, DEO =90. DEO "ACB .TOD//BC, DOE =/ABC, : DOE 〜ABC.(2DOE〜ABC ODE=/A.:・A和・BDC是BC所对的圆周角,k 3:点C,D都在y 的图象上,mx 2=2 m—2I 2,2 6, C点的坐标为|,2.作BT‘ AD-6,即BC"垂足为Q1,Q2.则RQ丄P2Q2.设M,N的横坐标分别为H ,由(2)在图①中,连接pp2.过P,P2分别作BD的垂线,2, 4 .A= BDC, ODE 二 BDC.. ODF 二 BDE .-b =1,b - -2.:OB =OC,C 0,c , B 点的坐标为 -c,0 ,2 .0 二 c 2c c,解得 c - -3 或 c = 0 (舍去),c - -3.(2)设点F 的坐标为 0,m .“”'对称轴为直线丨:x=1,.点F 关于直线l 的对称点F 的 坐标为2, m .v 直线BE 经过点B 3,0 ,E 1, -4 ,利用待定系数法可得直线BE 的表达式 为y = 2x -6 .因为点F 在BE 上,.m =2 2-6=—2,即点F 的坐标为 0,-2 . (3)存在点Q 满足题意.设点P 坐标为n,0 ,则 PA 二 n 1,PB 二 PM =3 - n,PN 二-n 22 n 3.1 1作 QR —PN,垂足为 R, TS/QN -S APM , ?n 1 3-n =- - n 2 2n 3i_QR,QR =1.①点Q 在直线PN 的左侧时,Q 点的坐标为n -1,n 2 -4n ,R 点的坐标为n,n 2-4n ,N2223点的坐标为(n,n —2n — 3).二 在 Rt^QRN 中,NQ =1+(2n — 3) J n = ?时,NQ取最小值1 .此时Q 点的坐标为-S D)BE =劳.BE OE222OE 2 OE : OB = —A = s ODE» .s33OD328.解: :(1) TCD_x 轴,CD =2 , 抛物线对称轴为直线 l : x = 1* S 2* S ,7,S2 =S 「BOC ' SCDOE ' SDB^ -2S I ' S l 'SDBE(3)「 :DOE_ . ABC,2S DOE (OD 〕1S ABC AB 4,即 S ABC = 4S ・poE = 4S , t OA = OB ,1S =2SABCSB -2S1②点Q在直线PN的右侧时,Q点的坐标为n 11,n? _ 4 .同理,〈315、n出寸,NQ取最小值1•此时Q点的坐标为,•12 4丿综上所述:满足题意得点Q的坐标为i和11.⑵4丿2 4丿数学试题参韦答案第1页(戏6項)2017年苏州市初中毕业暨升学考试数学试题参考答案一、选择题:(每小題3分”共汕分〉1. B 1. C3. D & D7. H8, A二、填空题;(毎小題3分.共】4分》 4. A 9. C5. C 10. A11. a 12. 50 13.14T (2—1)15. -16,丄17,IX. >/7425三、卿答题:(共力分)19. 解:原式=1+2—1=2*20, 斛:由"124,解得虫3・由 2(.r- l)>3.t-6 t 懈得盂<4・ 儿不等式纽的解卑£3签工<4 .2L 解:跖<=口」"3)(*-3)J + 2x + 3x — 3 x + 3 1 = ------- « ------------------ ■= ----- . Ji + 2 (x + 3)(jt — 3) x + 2 肖工二厲_2时*皿式=——二丄=巴. V3-2 + 2 V3 322.解:(1〉根据题总*设V J J-r 的鞘数丧込式为皿也 当 尸20时* 祈2三20才十芳尸刃时,严&得*一5以+八所求函數&込式为>=|x-2.(2)当jT 时.*上一2 = 0,得尸10・ 悴:族客时篦可免彷携带行卒10煌-解方程组20A+/> = 2t 501 + 6 = 8.⑵ 144;⑶ 将选航模项闾的2名刃生编上号码1、2>将2名女生编上号码氛4•用表格列由我格町知■共有12种可能出现的结杲'井且它们都足零可能的,其中r名班* I名女生”冇8种可能.Ap CI名男主、1斜女牛)=兰工2・(如川树状图.酌情柑咸給分)12 324 - (!)肚明:\AE和刃JfH 交F点0 :.ZAOD=ZBOE.在△昇OD和厶号心血中* ,\ZBEO=Z2.乂/< Z I = ZBEO. :, ZAEC=ZRED.[/心皿在△沖EC 和\ AE ~= BE,[ZAEC^ZBED^二HAEWbRED (ASA).<2) TAJEQ空△BED’ :.EC = ED. ZC- ZBDE.襄AEDC屮,V£C=£D, Z172°・AZC=Z£'/>C-69O .:.ZBDE=ZC^9J *25・解,(1)作CELABf®足为& VAC^fiC t Aff-4,:.AE=BE-2.数学试题参韦答案第1页(戏6項)(2)设白亞的坐标人E 0), :.AD=丄・2 2:.D.C两点的坐标分别为5” -).(折-』,2).2 2丁点C、。

江苏省苏州市2017年高新区中考数学一模试卷及参考答案

江苏省苏州市2017年高新区中考数学一模试卷及参考答案
23. 我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项
目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结 合图中的信息解答下列问题:
(1) 在这项调查中,共调查了多少名学生? (2) 将两个统计图补充完整; (3) 若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图
江苏省苏州市2017年高新区中考数学一模试卷
一、选择题
1. 的倒数是( )
A.﹣ B.﹣ C. D.
2. 今年2月份,某市经济开发区完成出口316000000美元,将这个数据316000000用科学记数法表示应为( ) A . 316×106 B . 31.6×107 C . 3.16×108 D . 0.316×109 3. 学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如
A.3B.4C.5D.6
10. 如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在 直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径总长度为( )
A.
B. C.
D.
二、填空题
11. ﹣ 的绝对值等于________.
(1) 求∠BCE的度数;
(2) 求证:D为CE的中点; (3) 连接OE交BC于点若AB=
,求OE的长度.
27. 如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C, 经过点B的直线y=﹣ x+b与抛物线的另一交点为D,且点D的横坐标为﹣5.

苏州市2017年中考数学试题含答案

苏州市2017年中考数学试题含答案

由图可知, 11名
成员射击成绩的中位数是
环.
14. 因式分解: 4a2 4a 1

15. 如图, 在“ 3 3 ”网格中, 有 3 个涂成黑色的小方格. 若再从余下的 6 个小方格中随机选取个涂成黑色,
则完成的图案为轴对称图案的概率是

16. 如图, 是 的直径, C 是弦, C 3 ,
围成一个圆锥的侧面,则这个圆锥底面圆的半径是
,交 C 的延长线于点 F ,则 F 的度数为(

A. 92
B . 108 C. 112
D . 124
10. 如图,在菱形
CD 中,
60 , D 8 , F 是 的中点.过点 F 作 F
D ,垂足为 .将
F 沿点 到点 的方向平移,得到
合时,四边形
CD 的面积为(

F .设 、 分别是 F 、 F 的中点,当点 与点 重
根据以上信息解决下列问题:
(1) m
,n

( 2)扇形统计图中机器人项目所对应扇形的圆心角度数为

( 3)从选航模项目的 4 名学生中随机选取 2 名学生参加学校航模兴趣小组训练,请用列举法(画树状图或
列表)求所选取的 2 名学生中恰好有名男生、名女生的概率.
24. (本题满分 8 分)如图,

,点 D 在 C 边上, 1 2 , 和 D 相交于点 .
26. (本题满分 10 分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点
出发,在
矩形 CD 边上沿着
C D 的方向匀速移动,到达点 D 时停止移动.已知机器人的速度为个
单位长度 / ,移动至拐角处调整方向需要(即在

