信号与系统实验报告(常用信号的分类与观察)

合集下载

信号与系统综合实验报告

信号与系统综合实验报告

目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1。

了解常用信号的波形和特点。

2。

了解相应信号的参数。

3。

学习函数发生器和示波器的使用。

二、实验过程1.接通函数发生器的电源。

2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。

三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x—π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0。

0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。

2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案.二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线.四、实验报告上图为零输入响应、零状态响应和完全响应曲线。

五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。

因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。

信号与系统实验报告最终版

信号与系统实验报告最终版

实验报告2015年 6 月实验1 常见信号观测实验一、实验目的1.观察和测量各种典型信号;2.掌握有关信号的重要性,了解其在信号与系统分析中的应用。

二、实验原理说明 1.正弦函数信号; 2.指数函数信号; 3.指数衰减震荡函数信号; 4.抽样函数信号; 5.钟形函数信号; 三、实验原理波形产生原理框图如下图所示四、实验步骤1.打开实验箱,调节SW101(程序选择)按钮,使程序指示灯显示D3D2D1D0=0001,对应信号观测;(实验箱上电时默认D3D2D1D0=0001,因此不用调节)2.将跳线开关K801,K802,K803和K804连续到左侧;3. 用示波器分别测量TP801,TP802,TP803,TP804,TP805的波形,并记录下来。

测试点说明如下:(1)TP801:测试正弦函数信号波形(2)TP802:测试指数函数信号波形(3)TP803:测试指数衰减震荡函数信号波形(4)TP804:测试抽样函数信号波形(5)TP805:测试种形函数信号波形五、实验设备1.双踪示波器2.信号系统实验箱六、实验结果实验2 冲激响应与阶跃响应一、实验目的1.观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。

二、实验原理说明实验如图1-1所示为RLC串联电路的阶跃响应与冲激响应的电路连接图,图2-1(a)为阶跃响应电路连接示意图;图2-1(b)为冲激响应电路连接示意图。

三、实验内容1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500Hz。

实验电路连接图如图2-1(a)所示。

①连接P04与P914。

②调节信号源,使P04输出f=500Hz,占空比为50%的脉冲信号,幅度调节为1.5V;(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节)③示波器CH1接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态,并将实验数据填入表格2-1中。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告模版DOC

信号与系统实验报告模版DOC

实验一信号的时域分析1.1常见信号分类观察实验1.1.1 实验目的1.了解常用信号的波形特点2.掌握信号发生器的虚拟仪器的使用方法1.1.2 实验设备PC机一台,TD-SAS系列教学实验系统一套。

