小学数学几何图形思维导图
人教版小学数学四年级上册1-8单元思维导图
人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表2. 整数的读法和写法3. 整数的比较和大小关系4. 整数的加减法5. 乘法口诀表二、第二单元:角的初步认识1. 角的概念2. 角的分类3. 角的度量4. 角的加减法5. 角的周长三、第三单元:观察物体与几何图形1. 长方形和正方形的特征2. 三角形的特征3. 四边形的特征4. 圆的特征5. 立体图形的特征四、第四单元:分数的初步认识1. 分数的概念2. 分数的读法和写法3. 分数的比较和大小关系4. 分数的加减法5. 分数的应用五、第五单元:两位数乘两位数1. 乘法口诀表的应用2. 两位数乘两位数的计算方法3. 两位数乘两位数的进位和借位4. 两位数乘两位数的估算5. 两位数乘两位数的应用六、第六单元:小数的初步认识1. 小数的概念2. 小数的读法和写法3. 小数的比较和大小关系4. 小数的加减法5. 小数的应用七、第七单元:简易方程1. 方程的概念2. 方程的解法3. 方程的应用4. 一元一次方程5. 方程的变形八、第八单元:观察物体与几何图形(二)1. 立体图形的表面积2. 立体图形的体积3. 立体图形的切割与拼接4. 立体图形的应用5. 立体图形的拓展人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表:掌握数位的名称和顺序,了解数位之间的关系。
2. 整数的读法和写法:学习如何正确地读出和写出整数,掌握整数的基本表达方式。
3. 整数的比较和大小关系:通过比较整数的大小,建立数的大小概念,培养逻辑思维能力。
4. 整数的加减法:掌握整数加减法的计算方法,能够熟练地进行整数加减运算。
5. 乘法口诀表:学习乘法口诀表,掌握乘法的基本规律,提高计算速度和准确性。
二、第二单元:角的初步认识1. 角的概念:理解角的概念,掌握角的定义和特征。
2. 角的分类:学习不同类型的角,如锐角、直角、钝角等,了解它们之间的区别和联系。
小学数学六年级上册各单元思维导图
小学数学六年级上册各单元思维导图第一部分:数的认识一、整数1. 自然数:0、1、2、3、4、5、6、7、8、9、10……2. 整数:自然数和它们的相反数3. 整数的分类:正整数、0、负整数二、分数1. 分数的意义:表示一个整体被平均分成若干份,其中的一份或几份2. 分数的表示:分子/分母3. 分数的分类:真分数、假分数、带分数三、小数1. 小数的意义:表示一个整体被平均分成若干份,其中的一份或几份,用小数点表示2. 小数的表示:整数部分和小数部分3. 小数的分类:有限小数、无限小数第二部分:数的运算一、加法1. 整数加法:相同符号的整数相加,异号整数相加2. 分数加法:同分母分数相加,异分母分数相加3. 小数加法:小数点对齐,逐位相加二、减法1. 整数减法:相同符号的整数相减,异号整数相减2. 分数减法:同分母分数相减,异分母分数相减3. 小数减法:小数点对齐,逐位相减三、乘法1. 整数乘法:相同符号的整数相乘,异号整数相乘2. 分数乘法:分子相乘,分母相乘3. 小数乘法:小数点对齐,逐位相乘四、除法1. 整数除法:相同符号的整数相除,异号整数相除2. 分数除法:分子相除,分母相除3. 小数除法:小数点对齐,逐位相除第三部分:数的性质一、数的性质1. 整数的性质:奇数、偶数、质数、合数2. 分数的性质:分子分母同乘(除)一个数,分数的值不变3. 小数的性质:小数点向左(右)移动一位,小数的值缩小(扩大)10倍二、数的运算定律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c三、数的运算顺序1. 先算乘除,后算加减2. 同级运算,从左到右依次计算3. 括号内的运算优先级最高第四部分:数的应用一、整数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等二、分数应用1. 