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷

2018.3Zjie2017 年江苏省苏州市中考数学一模试卷一、选择题本大题共10 小题,每小题 3 分,共 30 分. 1.( 3 分) 的倒数是( )A .B .﹣C .D .﹣2.( 3 分)某细胞截面可以近似看成圆,它的半径约为 0.000 000787m ,则 0.000 000787 用科学记数法表示为( )A .7.87× 107B . 7.87×10 ﹣ 7 ﹣ 7 ﹣6C . 0.787×10D .7.87× 103.( 3 分)下列运算正确的是( )A .a 2+a 3=a 5B . a 2?a 3=a 6C . a 8÷ a 4=a 2D .(﹣ 2a 2)3=﹣ 8a 64.( 3 分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40 名学生,其中,参加书法兴 趣小组的有8 人,文学兴趣小组的有 11 人,舞蹈兴趣小组的有 9 人,其余参加绘画兴趣小组.则参加绘画 兴趣小组的频率是( )A .0.1B . 0.15C . 0.25D . 0.35.( 3 分)小明记录了 3 月份某一周的最高气温如下表:日期12 日 13 日 14 日 15日 16 日 17 日 18 日 最高气温(℃)15 10 13 14 13 16 13 那么 7 天每天的最高气温的众数和中位数分别是( )A .13, 14B . 13, 15C . 13,13 D .10, 136.( 3 分)已知点 A (﹣ 1, y 1)、 B (2, y 2), C (3, y 3)都在反比例函数 y=﹣ 的图象上,则下列y 1、 y 2、y 3 的大小关系为( )A .y1<y2< y3B . y1> y3> y2C . y1>y2> y3D .y2> y3>y17.( 3 分)如图,△ ABC 中, AB=AC=15, AD 平分∠ BAC ,点 E 为 AC 的中点,连接 DE ,若△ CDE 的周长为21,则 BC 的长为( )A .16B . 14C . 12D . 68.( 3 分)抛物线y=ax2+bx+c( a≠ 0)的对称轴是直线x=1,且经过点(3,0),则 a﹣ b+c 的值为()第 1 页(共 13 页)2018.3 Zjie A.﹣ 1 B. 0 C. 1 D. 29.( 3 分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C 两点测得该塔顶端 F 的仰角分别为 45°和 60°,矩形建筑物宽度AD=20m,高度 DC=30m 则信号发射塔顶端到地面的高度(即FG 的长)为()A.( 35 +55) m B.( 25 +45) m C.(25 +75) m D.( 50+20 ) m10.( 3 分)在平面直角坐标系中,Rt△ AOB的两条直角边OA、 OB 分别在 x 轴和 y 轴上, OA=3, OB=4.把△ AOB 绕点 A 顺时针旋转120°,得到△ ADC.边 OB 上的一点M 旋转后的对应点为M′,当 AM′+DM 取得最小值时,点M 的坐标为()A.( 0,) B.( 0,)C.( 0,)D.(0, 3)二、选择题本大题共8 小题,每小题3 分,共 24分 .11.( 3分)因式分解: a2﹣1= .12.( 3分)若式子在实数范围内有意义,则x 的取值范围是.13.( 3分)如图, a∥ b, MN ⊥ a,垂足为 N.若∠1=56 °,则∠ M 度数等于.第 2 页(共 13 页)2018.3 Zjie 14.( 3 分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、 C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中 A 所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.15.( 3 分)关于 x 的一元二次方程 x2﹣ 2x+m﹣ 1=0 有两个实数根,则m 的取值范围是.16.( 3 分)如图,矩形 ABCD中, AB=4,将矩形ABCD绕点 C 顺时针旋转90°,点 B、 D 分别落在点B′, D′处,且点 A, B′, D′在同一直线上,则 tan ∠ DAD′.17.( 3 分)如图,⊙ O 的半径是2,弦 AB 和弦 CD 相交于点E,∠AEC=60°,则扇形AOC 和扇形 BOD 的面积(图中阴影部分)之和为.18.( 3 分)如图,在等腰Rt△ ABC 中,∠ ABC=90°, AB=BC=4.点 P 是△ ABC 内的一点,连接PC,以 PC 为直角边在PC 的右上方作等腰直角三角形 PCD.连接 AD,若 AD∥ BC,且四边形ABCD 的面积为12,则 BP的长为.三、解答题本大题共10 小题,共76 分第 3 页(共 13 页)2018.3 Zjie 19.( 5 分)计算:+| ﹣| ﹣﹣tan30 °.20.( 5 分)解不等式组:.21.( 6 分)先化简,再求值:(1﹣)÷,其中 x= +1.22.( 6 分)某班为奖励在校运动会上取得较好成绩的运动员,花了 396 元钱购买甲、乙两种奖品共30件.其中甲种奖品每件 15 元,乙种奖品每件 12 元,求甲、乙两种奖品各买多少件?23.( 8 分)九年级(1)班和( 2)班分别有一男一女共4 名学生报名参加学校文艺汇演主持人的选拔.( 1)若从报名的 4 名学生中随机选 1 名,则所选的这名学生是女生的概率是.( 2)若从报名的 4 名学生中随机选 2 名,用树状图或表格列出所有可能的情况,并求出这 2 名学生来自同一个班级的概率.24.( 8 分)如图,已知Rt△ ABD 中,∠ A=90°,将斜边BD 绕点 B 顺时针方向旋转至BC,使 BC∥ AD,过点C 作 CE⊥BD 于点 E.(1)求证:△ ABD≌△ ECB;(2)若∠ ABD=30°, BE=3,求弧 CD的长.第 4 页(共 13 页)2018.3 Zjie 25.( 8 分)如图,在平面直角坐标系中,函数y= ( x> 0, k 是常数)的图象经过A( 2, 6),B( m, n),其中 m> 2.过点 A 作 x 轴垂线,垂足为C,过点 B 作 y 轴垂线,垂足为D, AC 与 BD 交于点 E,连结 AD,DC,CB.( 1)若△ ABD 的面积为3,求 k 的值和直线AB 的解析式;( 2)求证:= ;( 3)若 AD∥ BC,求点 B 的坐标.26.( 10 分)如图,在△ ABC 中, AB=AC,以 AB 为直径的⊙ O 交 BC 边于点 D,交 AC 边于点 E.过点 D 作⊙ O 的切线,交 AC 于点 F,交 AB 的延长线于点 G,连接 DE.(1)求证: BD=CD;(2)若∠ G=40°,求∠ AED的度数.(3)若 BG=6, CF=2,求⊙ O 的半径.第 5 页(共 13 页)2018.3 Zjie27.( 10 分)如图,正方形 OABC 的顶点 O 在坐标原点,顶点 A 的坐标为( 4, 3) ( 1)顶点 C 的坐标为( , ),顶点 B 的坐标为( , );( 2)现有动点 P 、Q 分别从 C 、A 同时出发,点 P 沿线段 CB 向终点 B 运动,速度为每秒 1 个单位,点 Q 沿 折线 A →O →C 向终点 C 运动,速度为每秒 k 个单位,当运动时间为 2 秒时,以 P 、 Q 、 C 为顶点的三角形是 等腰三角形,求此时 k的值.( 3)若正方形 OABC 以每秒 个单位的速度沿射线 AO 下滑,直至顶点 C 落到 x 轴上时停止下滑. 设正方形OABC 在 x 轴下方部分的面积为 S ,求 S 关于滑行时间 t 的函数关系式,并写出相应自变量 t 的取值范围.28.( 10 分)如图,在平面直角坐标系中,抛物线y=ax 2﹣ 2ax ﹣3a ( a > 0)与 x 轴交于 A 、 B 两点(点 A 在 点 B 左侧),经过点 A 的直线 l : y=kx+b 与 y 轴交于点 C ,与抛物线的另一个交点为 D ,且 CD=4AC .( 1)直接写出点 A 的坐标,并用含a 的式子表示直线 l 的函数表达式(其中 k 、 b 用含 a 的式子表示) .( 2)点 E 为直线 l 下方抛物线上一点,当△ ADE 的面积的最大值为 时,求抛物线的函数表达式;( 3)设点 P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点 A 、D 、P 、 Q 为顶点的四边形能否为矩形?若能,求出点 P 的坐标;若不能,请说明理由.第 6 页(共 13 页)2018.3Zjie参考答案与试题解析一、选择题1. C . 2. B . 3. D . 4. D .5. C . 6. B .7.【解答】 解:∵ AB=AC , AD 平分∠ BAC ,∴ A D ⊥ BC , ∴∠ADC=90°,∵点 E 为 AC 的中点,∴ D E=CE= AC= .∵△ CDE 的周长为 21,∴ C D=6,∴ B C=2CD=12.故选 C .8.【解答】解:∵抛物线 y=ax 2 +bx+c 的对称轴为 x=1,∴根据二次函数的对称性得:点( 3, 0)的对称点为(﹣ 1,0),∵当 x=﹣1 时, y=a ﹣ b+c=0,∴ a ﹣ b+c 的值等于 0.故选 B .9.【解答】 解:设 CG=xm ,由图可知: EF=( x+20) ?tan45 °, FG=x?tan60°,则( x+20)tan45 °+30=xtan60 °,解得 x= =25( +1),则 FG=x?tan60°=25( +1)× =( 75+25 )m .故选 C .10. 