1.1.3实验原理及内容信号是随时间和空间变化的某种物理量,它一般是时间变量t的函数。

信号随时间变量t 变化的函数曲线成为信号的波形。

按照不同的分类原则,信号可分为:连续信号和离散信号;周期信号和非周期信号;实数信号和复数信号;能量信号和功率信号等。

本实验中利用信号发生器我们可以观察工程实际和理论研究中经常用到的正弦波、方波、脉冲等信号。

1.1.4实验步骤1.连续周期信号的产生与测量1)在该实验箱配套软件界面中,单击“信号发生器”进入其界面。

如图1-1-1所示选择参数,(CH1通道可以选择周期或非周期信号,CH2通道只能选择周期信号)点击确定。

图1-1-1 周期信号产生界面2)在实验箱配套软件界面中,单击“示波器”进入其界面,界面如图1-1-2所示。

用探笔测量实验箱上信号发生器单元的输出1和输出2端,(分别对应信号发生器界面的CH1和CH2通道)点击“运行”测量信号。

图1-1-2 示波器界面3)在示波器测量到信号后,点击“停止”,测量两路信号的各参数,验证其频率、幅值等值与所选参数匹配。

将实验数据记录到表1-1-1中。

(具体操作方法参见TD-SAS实验系统软件的安装及操作部分)4)选取其他波形及相关参数进行测量并验证。

2.连续非周期信号的产生与测量1)重新如图1-1-3所示选择参数,(当通道1选择位非周期信号时,通道2无输出)点击确定。

图1-1-3 脉冲信号产生界面2)进入示波器界面,用探笔测量实验箱上信号发生器单元的输出1端,(非周期信号只能从实验箱信号发生器单元输出1端输出)点击“运行”。

3)在实验箱的信号发生器单元,按下单次按钮,便产生一个周期的所选波形。

(此信号在其余时间全部是零)我们可以理解每个单次信号是一个非周期信号。

信号与系统实验软件实验报告

信号与系统实验软件实验报告

信号与系统实验软件实验报告一、实验目的本次实验旨在通过使用信号与系统实验软件,深入理解信号与系统的基本概念和原理,掌握常见信号的产生、变换和分析方法,培养对信号处理的实际操作能力和问题解决能力。

二、实验环境1、计算机:_____ 型号,配置为_____ 。

2、操作系统:_____ 版本。

3、实验软件:_____ 信号与系统实验软件,版本_____ 。

三、实验内容及步骤(一)常见信号的产生与观察1、打开实验软件,进入信号产生模块。

2、依次生成正弦信号、余弦信号、方波信号、锯齿波信号和脉冲信号。

3、调整信号的频率、幅度和相位等参数,观察信号波形的变化。

(二)信号的时域变换1、对已生成的正弦信号进行平移、反转和尺度变换操作。

2、观察变换后信号的波形,理解时域变换对信号的影响。

(三)信号的卷积运算1、输入两个已知的信号,分别为 f1(t) 和 f2(t) 。

2、利用软件中的卷积运算功能,计算 f1(t) 和 f2(t) 的卷积结果 f(t) 。

3、绘制卷积后的信号波形,分析卷积运算的特点和物理意义。

(四)系统的时域分析1、构建一个简单的线性时不变系统,例如一阶低通滤波器。

2、输入不同的测试信号,观察系统的输出响应。

3、分析系统的稳定性、暂态响应和稳态响应等特性。

(五)系统的频域分析1、对上述线性时不变系统进行频域分析。

2、计算系统的频率响应函数H(ω) 。

3、绘制幅频特性曲线和相频特性曲线,理解系统的滤波特性。

四、实验结果与分析(一)常见信号的产生与观察通过调整参数,我们得到了不同频率、幅度和相位的正弦信号和余弦信号。

可以发现,频率决定了信号的周期,幅度决定了信号的大小,相位则决定了信号的起始位置。

方波信号具有陡峭的上升沿和下降沿,锯齿波信号呈现线性上升或下降的趋势,脉冲信号则在短时间内有较大的幅值。

(二)信号的时域变换平移操作使信号在时间轴上整体移动,反转操作将信号关于纵轴对称,尺度变换改变了信号的周期或宽度。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告好啦,今天咱们来聊聊信号与系统实验报告。