计算比例、比率等2. 解决实际问题,如分物品、分配资源等三、小数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等第五部分:几何图形一、平面图形1. 线段、射线、直线:线段是有限长的直线,射线有一个端点,直线无限长2. 角:由两条射线共同确定的图形,有一个顶点和两条边3. 三角形:由三条线段围成的图形,有三个角和三个边4. 四边形:由四条线段围成的图形,有四个角和四个边5. 圆:平面内到一个固定点距离相等的所有点组成的图形二、立体图形1. 长方体:由六个长方形围成的立体图形,有六个面、十二条边和八个顶点2. 正方体:由六个正方形围成的立体图形,有六个面、十二条边和八个顶点3. 圆柱:由两个底面和一个侧面围成的立体图形,底面是圆形4. 圆锥:由一个底面和一个侧面围成的立体图形,底面是圆形5. 球:由一个点向外无限延伸,到该点的距离相等的所有点组成的立体图形第六部分:几何图形的性质一、平面图形的性质1. 线段的性质:线段有长度,线段之间可以比较大小2. 角的性质:角有度数,角之间可以比较大小3. 三角形的性质:三角形的内角和为180度,等腰三角形的底角相等,直角三角形的勾股定理4. 四边形的性质:四边形的内角和为360度,矩形、正方形的对角线互相平分5. 圆的性质:圆的周长与直径的比例是圆周率,圆的面积与半径的平方成正比二、立体图形的性质1. 长方体的性质:长方体的体积等于长、宽、高的乘积2. 正方体的性质:正方体的体积等于边长的立方3. 圆柱的性质:圆柱的体积等于底面积乘以高4. 圆锥的性质:圆锥的体积等于底面积乘以高除以35. 球的性质:球的体积等于半径的立方乘以4/3π第七部分:几何图形的测量一、长度测量1. 线段长度:使用直尺或卷尺进行测量2. 角度测量:使用量角器进行测量二、面积测量1. 平面图形面积:根据公式计算,如长方形面积=长×宽,圆面积=πr²2. 立体图形表面积:根据公式计算,如长方体表面积=2(长×宽+长×高+宽×高)三、体积测量1. 立体图形体积:根据公式计算,如长方体体积=长×宽×高,圆柱体积=底面积×高2. 容器体积:使用量筒或量杯进行测量第八部分:数学应用与拓展一、数学在生活中的应用1. 购物:计算价格、找零等2. 测量:计算长度、面积、体积等3. 分配:分配物品、资源等二、数学在科学中的应用1. 物理学:计算速度、加速度、力等2. 化学:计算物质的量、浓度等3. 生物:计算种群数量、增长率等三、数学在艺术中的应用1. 音乐:计算音高、节奏等2. 绘画:计算比例、透视等3. 建筑设计:计算结构、空间等第九部分:数学问题解决策略一、问题解决步骤1. 理解问题:仔细阅读题目,明确已知条件和求解目标2. 制定计划:根据问题类型和条件,选择合适的解决方法3. 执行计划:按照计划进行计算和推导4. 检查结果:验证计算过程和结果的正确性二、常见问题解决方法1. 图形法:通过绘制图形,直观地表示问题条件,便于理解和解决2. 列表法:将问题条件列成表格,便于分析和比较3. 代数法:使用代数表达式和方程,进行符号运算和推导4. 逻辑推理法:根据已知条件和数学规律,进行逻辑推理和证明第十部分:数学思维培养一、培养逻辑思维能力1. 通过解决数学问题,锻炼逻辑推理和证明能力2. 学习数学定义、定理和公式,理解其背后的逻辑关系二、培养空间想象能力1. 学习几何知识,通过绘制图形和想象空间关系,培养空间想象力2. 参与数学建模活动,将实际问题转化为数学模型,提高空间想象能力三、培养数学建模能力1. 学习数学建模方法,将实际问题转化为数学问题2. 参与数学建模竞赛和活动,提高数学建模能力第十一部分:数学学习资源一、教材和辅导书1. 选择适合自己水平的教材和辅导书,进行系统学习2. 利用辅导书中的例题和习题,巩固所学知识二、在线资源和应用程序1. 利用在线教育平台和数学学习网站,获取丰富的学习资源2. 数学学习应用程序,进行互动式学习和练习三、数学竞赛和活动1. 参与数学竞赛,提高数学水平和竞争意识2. 参加数学讲座、研讨会等活动,拓宽数学视野。