【解答】 解:∵把△ AOB 绕点 A 顺时针旋转120 °,得到△ ADC ,点 M 是 BC 边上的一点, ∴ A M=AM ′ ,∴ A M ′+DM 的最小值 =AM+DM 的最小值,作点 D 关于直线 OB 的对称点 D ′,连接 AD ′交 OB 于M,则A D′=AM′+DM的最小值,过 D 作DE⊥x 轴于 E,∵∠OAD=120°,∴∠DAE=60°,∵ AD=AO=3,∴ DE= ×3= ,AE= ,∴ D(,),∴ D′(﹣,),设直线 AD′的解析式为y=kx+b,∴,∴,∴直线 AD′的解析式为y=﹣x+,当 x=0 时, y= ,∴M( 0,),故选 A.二、填空题11.( a+1)( a﹣ 1). 12. x>﹣ 2 .第 7 页(共 13 页)2018.3 Zj ie13.【解答】解:∵ a∥ b,∠1=56 °,∴ 扇形AOC 与扇形DOB 面积的和∴∠ 2=∠ 1=56°,= = ,∴∠ 3=∠ 2=56°,故答案为:.∵ MN ⊥ a,∴∠ M=180°﹣∠ 3﹣ 90°=180°﹣ 56°﹣ 90°=34°.故答案为: 34°.14.【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣ 20﹣ 80﹣40=100(人),故答案为: 100 人.15.【解答】解:由题意知,△=4﹣ 4( m﹣1)≥ 0,∴m≤ 2,故答案为: m≤2 .16.【解答】解:由题意可得:AD∥CD′,故△ ADE∽△ D′CB,′则= ,设A D=x,则 B′C=x, DB′=4﹣ x,AB=CD′=4,故= ,解得: x1=﹣ 2﹣2(不合题意舍去),x2=﹣ 2+2 ,则D B′=6﹣2 ,则 tan∠ DAD′== = .故答案为:.17.【解答】解:连接 BC,如图所示:∵∠ CBE+∠ BCE=∠ AEC=60°,∴∠ AOC+∠ BOD=120°,18.【解答】解:如图,作PF⊥ BC 于点 F,延长FP交A D 于点 E,∵AD∥BC,∴∠ PFC=∠ DEP=90°,∴∠ CPF+∠ PCF=90°,∵∠ DPC=90°,∴∠ CPF+∠ DPE=90°,∴∠ PCF=∠ DPE,在△ PCF和△ DPE中,∵,∴△ PCF≌△ DPE( AAS),∴PF=DE、PE=CF,设P F=DE=x,则 PE=CF=4﹣x,∵S 四边形 ABCD= ( AD+BC)?AB=12,∴ ×( AD+4)× 4=12,解得 AD=2,∴ AE=BF=2﹣ x,第 8 页(共 13 页)2018.3∴F C=BC﹣ BF=4﹣( 2﹣x) =2+x,可得 2+x=4﹣x,解得 x=1,∴ BP= = ,故答案为:.三、解答题19 .【解答】解:+| ﹣|﹣﹣tan30 °=3+ ﹣ 1﹣=20.【解答】解:由①得,x>﹣ 1,由②得, x≤ 4,∴不等式组的解集为﹣1< x≤ 4.21.【解答】解:( 1﹣)÷===,当 x= +1 时,原式= = .22.【解答】解:设甲种奖品买了x 件,乙种奖品买了 y 件.根据题意得:,解得:.答:甲种奖品买了12 件,乙种奖品买了18 件.Zjie 23.【解答】解:( 1)所选的学生性别为女生的概率== ,故答案为:;( 2)画树形图得:所以共有12 种等可能的结果,满足要求的有 4 种.∴这 2 名学生来自同一个班级的概率为 =.24.【解答】(1)证明:∵∠A=90°,CE⊥ BD,∴∠ A=∠BEC=90°.∵BC∥AD,∴∠ ADB=∠EBC.∵将斜边 BD 绕点 B 顺时针方向旋转至BC,∴ BD=BC.在△ ABD 和△ ECB中,∴△ ABD≌△ ECB;(2)∵△ABD≌△ ECB,∴AD=BE=3.∵∠ A=90°,∠BAD=30°,∴BD=2AD=6,∵ BC∥ AD,∴∠ A+∠ABC=180°,∴∠ ABC=90°,∴∠ DBC=60°,∴弧 CD的长为=2π.第 9 页(共 13 页)2018.325.【解答】解:( 1)∵函数 y=( x> 0,k 是常数)的图象经过A( 2, 6),∴k=2× 6=12,∵ B( m, n),其中 m>2.过点 A 作x 轴垂线,垂足为 C,过点 B 作 y 轴垂线,垂足为D,∴m n=12 ①, BD=m, AE=6﹣ n,∵△ ABD 的面积为 3,∴BD?AE=3,∴m( 6﹣ n) =3②,联立①②得, m=3, n=4,∴ B(3, 4);设直线 AB 的解析式为y=kx+b( k≠0),则,∴,∴直线 AB 的解析式为y=﹣ 2x+10 ( 2)∵ A(2 ,6), B(m,n ),∴B E=m﹣ 2,CE=n, DE=2,AE=6﹣n,∴D E?AE=2( 6﹣ n) =12﹣ 2n,BE?CE=n(m﹣2)=mn﹣2n=12﹣2n,∴D E?AE=BE?CE,∴Zjie ∵AD∥BC,∴四边形ADCB是平行四边形.又∵ AC⊥ BD,∴四边形ADCB是菱形,∴DE=BE, CE=AE.∴B(4, 3).26.【解答】(1)证明:连接AD ,∵AB 为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;( 3)由( 2)知,,( 2)解:连接OD,∵∠ AEB=∠DEC=90°,∵ GF 是切线, OD 是半径,∴△ DEC∽△BEA,∴ OD⊥ GF,∴∠ CDE=∠ABE∴∠ ODG=90°,∴ AB∥ CD,∵∠ G=40°,第 10 页(共 13 页)2018.3∴∠ GOD=50°,∵O B=OD,∴∠OBD=65°,∵点 A、 B、 D、 E 都在⊙ O 上,∴∠ ABD+∠ AED=180°,∴∠ AED=115°;(3)解:∵AB=AC,∴∠ABC=∠ C,∵ OB=OD,∴∠ ABC=∠ ODB,∴∠ ODB=∠ C,∴O D∥ AC,∴△ GOD∽△ GAF,∴= ,∴设⊙ O 的半径是r,则 AB=AC=2r,∴A F=2r﹣ 2,∴= ,∴r=3,即⊙ O 的半径是3.27.【解答】解:(1)如图 1 中,作CM⊥ x 轴于,AN⊥x 轴于 N.连接 AC、 BO 交于点 K.易证△ AON≌△ COM,可得 CM=ON=4,OM=AN=3,∴C(﹣3,4),∵CK=AK,OK=BK,Zjie∴K(,),B(1,7),故答案为﹣ 3,4,1, 7.(2)由题意得,AO=CO=BC=AB=5,当 t=2时, CP=2.①当点 Q 在 OA 上时,∵ PQ≥AB> PC,∴只存在一点 Q,使QC=QP.作 QD⊥ PC于点 D(如图 2 中),则CD=PD=1,∴QA=2k=5﹣ 1=4,∴k=2.②当点 Q 在 OC上时,由于∠ C=90°所以只存在一点Q,使 CP=CQ=2,∴2k=10﹣ 2=8,∴ k=4.综上所述, k 的值为 2 或 4.( 3)①当点 A 运动到点O 时, t=3.当0< t ≤3 时,设 O’C交’ x 轴于点E,作A’F⊥x 轴于点F(如图3 中).则△ A’OF∽△ EOO’,第 11 页(共 13 页)2018.3 Zjie ∴== ,OO′= t ,∴E O′= t,∴S= t 2.②当点 C 运动到 x 轴上时, t=4当 3< t≤ 4 时(如图4 中),设 A’B 交’x 轴于点 F,则A’O=A′O=t ﹣ 5,∴ A′F=.∴ S= ( + t )× 5= .综上所述, S= .28.【解答】解:( 1)令 y=0,则 ax2﹣ 2ax﹣ 3a=0,解得 x1=﹣ 1,x2=3∵点 A 在点 B 的左侧,∴ A(﹣ 1,0 ),如图 1,作 DF⊥ x 轴于 F,∴DF∥ OC,∴= ,∵CD=4AC,∴= =4,∵OA=1,∴OF=4,∴ D 点的横坐标为 4,代入 y=ax2﹣ 2ax﹣ 3a 得, y=5a,∴D(4, 5a),把 A、 D 坐标代入y=kx+b 得,解得,∴直线 l 的函数表达式为y=ax+a.( 2)如图 2,过点 E 作 EH∥ y 轴,交直线l 于点H,设E(x, ax2﹣ 2ax﹣ 3a),则 H(x,ax+a).∴HE=( ax+a)﹣( ax2﹣ 2ax﹣ 3a)=﹣ ax2+3ax+4a,第 12 页(共 13 页)2018.3由 得 x=﹣1 或 x=4,即点 D 的横坐标为 4,∴ S △ ADE=S △ AEH+S △ DEH= (﹣ ax 2 +3ax+4a ) =﹣ a ( x﹣ ) 2+ a .∴△ ADE 的面积的最大值为 a ,∴ a= ,解得: a= .∴抛物线的函数表达式为 y= x 2﹣ x ﹣ .( 3)已知 A (﹣ 1, 0),D ( 4, 5a ).∵ y =ax 2﹣2ax ﹣3a ,∴抛物线的对称轴为 x=1,设 P ( 1, m ),①若 AD 为矩形的边,且点 Q 在对称轴左侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q (﹣ 4, 21a ),m=21a+5a=26a ,则 P (1, 26a ),∵四边形 ADPQ 为矩形,∴∠ ADP=90°,2 2 2 , ∴ AD +PD=AP∴ 52 +( 5a )2 +( 1﹣ 4) 2+( 26a ﹣ 5a ) 2=(﹣ 1﹣ 1) 2 +( 26a ) 2,即 a 2= ,∵ a >0 ,Zjie∴ a= ,∴ P 1( 1, ),②若 AD 为矩形的边,且点 Q 在对称轴右侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q ( 4, 5a ),此时点 Q 与点 D 重合,不符合题意,舍去;③若 AD 是矩形的一条对角线,则 AD 与 PQ 互相平分且相等.∴ x D +x A =x P +x Q ,y D +y A =y P +y Q ,∴ xQ=2,∴ Q ( 2,﹣ 3a ).∴ yP=8a∴ P ( 1,8a ).∵四边形 APDQ 为矩形,∴∠ APD=90°∴ AP 2+PD 2=AD 2∴(﹣ 1﹣ 1)2+( 8a )2 +(1﹣ 4) 2+( 8a ﹣5a )2=52+( 5a ) 2 即 a 2 = ,∵ a > 0,∴ a=∴ P 2( 1, 4)综上所述,以点 A 、 D 、 P 、 Q 为顶点的四边形能成为矩形,点 P 的坐标为( 1, )或( 1,4).第 13 页(共 13 页)。