这话题有点儿“高大上”,但咱们不妨来点轻松的,把它聊得有趣一些。

先说说信号是什么。

信号其实就是一种信息传递的方式,可能是声音,可能是光,甚至是你手机屏幕上刷过的每一条消息。

简单来说,信号就是承载着信息的载体。

你看,像咱们日常生活中,电台广播,手机接收到的短信,甚至你家电视里放的广告,它们都是信号的一种表现形式。

啊,听起来有点儿复杂吧?其实不难,就像你一收到朋友发来的微信,手机屏幕上跳出来的就是一个信号。

信号怎么才能“正常工作”呢?这就得说到“系统”了。

系统呢,说白了就是一套能够处理信号的工具。

你想啊,信号如果没有一个合适的“平台”去接收、传递和处理,那就变得一团乱麻了。

就像是你给朋友发了个短信,但他手机坏了,信号接收不进去,结果信息就白发了。

系统在这里就相当于是一个“修理工”,它能让信号顺利通过、准确无误地到达目的地。

接下来说说我们在实验中的“主角”——信号与系统。

你看,实验嘛,往往让我们有点“心慌慌”。

不过,信号与系统的实验其实有点像玩拼图。

你得先弄清楚信号的各种“形状”,然后用系统去“加工处理”,让它变得符合要求。

比如,咱们常用的模拟信号,它是一个连续的过程,类似于咱们生活中的声音一样,是没有间断的。

而数字信号呢,就像你手机屏幕上的数字,离散的,断断续续的。

每种信号都有自己独特的“脾气”,你得了解它们的特点,才能搭配合适的系统。

你要是觉得这些实验有点儿复杂,那就来点儿幽默的比喻吧。

信号就像是你的朋友说的话,而系统就是你听的耳朵。

朋友说话的声音,可能因为距离远近,语速快慢,甚至音量的大小而有所不同。

系统就得根据这些变化去处理,比如调节音量、清晰度,甚至过滤掉不必要的噪声。

你想想,假如你能在嘈杂的环境下清楚地听到朋友的声音,那就是系统给你提供的帮助。

信号与系统的实验,就是在这种“听”和“说”之间找到平衡点。

咱们得说说实验中的一些基本工具了。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

常用信号分类与观察实验报告

常用信号分类与观察实验报告

常用信号分类与观察实验报告
1. 嘿,朋友们!来看看数字信号呀,就像手机信号一样常见呢!比如说你打电话的时候,那清晰的声音传输不就是数字信号在起作用嘛!数字信号干脆利落,只有两种状态,不是 0 就是 1,多简单直接呀!在观察实验中,我们可以清楚地看到它稳定又可靠,像个忠诚的小伙伴一样!
2. 哇塞,还有模拟信号呢!这不就像那老式的磁带播放的音乐嘛!比如说你听以前的卡带机,那种有点沙沙的声音就是模拟信号啦。

模拟信号就像河流一样,是连续变化的呢。

在实验里,观察它的时候还真觉得有点神奇呀!
3. 哈哈,接着说说光信号吧!那简直就是一道闪电呀!就像灯光照亮黑暗的地方一样。

比如光通信中,光信号快速地传递信息,多厉害!观察它在实验中的表现,真让人惊叹不已!
4. 电信号可不能落下呀!这就像身体里的神经传导一样重要呢!想想家里的电线吧,那电流传输不就是电信号嘛。

在做相关实验的时候,能感受到它强大的力量呢,这可真不是开玩笑的!
5. 音频信号也是很特别的哟!就好像美妙的歌声环绕在你耳边一样。

像我们听音乐的时候,那动人的旋律就是音频信号带来的呀。

观察它的实验会让你沉浸在音乐的世界里哦!
6. 图像信号呢,不就和我们看到的美丽图片一样嘛!比如我们看照片或者电视画面,那都是图像信号的呈现呀。

在关于它的实验里,可以清楚地看到图像是如何一点点呈现出来的,太有意思啦!
7. 最后说说射频信号吧,这可像那无处不在的电波呢!像广播信号就是射频信号呀。

观察它在实验中的变化,真让人觉得科技的力量好牛呀!
我觉得呀,这些常用信号都各有各的奇妙之处,真是让人大开眼界,值得我们好好去研究和了解呢!。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验报告:信号与系统实验一、实验目的1.了解信号与系统的基本概念和性质;2.掌握离散信号、连续信号的采样过程;3.理解信号的基本操作和系统的基本特性。

二、实验原理1.信号的分类:(1)连续时间信号:在每个时间点上都有定义;(2)离散时间信号:只在一些时间点上有定义。

2.信号的基本操作:(1)加法运算:将两个信号相加;(2)乘法运算:将两个信号相乘;(3)位移运算:将信号移动到不同的时间点;(4)缩放运算:对信号进行放大或缩小。