人教版小学数学五年级下册1-7单元各单元知识点思维导图
五下第二单元因数与倍数因数与倍数2,3,5的倍数特征质数和合数含义:因数倍数找因数的方法表示因数A.列乘法算式B.列除法算式A.列举法B.集合法找倍数的方法表示倍数因数的特征倍数的特征如果a÷b=c(a,b,c是非0自然数),那么a是b,c的倍数,b,c是a的因数。
A.一个数的因数是有限的B.最小的因数是1,最大的因数是本身A.列乘法算式B.列除法算式A.列举法B.集合法A.一个数的倍数是无限的B.最小的倍数是本身,没有最大的倍数2的倍数特征5的倍数特征3的倍数特征A.末位是0,2,4,6,8的数都是2的倍数B.奇数与偶数偶数是2的倍数(包括0)奇数不是2的倍数末位是0或5的数都是5的倍数各个数位数字之和是3的倍数质数合数1既不是质数也不是合数A.一个数除了1和它本身没有其他因数一个数除了1和它本身还有其他因数B.最小的质数是2C.100以内的质数2357和11,13后面是17,19,23,29;31,37,41;43,47,53;59,61,6771,73,79;83,89,97奇偶性探究五下第三单元长方体和正方体1.长方体和正方体的认识2.长方体和正方体的表面积3.长方体和正方体体积棱长之和A.长方体:4x(长+宽+高)B.正方体:12x棱长长方体的侧面展开图(1)长方体(2)正方体(长x宽+长x高+宽x高)x26x棱长x棱长2x(ab+ah+bh)(1)体积含义:物体所占的空间大小(2)体积单位:立方厘米,立方分米,立方米(3)体积计算公式A.长方体B.正方体长x宽x高棱长x棱长x棱长abh4.容积和容积单位5.求不规则物体的体积(1)含义:容器所能容纳物体的体积(2)容积单位:升L,毫升ml(3)进率:1L=1000ml1L=1立方分米1ml=1立方厘米底面积x高底面积x高(1)等积变形法(2)排水法把不规则的物体转变成规则的计算排水的体积正方体的侧面展开图平方数的总结人教版小数五下第四单元分数的意义和性质1.分数的意义2.真分数和假分数3.分数的基本性质4.约分5.通分6.分数与小数的互化(1)单位“1”的意义(2)分数的意义一些物体可以看成一个整体A.把单位“1”平均分成若干份,表示其中的一份,或者几份。
青岛版小学数学四年级下册认识多边形思维导图知识讲解
青岛版小学数学四年级下册认识多边形思维导图知识讲解一、多边形的概念多边形是由直线段首尾相连组成的封闭图形。
它可以是三角形、四边形、五边形、六边形等等。
多边形的每个角叫做内角,每条边叫做边。
多边形的特点是它有有限个边和角,并且这些边和角都是直线。
二、多边形的分类1. 按边数分类三角形:由三条边组成的多边形,如等边三角形、等腰三角形、直角三角形等。
四边形:由四条边组成的多边形,如正方形、长方形、平行四边形、梯形等。
五边形:由五条边组成的多边形,如正五边形等。
六边形:由六条边组成的多边形,如正六边形等。
2. 按角分类锐角多边形:所有内角都小于90度的多边形。
直角多边形:有一个内角是90度的多边形。
钝角多边形:有一个内角大于90度的多边形。
三、多边形的性质1. 边的性质:多边形的边都是直线段,且相邻的两条边共享一个顶点。
2. 角的性质:多边形的内角和等于(n2)×180度,其中n是多边形的边数。
3. 对角线的性质:多边形从一个顶点出发,可以引出n3条对角线,其中n是多边形的边数。
四、多边形的应用多边形在我们的生活中随处可见,如房屋、道路、家具、电子产品等。
了解多边形的性质和特点,有助于我们更好地理解和应用多边形。
五、多边形的面积计算多边形的面积计算是一个重要的应用。
对于规则多边形,我们可以使用公式来计算其面积。
例如,正方形的面积是边长的平方,长方形的面积是长乘以宽。
对于不规则多边形,我们可以将其分割成若干个三角形,然后计算每个三角形的面积,将它们相加得到总面积。
六、多边形的周长计算多边形的周长是指围绕多边形一周的长度。