苏州市高新区2017届中考数学第一次模拟考试题含答案

苏州市高新区2017届中考数学第一次模拟考试题含答案

江苏省苏州市高新区2017届九年级数学下学期第一次模拟试题注意事项:1.答题前.考生务必将自己的姓名、考点名称、考场号、座位号、考试号填涂在答题卡相应的位置上;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.请用橡皮擦干净后.再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上.不在答题区域内的答案一律无效.不得用其他笔答题; 3.考生答题必须答在答题卡上.答在试卷和草稿纸上一律无效.一、选择题 (本大题共10小题.每小题3分.共30分.在每小题给出的四个选项中.有且只有一个选项正确的.请将正确答案填涂在答题卡相应的位置上.) 1.23的倒数是( ▲ )A .23- B .32- C .23 D .322.今年2月份.某市经济开发区完成出口316000000美元.将这个数据316000000用科学记数法表示应为( ▲ ). A .316×106B .31.6×107C .3.16×108D .0.316×1093.学校为了丰富学生课余活动开展了一次“爱我学校.唱我学校”的歌咏比赛.共有18名同学入围.他们的决赛成绩如下表: 则入围同学决赛成绩的中位数和众数分别是( ▲ )A .9.70.9.60B .9.60.9.60C .9.60.9.70D .9.65.9.60 4.在一个不透明的盒子中装有a 个除颜色外完全相同的球.这a 个球中只有3个红球.若每次将球充分搅匀后.任意摸出1个球记下颜色再放回盒子.通过大量重复试验后.发现摸到红球的频率稳定在20%左右.则a 的值约为( ▲ ) A .12 B .15 C .18D .215.不等式组211841x x x x -+⎧⎨+-⎩≥≤的解集是( ▲ )A .3x ≥B .2x ≥C .23x ≤≤D .无解6.点A (-1.y 1).B (-2.y 2)在反比例函数y =2x的图象上.则y 1.y 2的大小关系是( ▲ )A . y 1>y 2B . y 1=y 2C . y 1<y 2D . 不能确定7.如图.△ABC 内接于⊙O .∠BAC =120°.AB =AC =4. BD 为⊙O 的直径.则BD 等于( ▲ )A .4B .6C .8D .12CDO ECB8.平行四边形ABCD 与等边△AEF 如图放置.如果∠B =45°.则∠BAE 的大小是( ▲ )A .75°B .70°C .65°D .60°9.如图1.在平行四边形ABCD 中.点P 从起点B 出发.沿BC .CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x .则线段AP .AD 与平行四边形的边所围成的图形面积为y .表示y 与x 的函数关系的图像大致如图2.则AB 边上的高是( ▲ ) A .3 B .4C .5D .610.如图.菱形ABCD 放置在直线l 上(AB 与直线l 重合).AB =4.∠DAB =60°.将菱形ABCD 沿直线l 向右无滑动地在直线l 上滚动.从点A 离开出发点到点A 第一次落在直线l 上为止.点A 运动经过的路径总长度为( ▲ )ABCD二、填空题 (本大题共8小题.每小题3分.共24分.把答案填在答题卡相应位置上.)11.13-的绝对值等于 ▲ 。

2017江苏苏州市中考数学试卷解析

2017江苏苏州市中考数学试卷解析

2017年江苏省苏州市中考数学试卷满分:130分 版本:苏教版第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的e O 交AB 于点D ,E 是e O 上一点,且»»CCD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在e O 中,∵»»CCD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O e 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q . 在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=ooQ ,69BDE C ∴∠=∠=o .25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==Q ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴Q 点的坐标为5,22⎛⎫⎪⎝⎭,Q 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=Q .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. Q 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴=Q 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q P .Q 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴=P 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴==Q 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于e O ,AB 是直径,点D 在e O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB Q 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠o o Q .//,OD BC DOE ABC ∴∠=∠Q ,DOE ∴∆∽ABC ∆.(2)DOE ∆Q ∽ABC ∆.ODE A A ∴∠=∠∠Q 和BDC ∠是»BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q ∽ ,即144ABC DOE S S S ∆∆== , OA OB =Q ,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x Q P 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=Q ∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m Q 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .Q 直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++Q g ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

江苏省苏州市2017年中考数学真题试题(含扫描答案)

江苏省苏州市2017年中考数学真题试题(含扫描答案)

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217−÷的结果是A .3B .3−C .13D .13− 2.有一组数据:2,5,5,6,7,这组数据的平均数为A .3B .4C .5D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k −+=有两个相等的实数根,则k 的值为A .1B .1− C.2 D .2−5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n −>,则b 的取值范围为A .2b >B .2b >− C.2b < D .2b <−7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0−,则关于x 的方程()2210a x −+=的实数根为A .10x =,24x =B .12x =−,26x = C.132x =,252x = D .14x =−,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283.243323.3238第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为.13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.14.因式分解:2441a a −+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分) 计算:()0143π−+−.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨−>−⎪⎩. 21. (本题满分6分) 先化简,再求值:259123x x x −⎛⎫−÷ ⎪++⎝⎭,其中32x =. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =.(1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a − 15. 13 16.12274三、解答题19. 解:原式1212=+−=.20. 解:由44x +≥,解得3x ≥,由()2136x x −>−,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x −+−−+=÷=⋅=++++−+.当32x =时, 原式333223===−+. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=−⎩,所求函数表达式为125y x =−. (2) 当0y =时,1205x −=,得10x =. 答:旅客最多可免费携带行李10kg .23. 解:(1)8,3m n ==;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中, (),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫ ⎪⎝⎭,点C 在k y x =的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x =的图象上,332,6,22m m m C ⎛⎫∴=−∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫ ⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,22297,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ PQ .在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ PQ =.1212..CP CP PP BD CB CD ∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =−=−∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠. //,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =: ()1, 2.,0,,2b b OB OC Cc ∴−==−=∴B 点的坐标为(),0,c − 202,c c c ∴=++ 解得3c =− 或0c = (舍去), 3.c ∴=− (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m . 直线BE 经过点()()3,0,1,4,B E −∴ 利用待定系数法可得直线BE 的表达式为26y x =− . 因为点F 在BE 上,∴ 2262,m =⨯−=− 即点F 的坐标为()0,2.−(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==−=−++ 作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+−=−++ 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R −−点的坐标为()2,4,n n n N −点的坐标为()2,23.n n n −− ∴ 在Rt QRN ∆中,()223123,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫− ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +−同理,()221121,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫− ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫− ⎪⎝⎭和315,.24⎛⎫− ⎪⎝⎭。

2017年江苏省苏州市中考数学试卷及答案

2017年江苏省苏州市中考数学试卷及答案

2017年江苏省苏州市中考数学试卷满分:130分 第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的e O 交AB 于点D ,E 是e O 上一点,且»»CCD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在e O 中,∵»»CCD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O e 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q . 在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=ooQ ,69BDE C ∴∠=∠=o .25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==Q ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴Q 点的坐标为5,22⎛⎫⎪⎝⎭,Q 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=Q .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. Q 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴=Q 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q P .Q 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴=P 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴==Q 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于e O ,AB 是直径,点D 在e O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB Q 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠o o Q .//,OD BC DOE ABC ∴∠=∠Q ,DOE ∴∆∽ABC ∆.(2)DOE ∆Q ∽ABC ∆.ODE A A ∴∠=∠∠Q 和BDC ∠是»BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q ∽ ,即144ABC DOE S S S ∆∆== , OA OB =Q ,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x Q P 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=Q ∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m Q 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .Q 直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++Q g ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭ ②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

江苏省苏州市2017届中考数学一模试卷(含解析)

江苏省苏州市2017届中考数学一模试卷(含解析)