3.系统的基本特性:(1)时域特性:包括冲击响应、阶跃响应和频率特性等;(2)频域特性:包括幅频特性和相频特性等。

三、实验器材1.信号发生器2.示波器3.示波器探头4.计算机四、实验步骤1.连续信号采样(1)将信号发生器输出设置为正弦波信号;(2)通过示波器探头将信号输入计算机;(3)在计算机上设置适当的采样频率,对信号进行采样;(4)在示波器上观察到采样后的信号。

2.离散信号生成(1)在计算机上用MATLAB生成一个离散信号;(2)通过示波器探头将信号输入示波器;(3)在示波器上观察到生成的离散信号。

3.信号加法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的加法运算;(3)通过示波器探头将加法运算后的信号输入示波器,观察信号的叠加效果。

4.信号乘法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的乘法运算;(3)通过示波器探头将乘法运算后的信号输入示波器,观察信号的相乘效果。

五、实验结果与分析1.连续信号采样在设置适当的采样频率后,可以观察到信号在示波器上的采样图像。

信号的采样率过低会导致信号的失真,采样率过高则会造成资源的浪费。

2.离散信号生成通过MATLAB生成的离散信号能够在示波器上直观地观察到信号的序列和数值。

3.信号加法运算通过将两个信号进行加法运算后,可以观察到信号在示波器上的叠加效果。

加法运算能够实现信号的混合和增强等效果。

信号与系统实验报告5

信号与系统实验报告5

信号与系统实验报告5信号与系统实验报告5引言信号与系统是电子工程领域中的重要学科,它研究信号的产生、传输和处理过程,以及系统对信号的响应和影响。

在本次实验中,我们将探索信号与系统的一些基本概念和实际应用。

一、信号的分类与特性信号是信息的载体,可以是连续的或离散的。

根据信号的性质,我们可以将其分为模拟信号和数字信号。

模拟信号是连续变化的,可以用连续函数表示;而数字信号是离散的,以数字的形式表示。

在实验中,我们使用了示波器观察了不同类型的信号。

通过观察信号的波形、频谱和功率谱密度等特性,我们能够了解信号的频率、幅度和相位等信息。

二、系统的响应与特性系统是对信号进行处理或传输的装置或环境。

系统可以是线性的或非线性的,可以是时不变的或时变的。

在实验中,我们使用了滤波器作为系统模型来研究系统的响应和特性。

通过改变滤波器的截止频率,我们观察到不同频率的信号在系统中的响应差异。

我们还通过调整系统参数,如增益和相位延迟,来研究系统的线性性质和时不变性质。

三、信号与系统的应用信号与系统在现实生活中有着广泛的应用。

在通信领域,我们可以利用信号与系统的知识来设计和优化无线电、光纤通信和卫星通信等系统。

在音频处理领域,我们可以利用信号与系统的方法来实现音频的降噪、音效增强和语音识别等功能。

此外,信号与系统在图像处理、生物医学工程和控制系统等领域也有着重要的应用。

通过对信号的采集、处理和分析,我们能够从中提取有用的信息,并对系统进行建模和控制。

结论通过本次实验,我们深入了解了信号与系统的基本概念和实际应用。

我们学习了信号的分类与特性,系统的响应与特性,以及信号与系统在各个领域的应用。

这些知识不仅对我们理解和应用电子工程学科具有重要意义,也为我们今后的学习和研究提供了坚实的基础。

信号与系统是一门复杂而又有趣的学科,它涉及了数学、物理和工程等多个领域的知识。

通过不断学习和实践,我们能够更好地理解和应用信号与系统的理论,为解决实际问题提供有效的方法和工具。

信号与系统实验报告,(范文大全)

信号与系统实验报告,(范文大全)

信号与系统实验报告,(范文大全)第一篇:信号与系统实验报告,实验三常见信号得MATLAB 表示及运算一、实验目得1。

熟悉常见信号得意义、特性及波形 2.学会使用 MATLAB 表示信号得方法并绘制信号波形3、掌握使用MATLAB 进行信号基本运算得指令 4、熟悉用MAT LAB 实现卷积积分得方法二、实验原理根据MATLAB 得数值计算功能与符号运算功能,在MATLAB中,信号有两种表示方法,一种就是用向量来表示,另一种则就是用符号运算得方法。