江苏省苏州市2017届中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.的倒数是()A. B.﹣C. D.﹣2.某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()A.7.87×107B.7.87×10﹣7C.0.787×10﹣7D.7.87×10﹣63.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a8÷a4=a2D.(﹣2a2)3=﹣8a64.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.35.小明记录了3月份某一周的最高气温如下表:日期12日13日14日15日16日17日18日最高气温(℃)15 10 13 14 13 16 13那么15天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,136.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y17.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.29.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m10.在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,3)二、选择题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上. 11.因式分解:a2﹣1= .12.若式子在实数范围内有意义,则x的取值范围是.13.如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于.14.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.15.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′.17.如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD 的面积(图中阴影部分)之和为.18.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为.三、解答题本大题共10小题,共76分把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算: +|﹣|﹣﹣tan30°.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=+1.22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC 与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证: =;(3)若AD∥BC,求点B的坐标.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.27.(10分)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(,),顶点B的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a 的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年江苏省苏州市中考数学一模试卷参考答案与试题解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.的倒数是()A. B.﹣C. D.﹣【考点】17:倒数.【分析】根据倒数的定义求解即可.【解答】解:得到数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()A.7.87×107B.7.87×10﹣7C.0.787×10﹣7D.7.87×10﹣6【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000787=7.87×10﹣7,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a8÷a4=a2D.(﹣2a2)3=﹣8a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方以及幂的乘方的性质对各选项分析判断即可得解.【解答】解:A、a2+a3不能进行运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a8÷a4=a8﹣4=a4,故本选项错误;D、(﹣2a2)3=(﹣2)3(a2)3=﹣8a6,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.3【考点】V6:频数与频率.【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:绘画小组的频数是40﹣8﹣11﹣9=12,频率是12÷40=0.3,故选:D.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.5.小明记录了3月份某一周的最高气温如下表:日期12日13日14日15日16日17日18日最高气温(℃)15 10 13 14 13 16 13那么15天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,13【考点】W5:众数;W4:中位数.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【解答】解:∵这组数据中13出现的次数最多,是3次,∴每天的最高气温的众数是13;把3月份某一周的气温由高到低排列是:16℃、15℃、14℃、13℃、13℃、13℃、10℃,∴每天的最高气温的中位数是13;∴每天的最高气温的众数和中位数分别是13、13.故选:C.【点评】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.6.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y1【考点】G6:反比例函数图象上点的坐标特征.【分析】把点A、B、C的坐标分别代入函数解析式,求得y1、y2、y3的值,然后比较它们的大小.【解答】解:∵反比例函数y=﹣图象上三个点的坐标分别是A(﹣2,y1)、B(1,y2)、C (2,y3),∴y1=﹣=1,y2=﹣1,y3=﹣.∵﹣﹣1<﹣<1,∴y2<y3<y1故选B.【点评】本题考查了反比例函数图象上点的坐标特征.函数图象上点坐标都满足该函数解析式.7.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.6【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=12.故选C.【点评】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.2【考点】H3:二次函数的性质.【分析】根据二次函数对称性可求出点(3,0)关于对称轴直线x=1的对称点为(﹣1,0),然后把(﹣1,0)代入y=ax2+bx+c即可求出答案.【解答】解:∵抛物线y=ax2+bx+c的对称轴为x=1,∴根据二次函数的对称性得:点(3,0)的对称点为(﹣1,0),∵当x=﹣1时,y=a﹣b+c=0,∴a﹣b+c的值等于0.故选B.【点评】本题主要考查了二次函数的性质,解答本题的关键是求出点P关于对称轴的对称点,此题难度不大.9.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长,根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:设CG=xm,由图可知:EF=(x+20)•tan45°,FG=x•tan60°,则(x+20)tan45°+30=xtan60°,解得x==25(+1),则FG=x•tan60°=25(+1)×=(75+25)m.故选C.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.10.在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,3)【考点】R7:坐标与图形变化﹣旋转;PA:轴对称﹣最短路线问题.【分析】根据旋转的性质得到AM=AM′,得出AM′+DM的最小值=AM+DM的最小值,作点D 关于直线OB的对称点D′,连接AD′交OB于M,则AD′=AM′+DM的最小值,过D作DE⊥x 轴于E,解直角三角形得到DE=×3=,AE=,求出D(,),根据轴对称的性质得到D′(﹣,),求出直线AD′的解析式为y=﹣x+,于是得到结论.【解答】解:∵把△AOB绕点A顺时针旋转120°,得到△ADC,点M是BC边上的一点,∴AM=AM′,∴AM′+DM的最小值=AM+DM的最小值,作点D关于直线OB的对称点D′,连接AD′交OB于M,则AD′=AM′+DM的最小值,过D作DE⊥x轴于E,∵∠OAD=120°,∴∠DAE=60°,∵AD=AO=3,∴DE=×3=,AE=,∴D(,),∴D′(﹣,),设直线AD′的解析式为y=kx+b,∴,∴,∴直线AD′的解析式为y=﹣x+,当x=0时,y=,∴M(0,),故选A.【点评】本题考查了坐标与图形的变换﹣旋转,待定系数法求函数的解析式,轴对称的性质,正确的作出辅助线是解题的关键.二、选择题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上. 11.因式分解:a2﹣1= (a+1)(a﹣1).【考点】54:因式分解﹣运用公式法.【分析】考查了对平方差公式的理解,本题属于基础题.本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:a2﹣1=a2﹣12=(a+1)(a﹣1).【点评】本题考查了公式法分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.若式子在实数范围内有意义,则x的取值范围是x>﹣2 .【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于34°.【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质以及对顶角的性质,得到∠3的度数,再根据三角形内角和定理即可得到结论【解答】解:∵a∥b,∠1=56°,∴∠2=∠1=56°,∴∠3=∠2=56°,∵MN⊥a,∴∠M=180°﹣∠3﹣90°=180°﹣56°﹣90°=34°.故答案为:34°.【点评】此题考查了平行线的性质,三角形内角和定理,垂直的定义,以及对顶角相等的知识.解题的关键是注意掌握两直线平行,同位角相等.14.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是100人.【考点】VC:条形统计图;VB:扇形统计图.【分析】根据统计图中的信息可以求得本次调查的学生人数,从而可以求得被调查的学生中选择跳绳的人数.【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣20﹣80﹣40=100(人),故答案为:100人.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.15.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是m≤2 .【考点】AA:根的判别式.【分析】根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【解答】解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤2,故答案为:m≤2.【点评】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′= .【考点】R2:旋转的性质;LB:矩形的性质;T7:解直角三角形.【分析】直接利用旋转的性质结合相似三角形的判定与性质得出DB′的长进而得出答案.【解答】解:由题意可得:AD∥CD′,故△ADE∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4﹣x,AB=CD′=4,故=,解得:x1=﹣2﹣2(不合题意舍去),x2=﹣2+2,则DB′=6﹣2,则tan∠DAD′===.故答案为:.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质,正确得出DB′的长是解题关键.17.如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD 的面积(图中阴影部分)之和为.【考点】MO:扇形面积的计算.【分析】根据三角形的外角的性质、圆周角定理得到∠AOC+∠BOD=120°,利用扇形面积公式计算即可.【解答】解:连接BC,如图所示:∵∠CBE+∠BCE=∠AEC=60°,∴∠AOC+∠BOD=120°,∴扇形AOC与扇形DOB面积的和==,故答案为:.【点评】本题考查的是扇形面积的计算、圆周角定理、三角形的外角的性质,掌握扇形面积公式是解题的关键.18.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD 的面积为12,则BP的长为.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】作PF⊥BC于点F,延长FP交AD于点E,证△PCF≌△DPE得PF=DE、PE=CF,从而得PE=CF=4﹣x,根据四边形ABCD的面积求得AD的长,据此知AE=BF=2﹣x、FC=BC﹣BF=4﹣(2﹣x)=2+x,从而得2+x=4﹣x,求得x的值,由勾股定理得出答案.【解答】解:如图,作PF⊥BC于点F,延长FP交AD于点E,∵AD∥BC,∴∠PFC=∠DEP=90°,∴∠CPF+∠PCF=90°,∵∠DPC=90°,∴∠CPF+∠DPE=90°,∴∠PCF=∠DPE,在△PCF和△DPE中,∵,∴△PCF≌△DPE(AAS),∴PF=DE、PE=CF,设PF=DE=x,则PE=CF=4﹣x,∵S四边形ABCD=(AD+BC)•AB=12,∴×(AD+4)×4=12,解得AD=2,∴AE=BF=2﹣x,∴FC=BC﹣BF=4﹣(2﹣x)=2+x,可得2+x=4﹣x,解得x=1,∴BP==,故答案为:.【点评】本题主要考查全等三角形的判定与性质、矩形的性质、四边形的面积及勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题本大题共10小题,共76分把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算: +|﹣|﹣﹣tan30°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方,然后从左向右依次计算,求出算式+|﹣|﹣﹣tan30°的值是多少即可.【解答】解: +|﹣|﹣﹣tan30°=3+﹣1﹣=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①得,x>﹣1,由②得,x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.先化简,再求值:(1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当x=+1时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【考点】9A:二元一次方程组的应用.【分析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程,解之即可得出结论.【解答】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.23.九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.【点评】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.24.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.【考点】MN:弧长的计算;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计算公式求解即可.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.【点评】本题考查了全等三角形的判定和性质,平行线的性质,旋转的性质,弧长的计算,证明出△ABD≌△ECB是解题的关键.25.如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD 交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证: =;(3)若AD∥BC,求点B的坐标.【考点】GB:反比例函数综合题.【分析】(1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;(2)先表示出BE,CE,DE,AE,进而求出BE•CE和DE•CE即可得出结论;(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.【解答】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6﹣n,∵△ABD的面积为3,∴BD•AE=3,∴m(6﹣n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴,∴直线AB的解析式为y=﹣2x+10(2)∵A(2,6),B(m,n),∴BE=m﹣2,CE=n,DE=2,AE=6﹣n,∴DE•AE=2(6﹣n)=12﹣2n,BE•CE=n(m﹣2)=mn﹣2n=12﹣2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,解(1)的关键是确定出k的值,解(2)的关键是表示出DE•A E,BE•CE,解(3)的关键是判断出四边形ADCB是菱形.26.(10分)(2017•苏州一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.【考点】MC:切线的性质;KH:等腰三角形的性质;S9:相似三角形的判定与性质.【分析】(1)连接AD,根据圆周角定理得出AD⊥BC,根据等腰三角形的性质得出即可;(2)连接OD,根据切线的性质求出∠ODG=90°,求出∠BOD、∠ABC,根据圆内接四边形求出即可;(3)求出△ODG∽△AFG,得出比例式,即可求出圆的半径.【解答】(1)证明:连接AD,∵AB为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)解:连接OD,∵GF是切线,OD是半径,∴OD⊥GF,∴∠ODG=90°,∵∠G=40°,∴∠GOD=50°,∵OB=OD,∴∠OBD=65°,∵点A、B、D、E都在⊙O上,∴∠ABD+∠AED=180°,∴∠AED=115°;(3)解:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△GOD∽△GAF,∴=,∴设⊙O的半径是r,则AB=AC=2r,∴AF=2r﹣2,∴=,∴r=3,即⊙O的半径是3.【点评】本题考查了切线的性质,圆内接四边形,相似三角形的性质和判定,圆周角定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键.27.(10分)(2017•苏州一模)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(﹣3 , 4 ),顶点B的坐标为( 1 ,7 );(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.【考点】LO:四边形综合题.【分析】(1)如图1中,作CM⊥x轴于,AN⊥x轴于N.连接AC、BO交于点K.易证△AON ≌△COM,可得CM=ON=4,OM=AN=3,推出C(﹣3,4),由CK=AK,OK=BK,可得K(,),B (1,7).(2)分两种情形①当点Q在OA上时.②当点Q在OC上时.分别计算即可.(3)分两种情形①当点A运动到点O时,t=3,当0<t≤3时,设O’C’交x轴于点E,作A’F⊥x轴于点F(如图3中).②当点C运动到x轴上时,t=4当3<t≤4时(如图4中),设A’B’交x轴于点F.分别求解即可.【解答】解:(1)如图1中,作CM⊥x轴于,AN⊥x轴于N.连接AC、BO交于点K.易证△AON≌△COM,可得CM=ON=4,OM=AN=3,∴C(﹣3,4),∵CK=AK,OK=BK,∴K(,),B(1,7),故答案为﹣3,4,1,7.(2)由题意得,AO=CO=BC=AB=5,当t=2时,CP=2.①当点Q在OA上时,∵PQ≥AB>PC,∴只存在一点Q,使QC=QP.作QD⊥PC于点D(如图2中),则CD=PD=1,∴QA=2k=5﹣1=4,∴k=2.②当点Q在OC上时,由于∠C=90°所以只存在一点Q,使CP=CQ=2,∴2k=10﹣2=8,∴k=4.综上所述,k的值为2或4.(3)①当点A运动到点O时,t=3.当0<t≤3时,设O’C’交x轴于点E,作A’F⊥x轴于点F(如图3中).则△A’OF∽△EOO’,∴==,OO′=t,∴EO′=t,∴S=t2.②当点C运动到x轴上时,t=4当3<t≤4时(如图4中),设A’B’交x轴于点F,则A’O=A′O=t﹣5,∴A′F=.∴S=(+t)×5=.综上所述,S=.【点评】本题考查四边形综合题、正方形的性质、坐标与图形的性质、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)(2017•苏州一模)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a >0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.。