在采用适当得MATLAB 语句表示出信号后,就可以利用MATLAB中得绘图命令绘制出直观得信号波形了。

1、连续时间信号从严格意义上讲,MATLAB并不能处理连续信号。

在MATLAB 中,就是用连续信号在等时间间隔点上得样值来近似表示得,当取样时间间隔足够小时,这些离散得样值就能较好地近似出连续信号。

在 MAT LAB 中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号,可以用两个行向量 f 与 t 来表示,其中向量t 就是用形如得命令定义得时间范围向量,其中,为信号起始时间,为终止时间,p 为时间间隔。

向量 f 为连续信号在向量t所定义得时间点上得样值.⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍得符号函数专用绘图命令ezplot()等函数来绘出信号得波形。

⑶得常见信号得 M ATLA B表示单位阶跃信号单位阶跃信号得定义为:方法一:调用 H eaviside(t)函数首先定义函数 Heaviside(t)得m函数文件,该文件名应与函数名同名即Heaviside、m.%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= H eaviside(t)y=(t>0);%定义函数体,即函数所执行指令%此处定义t>0 时y=1,t<=0 时y=0,注意与实际得阶跃信号定义得区别.方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号得函数,即s te pfun()函数,它就是用数值计算法表示得单位阶跃函数.其调用格式为: st epfun(t,t0)其中,t 就是以向量形式表示得变量,t0 表示信号发生突变得时刻,在t0以前,函数值小于零,t0以后函数值大于零。

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会2022211204刘梦颉2022210960信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。