江苏省苏州市2017年中考数学模拟试卷(一)(含答案)

江苏省苏州市2017年中考数学模拟试卷(一)(含答案)

2017年江苏省苏州市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.(3分)与﹣2的乘积为1的数是()A .2B .﹣2C .D .﹣2.(3分)下列运算中,正确的是()A .x 3+x 3=x 6B .x 3•x 9=x 27C .(x 2)3=x 5D .x ÷x 2=x ﹣13.(3分)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A .4.47×106B .4.47×107C .0.447×107D .447×1044.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A .三角形B .四边形C .五边形D .六边形5.(3分)如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为()A .50°B .60°C .120°D .130°6.(3分)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .y=3xB .C .D .y=x 27.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)人数(人)112134425371这12名同学进球数的众数是()A .3.75 B .3C .3.5D .78.(3分)如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于()A .8()mB .8()mC .16()mD .16()m9.(3分)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为()A .B .C .D .10.(3分)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .2C .3D .2二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x 2﹣9=.12.(3分)当a=2016时,分式的值是.13.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)以方程组的解为坐标的点(x,y)在第象限.16.(3分)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为(结果保留π)17.(3分)如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于.18.(3分)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为.三、解答题(共10小题,满分76分)19.(5分)计算: +|﹣5|﹣(2﹣)0.20.(5分)解不等式组21.(6分)先化简,再求值:(1﹣,并写出该不等式组的最大整数解.)÷,其中x=﹣1.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?23.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.(8分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.26.(10分)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣的长.27.(10分)如图,在矩形ABCD 中,AB=6cm ,AD=8cm .点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3cm/s ,以O 为圆心,0.8cm 为半径作圆O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <)(1)如图1,连接DQ ,当DQ 平分∠BDC 时,t 的值为(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与圆O 相切时,求t 的值;并判断此时PM 与圆O 是否也相切?说明理由.,求⊙O 的半径和BF28.(10分)已知抛物线y=x 2﹣2mx +m 2+m ﹣1(m 是常数)的顶点为P ,直线l :y=x ﹣1.(1)求证:点P 在直线l 上;(2)当m=﹣3时,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,与直线l 的另一个交点为Q ,M 是x 轴下方抛物线上的一点,∠ACM=∠PAQ (如图),求点M 的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2017年江苏省苏州市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)与﹣2的乘积为1的数是()A.2B.﹣2C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选D.3.(3分)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A.4.47×106B.4.47×107C.0.447×107D.447×104【解答】解:数据“4470000”用科学记数法可表示为4.47×106.故选:A.4.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.5.(3分)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120° D.130°【解答】解:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选:B.6.(3分)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3xB.C.D.y=x2【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.7.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)123457人数(人)114231这12名同学进球数的众数是()A .3.75B .3C .3.5D .7【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B .8.(3分)如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于()A .8()mB .8()mC .16()mD .16()m【解答】解:设MN=xm ,在Rt △BMN 中,∵∠MBN=45°,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=∴tan30°=解得:x=8(=,,+1),+1)m ;则建筑物MN 的高度等于8(故选A .9.(3分)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为()A .B .C .D .【解答】解:由题可得,点C 关于直线x=1的对称点E 的坐标为(2,﹣1),设直线AE 的解析式为y=kx +b ,则,解得,∴y=﹣x ﹣,将D (1,m )代入,得m=﹣﹣=﹣,即点D 的坐标为(1,﹣),∴当△ACD 的周长最小时,△ABD 的面积=×AB ×|﹣|=×4×=.故选(C )10.(3分)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .2C .3D .2【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1=2∴BD=DB 1=∴A 1D=故选A .,BA 1=2,∠A 1BB 1=90°,,=.,二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x 2﹣9=(x +3)(x ﹣3).【解答】解:x 2﹣9=(x +3)(x ﹣3).故答案为:(x +3)(x ﹣3).12.(3分)当a=2016时,分式【解答】解:=的值是2018.=a +2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.13.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S 甲2<S 乙2,即两人的成绩更加稳定的是甲.故答案为:甲.14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×故答案为:72.15.(3分)以方程组【解答】解:,的解为坐标的点(x,y)在第二象限.=72°;∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=+1=,∴点(x,y)的坐标为:(﹣,∴此点在第二象限.故答案为:二.16.(3分)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为保留π)π﹣(结果),【解答】解:如图,过O作OE⊥CD于点E,∵AB为⊙O的切线,∴∠DBA=90°,∵∠A=30°,∴∠BOC=60°,∴∠COD=120°,∵OC=OD=2,∴∠ODE=30°,∴OE=1,CD=2DE=2∴S阴影=S扇形COD﹣S△COD=故答案为:π﹣.﹣×1×2=π﹣,17.(3分)如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于4.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE绕点B顺时针旋转90°可得到△BCG,如图,∴BG=AB,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∴点G在DC的延长线上,∵∠EBF=45°,∴∠FBG=∠EBG﹣∠EBF=45°,∴∠FBG=∠FBE,在△FBG和△EBF中,,∴△FBG≌△FBE(SAS),∴FG=EF,而FG=FC+CG=CF+AE,∴EF=CF+AE,∴△DE F的周长=DF+DE+CF+AE=CD+AD=2+2=4故答案为:4.18.(3分)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为16.【解答】解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,D F=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故答案是:16.三、解答题(共10小题,满分76分)19.(5分)计算: +|﹣5|﹣(2﹣)0.【解答】解:原式=3+5﹣1=7.20.(5分)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,x ≥﹣2,解不等式②得,x <1,∴不等式组的解集为﹣2≤x <1.∴不等式组的最大整数解为:﹣2,﹣1,0,21.(6分)先化简,再求值:(1﹣【解答】解:原式==当x=22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x 米.由题意,得﹣=2.,﹣1时,原式==.)÷,其中x=﹣1.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.23.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC +∠NMC=90°,∴BN 2=BM 2+MN 2,由(1)可知MN=BM=AC=1,∴BN=25.(8分)如图,点A (m ,4),B (﹣4,n )在反比例函数y=(k >0)的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若m=2,求n 的值;(2)求m +n 的值;(3)连接OA 、OB ,若tan ∠AOD +tan ∠BOC=1,求直线AB 的函数关系式.【解答】解:(1)当m=2,则A (2,4),把A (2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B (﹣4,n )代入y=得﹣4n=8,解得n=﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数y=(k >0)的图象上,所以4m=k ,﹣4n=k ,所以4m +4n=0,即m +n=0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE=在Rt △BOF 中,tan ∠BOF=而tan ∠AOD +tan ∠BOC=1,=,=,所以+=1,而m +n=0,解得m=2,n=﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y=px +q ,把A (2,4),B (﹣4,﹣2)代入得所以直线AB 的解析式为y=x +2.,解得,26.