下面我将从实验总结、心得体会、意见与建议等三方面作以总结。

一.实验总结本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。

1.信号的分类与观察主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。

主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。

2.非正弦信号的频谱分析主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。

主要内容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。

3.信号的抽样与恢复主要目的是:验证抽样定理,观察了解PAM信号的形成过程。

主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。

4.模拟滤波器实验主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。

主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一,连续时间信号和离散时间信号的时域分析。

本实验旨在通过对连续时间信号和离散时间信号的时域分析,加深对信号与系统的理解。

首先我们将连续时间信号和离散时间信号分别进行采样和重构,然后进行时域分析,得出相应的结论。

实验步骤:1. 连续时间信号的采样和重构。

我们选取了一段正弦信号作为连续时间信号,通过模拟采样和重构的过程,我们得到了采样后的离散时间信号,并将其进行重构,得到了重构后的连续时间信号。

2. 离散时间信号的采样和重构。

同样地,我们选取了一段离散时间信号,进行了模拟采样和重构的过程,得到了采样后的离散时间信号,并将其进行重构,得到了重构后的离散时间信号。

实验结果与分析:1. 连续时间信号的时域分析。

通过对连续时间信号的采样和重构,我们发现在一定条件下,采样后的离散时间信号能够完美地重构成原始的连续时间信号。

这说明连续时间信号的信息是完整的,没有丢失。

2. 离散时间信号的时域分析。

对于离散时间信号的采样和重构,我们也得到了类似的结论,即在一定条件下,采样后的离散时间信号能够完美地重构成原始的离散时间信号。

结论与总结:通过本次实验,我们对连续时间信号和离散时间信号的时域分析有了更深入的了解。

我们明白了采样和重构的过程,并且得出了结论,在一定条件下,采样后的信号能够完美地重构成原始信号。

这对于我们理解信号与系统的基本原理具有重要的意义。

实验二,信号的傅里叶变换。

本实验旨在通过对信号的傅里叶变换,了解信号在频域上的特性,并掌握信号的频谱分析方法。

实验步骤:1. 连续时间信号的傅里叶变换。

我们选取了不同类型的连续时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

2. 离散时间信号的傅里叶变换。

同样地,我们选取了不同类型的离散时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

实验结果与分析:1. 连续时间信号的频谱分析。

通过对连续时间信号的傅里叶变换,我们发现不同类型的信号在频域上有着不同的频谱特性,有些信号的频谱集中在低频段,而有些信号的频谱集中在高频段。

matlab常见信号分类和观察实验报告思考题

matlab常见信号分类和观察实验报告思考题

实验报告:Matlab常见信号分类和观察1. 背景Matlab是一种功能强大的数学软件,广泛应用于科学计算、数据分析和信号处理等领域。

信号是Matlab中的一个重要概念,在许多应用中起到了关键作用。

本实验旨在通过对常见信号的分类和观察,加深对Matlab信号处理能力的理解和应用。

2. 分析在信号处理中,常见的信号可以分为以下几类:2.1 时域信号时域信号是指信号的数值随时间变化的情况。

常见的时域信号有周期信号、非周期信号、连续信号和离散信号等。

2.1.1 周期信号周期信号是指具有重复模式的信号,其数值在一定时间间隔内重复出现。

周期信号可以用正弦函数、方波函数等进行描述。

在Matlab中,可以使用sin函数生成正弦信号,使用square函数生成方波信号。

2.1.2 非周期信号非周期信号是指没有重复模式的信号,其数值在任意时间段内不会重复出现。

非周期信号可以用脉冲函数、指数函数等进行描述。

在Matlab中,可以使用dirac函数生成单位冲激信号,使用exp函数生成指数衰减信号。

2.1.3 连续信号连续信号是指信号在任意时间段内都有定义。

连续信号可以用数学函数进行描述,如正弦函数、多项式函数等。

在Matlab中,可以使用数学函数表达式生成连续信号。

2.1.4 离散信号离散信号是指信号只在某些离散时间点上有定义。

离散信号可以用序列进行描述,如脉冲序列、阶跃序列等。

在Matlab中,可以使用数组生成离散信号。

2.2 频域信号频域信号是指信号在频率上的特性。

频域信号可以通过对时域信号进行傅里叶变换得到。

在Matlab中,可以使用fft函数进行傅里叶变换。

3. 实验过程和结果3.1 生成信号首先,我们可以通过Matlab提供的函数生成不同类型的信号。

例如,我们可以生成一个正弦信号:t = 0:0.01:10; % 时间范围为0到10,步长为0.01f = 1; % 正弦信号的频率为1HzA = 1; % 正弦信号的振幅为1x = A * sin(2*pi*f*t); % 生成正弦信号3.2 绘制信号图像接下来,我们可以使用Matlab的绘图函数将生成的信号可视化。

信号与系统实验1:常见信号观测

信号与系统实验1:常见信号观测

号的相加和相乘都是基于向量的点运算。

f =symadd(f1,f2);或f=f1+f2; ezplot(f)f =symmul(f1,f2);或f=f1*f2; ezplot(f)3、连续时间信号的微分和积分符号运算工具箱有强大的积分运算和求导功能。

连续时间信号的微分运算,可使用diff 命令函数来完成,其语句格式为:diff(function, ‘variable ’,n)其中, function 表示需要进行求导运算的函数,或者被赋值的符号表达式;variable 为求导运算的独立变量; n 为求导阶数,默认值为一阶导数。

连续时间信号积分运算可以使用int 命令函数来完成,其语句格式为:int(function, ‘variable ’, a, b)其中,function 表示被积函数,或者被赋值的符号表达式;variable 为积分变量;a 为积分下限,b 为积分上限,a 和b 默认时则求不定积分。

三、实验内容及步骤1、在“开始--程序”菜单中,找到MATLAB 程序,运行启动;进入MATLAB 后 ,首先熟悉界面;在MATLAB 命令行窗口(Command Window )键入>> edit 指令或者通过“ File ”菜单中的“ New ”子菜单下的“ M -File ”命令或者单击工具栏上的新建按扭,进行程序输入,然后将文件保存,扩展名设置为.M。

执行;记录运行结果图形,并与笔算结果对照。

2、利用Matlab 命令绘制直流及上述9个信号(可参考教材P62);3、利用Matlab 命令绘制下列信号的波形图; (1) (2)()te u t --; (2) 0.32sin(),0303tet t -<<; (3)cos100cos3000,0.10.1t t t +-<<; (4) (20.5)[]k u k --;(5) 2()sin35kk π。

4、已知()f t 的波形如图1-1所示,作出()()f t f t +、()()f t f t 、()f t 的微分、()f t 的积分、(34)f t -、(1/1.5)f t -并作出()f t 的奇、偶分量。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统实验报告-(常用信号的分类与观察)

信号与系统实验报告-(常用信号的分类与观察)

实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、信号:指数信号可表示为f(t)=Ke at。

对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。

其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。

Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。

其信号如下图所示:7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。

用示波器测量“信号A组”的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一:信号得时域分析
一、实验目得
1.观察常用信号得波形特点及产生方法
2.学会使用示波器对常用波形参数得测量
二、实验仪器
1.信号与系统试验箱一台(型号ZH5004)
2.40MHz双踪示波器一台
3.DDS信号源一台
三、实验原理
对于一个系统特性得研究,其中重要得一个方面就是研究它得输入输出关系,即在一特定得输入信号下,系统对应得输出响应信号.因而对信号得研究就是对系统研究得出发点,就是对系统特性观察得基本手段与方法.在本实验中,将对常用信号与特性进行分析、研究。

信号可以表示为一个或多个变量得函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、信号:指数信号可表示为f(t)=Ke at。

对于不同得a取值,其波形表现为不同得形式,如下图所示:
图1―1 指数信号
2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号得参数:振幅K、角频率ω、与初始相位θ。

其波形如下图所示:
图1-2 正弦信号
3、指数衰减正弦信号:其表达式为其波形如下图:
图1-3指数衰减正弦信号
4、Sa(t)信号:其表达式为:。

Sa(t)就是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特得运用。

其信号如下图所示:
图1-4 Sa(t)信号
5、钟形信号(高斯函数):其表达式为:其信号如下图所示:
图1-5 钟形信号
6、脉冲信号:其表达式为f(t)=u(t)-u(t—T),其中u(t)为单位阶跃函数。

其信号如下图所示:
f(t)

……ﻩﻩ……
0 t
图1-6脉冲信号
7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示
U(t)
…………
ﻩ0ﻩt
图1-7方波信号
四、实验内容及主要步骤
下列实验中信号产生器得工作模式为11
1、指数信号观察
通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。

用示波器测量“信号A组”得输出信号。

输出波形为:
2、正弦信号观察
通过信号选择键1,设置A组输出为正弦信号(此时信号输出指示灯为000101)。

用示波器测量“信号A组”得输出信号.
输出波形为:
3、指数衰减正弦信号观察(正频率信号)。

通过信号选择键1,设置A组输出为指数衰减余弦信号(此时信号输出指示灯为000001)。

用示波器测量“信号A组"得输出信号。

通过信号选择键2,设置B组输出为指数衰减正弦信号(此时信号输出指示灯为000010)。

用示波器测量“信号B组”得输出信号。

输出波形为:
4、信号得观察:
通过信号选择键1,设置A组输出为信号(此时信号输出指示灯为000111)。

用示波器测量“信号A组”得输出信号。

输出波形为:
5、钟形信号得观察:
通过信号选择键1,设置A组输出为钟形信号(此时信号输出指示灯为001000).用示波器测量“信号A组"得输出信号.
输出波形为:
6、脉冲信号得观察:
通过信号选择键1,设置A组输出为连续脉冲信号(此时模式指示灯为10,信号输出指示灯为001101)。

用示波器测量“信号A组”得输出信号。

输出波形为:
7、方波信号得观察:
通过信号选择键1,设置A组输出为连续正负脉冲信号(此时模式指示灯为11,信号输出指示灯为001101)。

用示波器测量“信号A组”得输出信号.
输出波形为:。

相关文档
最新文档