(10分)如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC .(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣的长.【解答】解:(1)△ABC 是等腰三角形,理由是:如图1,连接OE ,∵DE 是⊙O 的切线,∴OE ⊥DE ,∵ED ⊥AC ,∴AC ∥OE ,∴∠1=∠C ,,求⊙O 的半径和BF∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=∴DG=OE=2x,根据AC=AB得:4x=x=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=∴BF=,OF==2÷=,x+2x+2﹣,x,﹣2,⊙O的半径为2.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm.点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3cm/s ,以O 为圆心,0.8cm 为半径作圆O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <)(1)如图1,连接DQ ,当DQ 平分∠BDC 时,t 的值为1(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与圆O 相切时,求t 的值;并判断此时PM 与圆O 是否也相切?说明理由.【解答】(1)解:如图1中,∵四边形ABCD 是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD=,∵PQ ⊥BD ,∴∠BPQ=90°=∠C ,∵∠PBQ=∠DBC ,∴△PBQ ∽△CBD ,∴∴,,∴PQ=3t ,BQ=5t ,∵DQ 平分∠BDC ,QP ⊥DB ,QC ⊥DC ,∴QP=QC ,∴3t=8﹣5t ,∴t=1,故答案为1.(2)解:如图2中,作MT ⊥BC 于T .∵MC=MQ ,MT ⊥CQ ,∴TC=TQ ,由(1)可知TQ=(8﹣5t ),QM=3t ,∵MQ ∥BD ,∴∠MQT=∠DBC ,∵∠MTQ=∠BCD=90°,∴△QTM ∽△BCD ,∴∴∴t=∴t=(s ),s 时,△CMQ 是以CQ 为底的等腰三角形.,,(3)①证明:如图2中,由此QM 交CD 于E ,∵EQ ∥BD ,∴,t ,∴EC=(8﹣5t ),ED=DC ﹣EC=6﹣(8﹣5t )=∵DO=3t ,∴DE ﹣DO=t ﹣3t=t >0,∴点O 在直线QM 左侧.②解:如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .∵EC=(8﹣5t ),DO=3t ,∴OE=6﹣3t ﹣(8﹣5t )=t ,∵OH ⊥MQ ,∴∠OHE=90°,∵∠HEO=∠CEQ ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8∴MH=0.8(由由+1),,,得到HE=,得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=∴0.8(+1)≠,矛盾,,∴假设不成立.∴直线MQ与⊙O不相切.28.(10分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.【解答】(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=,m2=;;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为,,,,0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省苏州市高新区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.﹣B.﹣C. D.2.今年2月份,某市经济开发区完成出口316000000美元,将这个数据316000000用科学记数法表示应为()A.316×106B.31.6×107C.3.16×108D.0.316×1093.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:9.40 9.50 9.60 9.70 9.80 9.90成绩(分)人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.604.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.215.不等式的解集是()A.x≥3 B.x≥2 C.2≤x≤3 D.空集6.点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1>y2B.y1=y2 C.y1<y2D.不能确定7.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.128.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是()A.75° B.70° C.65° D.60°9.在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y 与x的函数关系的图象大致如下图,则AB边上的高是()A.3 B.4 C.5 D.610.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD 沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径总长度为()A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卡相应位置上.)11.﹣的绝对值等于.12.在函数y=中,自变量x的取值范围是.13.方程x(x﹣1)=x的解为.14.分解因式:2b2﹣8b+8= .15.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是.17.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是.18.如图,在平面直角坐标系xOy中,平行四边形OABC的顶点A,B的坐标分别为(6,0),(7,3),将平行四边形OABC绕点O逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC的延长线上时,线段OA′交BC于点E,则线段C′E的长度为.三、解答题(本大题共10题,共76分,解答应写出必要的计算过程、推演步骤或文字说明)19.计算:(﹣3)2﹣+()﹣1.20.解方程:1﹣=.21.先化简,再求值:,其中a=﹣1.22.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.23.我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24.某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A、B两种货物各多少吨?25.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.26.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.27.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值;(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F 的坐标是多少时,点M在整个运动过程中用时最少?28.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(﹣4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;(2)在运动过程中.①当点D落在x轴上时,求出满足条件的t的值;②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.#D.2017年江苏省苏州市高新区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.﹣B.﹣C. D.【考点】17:倒数.【分析】根据倒数的定义求解即可.【解答】解:的倒数是,故选:D.2.今年2月份,某市经济开发区完成出口316000000美元,将这个数据316000000用科学记数法表示应为()A.316×106B.31.6×107C.3.16×108D.0.316×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选:C.3.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:9.40 9.50 9.60 9.70 9.80 9.90成绩(分)人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为: =9.60,众数为:9.60.故选:B.4.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.5.不等式的解集是()A.x≥3 B.x≥2 C.2≤x≤3 D.空集【考点】CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.【解答】解:,解①得:x≥2,解②得:x≥3.则不等式组的解集是:x≥3.故选A.6.点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1>y2B.y1=y2 C.y1<y2D.不能确定【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及其增减性,再根据A、B两点的横坐标判断出两点所在的象限,进而可得出结论.【解答】解:∵反比例函数y=中,k=2>0,∴此函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小,∵﹣1<0,﹣2<0,∴点A(﹣1,y1)、B(﹣2,y2)均位于第三象限,∵﹣1>﹣2,∴y1<y2.故选C.7.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【考点】M5:圆周角定理.【分析】根据三角形内角和定理可求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.【解答】解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.8.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是()A.75° B.70° C.65° D.60°【考点】L5:平行四边形的性质;KK:等边三角形的性质.【分析】由四边形ABCD是平行四边形,∠B=45°,根据平行四边形的邻角互补,可求得∠DAB的度数,又由△EAF是等边三角形,即可求得∠EAF的度数,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°﹣∠B=180°﹣45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD﹣∠EAF=75°.故选A.9.在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y 与x的函数关系的图象大致如下图,则AB边上的高是()A.3 B.4 C.5 D.6【考点】E7:动点问题的函数图象.【分析】要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由图象可以看出BC=5,CD=6,S行四边形ABCD=24,∵S行四边形ABCD=AB×h=6h=24,∴h=4.故选:B.10.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD 沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径总长度为()A. B. C. D.【考点】O4:轨迹;L8:菱形的性质;MN:弧长的计算.【分析】画出图形即可知道,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为图中的弧线长,由此即可解决问题.【解答】解:如图,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为图中弧线长.由题意可知=,∠DOA2=120°,DO=4,所以点A运动经过的路径的长度=2×+=π+π,故选:D.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卡相应位置上.)11.﹣的绝对值等于.【考点】15:绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得﹣的绝对值等于.12.在函数y=中,自变量x的取值范围是x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.13.方程x(x﹣1)=x的解为x1=0,x2=2 .【考点】A8:解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.分解因式:2b2﹣8b+8= 2(b﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:原式=2(b2﹣4b+4)=2(b﹣2)2.故答案为:2(b﹣2)2.15.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为.【考点】X5:几何概率.【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为:.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣3 .【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【分析】连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y 轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=1,可得FC•OF=3.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣3,即k=xy=﹣3.【解答】解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=1.∴FC•OF=b•a=3ab=3,设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=3.∴xy=﹣3.∵点C在双曲线y=上,∴k=xy=﹣3.故答案为:﹣3.17.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是2﹣2 .【考点】LE:正方形的性质;M8:点与圆的位置关系.【分析】根据直角三角形斜边上的中线等于斜边的一半,取AB的中点O,连接OH、OD,然后求出OH=AB=2,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H 三点共线时,DH的长度最小.【解答】解:如图,取AB的中点O,连接OH、OD,则OH=AO=AB=2,在Rt△AOD中,OD===2,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH的最小值=OD﹣OH=2﹣2.故答案为:2﹣2.18.如图,在平面直角坐标系xOy中,平行四边形OABC的顶点A,B的坐标分别为(6,0),(7,3),将平行四边形OABC绕点O逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC的延长线上时,线段OA′交BC于点E,则线段C′E的长度为 5 .【考点】R7:坐标与图形变化﹣旋转;L5:平行四边形的性质;T7:解直角三角形.【分析】过点C作CD⊥OC′于点D.利用旋转的性质和面积法求得CD的长,然后通过解直角三角形推知:tan∠COC′=.结合图形和旋转的性质得到∠COC′=∠AOE,自点E向x轴引垂线,交x轴于点F,则EF=3.利用等角的正切值相等tan∠AOE=tan∠COC′==,进而求得OF的长度,则C′E=O′E+O′C=4+1=5.【解答】解:∵OC=OC′,CC′⊥y轴,A,B的坐标分别为(6,0),(7,3),∴点C到y轴的距离:7﹣6=1.∴O′C=O′C′=1,O点到CC′的距离是3,∴OC=OC′=,S△OCC′=×2×3=3.如图,过点C作CD⊥OC′于点D,则OC′•CD=3,∴CD=,sin∠COC′==,tan∠COC′=.∵∠COC′+∠COE=∠AOE+∠COE,∴∠COC′=∠AOE,∴tan∠AOE=tan∠COC′=.如图,过E作x轴的垂线,交x轴于点F,则EF=OO'=3.∵tan∠AOE=,∴OF==4,∵OF=O′E=4,∴C′E=O′E+O′C′=4+1=5.故答案为:5.三、解答题(本大题共10题,共76分,解答应写出必要的计算过程、推演步骤或文字说明)19.计算:(﹣3)2﹣+()﹣1.【考点】6F:负整数指数幂;1E:有理数的乘方;22:算术平方根.【分析】本题根据有理数的乘方、算术平方根、负整数指数幂等知识点进行解答.【解答】解:原式=9﹣2+2=9.20.解方程:1﹣=.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x﹣1﹣1=﹣2x,3x=2,x=,经检验:把x=代入(x﹣1)≠0故x=是原方程的解.21.先化简,再求值:,其中a=﹣1.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原分式化为最简形式,再把a=﹣1代入进行计算即可.【解答】解:原式=•,=a+1,把a=﹣1代入得,原式=﹣1+1=.22.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】(1)根据线段中点的定义可得BE=CE,再根据正方形的四条边都相等可得BC=CD,BE=BF,然后求出BF=CE,再利用“边角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得DE=CF;(2)设CE=x,根据∠CDE的正切值表示出CD,然后求出BE,从而得到∠BCF的正切值,再根据两直线平行,内错角相等可得∠BCF=∠GFH,然后根据等角的正切值相等解答即可.【解答】(1)证明:∵E是BC的中点,∴BE=CE,在正方形ABCD和正方形BFGE中,BC=CD,BE=BF,∴BF=CE,在△BCF和△CDE中,,∴△BCF≌△CDE(SAS),∴DE=CF;(2)解:设CE=x,∵∠CDE=30°,∴tan∠CDE==,∴CD=x,∵正方形ABCD的边BC=CD,∴BE=BC﹣CE=x﹣x,∵正方形BFGE的边长BF=BE,∴tan∠BCF===,∵正方形BGFE对边BC∥GF,∴∠BCF=∠GFH,∵tan∠GFH=,∴=.23.我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用D的人数除以所占的百分比,即可求出调查的学生数;(2)用抽查的总人数减去A、B、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.【解答】解:(1)根据题意得:15÷30%=50(名).答;在这项调查中,共调查了50名学生;(2)C项目的人数为50﹣(10+5+15)=20,其百分比为×100%=40%,补全图形如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.24.某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A、B两种货物各多少吨?【考点】9A:二元一次方程组的应用.【分析】首先设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得等量关系:3月份A货物的运费+B货物运费=9500元;4月份A货物的运费+B货物运费=13000元,根据等量关系列出方程组,再解即可.【解答】解:设A种货物运输了x吨,设B种货物运输了y吨,由题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.25.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.【解答】解:(1)把点A(2,6)代入y=,得m=12,则y=.把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).26.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.【考点】MR:圆的综合题.【分析】(1)连接AD,由D为弧AB的中点,得到AD=BD,根据圆周角定理即可得到结论;(2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD,根据相似三角形的性质得到DE:AC=BE:BC,即可得到结论.(3)连接CO,根据线段垂直平分线的判定定理得到OE垂直平分BC,由三角形的中位线到现在得到OF=AC,根据直角三角形的性质得到EF=BC,由勾股定理即可得到结论.【解答】(1)解:连接AD,∵D为弧AB的中点,∴AD=BD,∵AB为直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°,∴∠DCB=∠DAB=45°;(2)证明:∵BE⊥CD,又∵∠ECB=45°,∴∠CBE=45°,∴CE=BE,∵四边形ACDB是圆O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDE+∠BDC=180°,∴∠A=∠BD,又∵∠ACB=∠BED=90°,∴△ABC∽△DBE,∴DE:AC=BE:BC,∴DE:BE=AC:BC=1:2,又∵CE=BE,∴DE:CE=1:2,∴D为CE的中点;(3)解:连接EO,∵CO=BO,CE=BE,∴OE垂直平分BC,∴F为BC中点,又∵O为AB中点,∴OF为△ABC的中位线,∴OF=AC,∵∠BEC=90°,EF为中线,∴EF=BC,在Rt△ACB中,AC2+BC2=AB2,∵AC:BC=1:2,AB=,∴AC=,BC=2,∴OE=OF+EF=1.5.27.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值;(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F 的坐标是多少时,点M在整个运动过程中用时最少?【考点】HF:二次函数综合题.【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得a的值;(2)用三角形的面积公式建立函数关系式,再确定出最大值;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如图,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.【解答】解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣(2)设P(m, m2﹣m﹣)∴S△BPD=×9[(﹣m+)﹣(m2﹣m﹣)]=﹣m2﹣m+10=﹣(m+)2+∴△BPD面积的最大值为;(3)如图,作DK∥AB,AH⊥DK,AH交直线BD于点F,∵由(2)得,DN=3,BN=9,∵∠DBA=30°,∴∠BDH=30°,∴FG=DF×sin30°=FD,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=AF+FD=AF+FH,∵l BD:y=﹣x+,∴F x=A x=﹣2,F(﹣2,2)∴当F坐标为(﹣2,2)时,用时最少.28.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(﹣4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;(2)在运动过程中.①当点D落在x轴上时,求出满足条件的t的值;②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.#D.【考点】MR:圆的综合题.【分析】(1)利用三角函数sin∠OAB==,cos∠OAB==,列出关系式即可解决问题.(2)①当D在x轴上时,如图2中,由QC∥OA,得 =,由此即可解决问题.②当点D在AB上时,如图3中,由PQ∥AB,得=,求出时间t,求出①②两种情形时的△POQ 的面积即可解决问题.(3)如图4中,当QC与⊙M相切时,则QC⊥CM,首先证明QB=QC,作QN∠BC于N,根据cos∠ABO==,列出方程即可解决问题,当CQ′是⊙M切线时,方法类似.【解答】解:(1)如图1中,∵OA=3,OB=4,∴AB===5,在Rt△ACP中,PA=4﹣t,∵sin∠OAB==,∴PC=(4﹣t),∵cos∠OAB==,∴AC=(4﹣t).(2)①当D在x轴上时,如图2中,∵QC∥OA,∴=,∴=,解得t=.∴t=s时,点D在x轴上,②如图3中,∵PQ∥AB,∴=,∴=,∴t=,综上所述,当<t<时,点D落在△ABO内部(不包括边界).(3)如图3中,作QN⊥BC于N,∵Q(0,3﹣2t),Q′(0,2t﹣3),当QC与⊙M相切时,则QC⊥CM,∴∠QCM=90°,∴∠QCP+∠PCM=90°,∵∠QCP+∠QCB=90°,∴∠BCQ=∠PCM=∠CPM,∵∠CPM+∠PAC=90°,∠OBA+∠OAB=90°,∴∠APC=∠OBA,∴∠QBC=∠QCB,∴BQ=CQ,∵cos∠ABO==,∴=,解得t=,当CQ′是⊙M切线时,同法可得=,解得t=,∴t=s或时,过A,P,C三点的圆与△CQQ′三边中的一条边相切.。

相关文档
最新文档