对于规则多边形,我们可以使用公式来计算其周长。
例如,正方形的周长是4倍边长,长方形的周长是2倍长加2倍宽。
对于不规则多边形,我们可以将每条边的长度相加得到周长。
七、多边形的对称性多边形具有对称性,这意味着它们可以通过某种方式被折叠或旋转,使得两部分完全重合。
对称性是几何学中的一个重要概念,它可以帮助我们更好地理解和应用多边形。
数学知识点思维导图
数学知识点思维导图一、引言数学是一门研究数量、结构、空间和变化等概念的学科。
通过创建思维导图,学生和教育者可以更有效地组织和理解数学的复杂概念和知识点。
二、数学基础1. 数的认识- 自然数- 整数- 有理数- 无理数- 复数2. 基本运算- 加法- 减法- 乘法- 除法- 指数与对数3. 基本数学对象- 数- 式- 方程- 不等式三、代数学1. 一元一次方程2. 二元一次方程组3. 一元二次方程4. 不等式及其解集5. 多项式- 定义- 运算- 因式分解6. 初等函数- 线性函数- 二次函数- 指数函数- 对数函数- 三角函数四、几何学1. 平面几何- 点、线、面的基本性质 - 圆的性质- 多边形的性质- 相似与全等2. 立体几何- 基本立体图形- 体积与表面积- 空间几何关系3. 解析几何- 坐标系- 直线与圆的方程- 二次曲线五、概率与统计1. 概率基础- 事件与概率的定义- 条件概率- 贝叶斯定理2. 随机变量- 离散与连续随机变量 - 概率分布3. 统计基础- 数据的描述- 样本与总体- 假设检验- 回归分析六、微积分1. 极限与连续- 极限的概念- 无穷小与无穷大- 连续函数2. 导数与微分- 导数的定义- 微分的运算- 高阶导数3. 积分- 不定积分- 定积分- 微积分基本定理4. 多元函数微积分- 偏导数- 多重积分- 线面积分七、数学应用1. 数学建模2. 优化问题3. 数学在物理、工程、经济等领域的应用八、结论思维导图是一种强大的工具,可以帮助学习者以直观和结构化的方式理解和记忆数学知识。
通过将数学概念和知识点以图形化的方式呈现,可以加深对数学逻辑和结构的理解,从而提高解决问题的能力。
请注意,这是一个概要性的文档,旨在提供一个关于数学知识点思维导图的结构框架。
您可以根据需要添加或删除部分,以及详细化每个部分的内容。
此文档应使用Word或其他文字处理软件编写,以确保其易于编辑和格式化。
(完整版)小学数学思维导图(全)
小学数学思维导图(全)一、数的概念1. 自然数自然数是无限的,可以一直往上数。
自然数是离散的,相邻的自然数之间没有其他数。
自然数是可数的,可以一个一个地数出来。
2. 整数整数是可加的,可以相加得到新的整数。
整数是可减的,可以相减得到新的整数。
整数是可乘的,可以相乘得到新的整数。
整数是可除的,可以相除得到新的整数。
3. 分数分数有分子和分母两部分,分子表示被等分的部分,分母表示等分的总份数。
分数可以相加、相减、相乘、相除。
分数可以化简,即分子和分母同时除以它们的最大公约数。
4. 小数小数有整数部分和小数部分两部分,整数部分表示整体中的整数部分,小数部分表示整体中的小数部分。
小数可以相加、相减、相乘、相除。
小数可以化简,即去掉末尾的0。
二、数的运算1. 加法加法是可交换的,即加数的位置可以交换。
加法是可结合的,即加数可以按照任意顺序相加。
加法的结果是唯一的。
2. 减法减法的结果是唯一的。
减法的结果可以是正数、负数或0。
3. 乘法乘法是可交换的,即乘数的位置可以交换。
乘法是可结合的,即乘数可以按照任意顺序相乘。
乘法的结果是唯一的。
4. 除法除法的结果可以是正数、负数或分数。
除法的结果是唯一的。
三、几何图形1. 线段线段有长度。
线段可以测量。
线段可以比较长度。
2. 角角有大小。
角可以测量。
角可以比较大小。
3. 三角形三角形有面积。
三角形的面积可以用公式计算。
三角形的面积可以比较大小。
4. 四边形四边形有面积。
四边形的面积可以用公式计算。
四边形的面积可以比较大小。
四、数学应用1. 解决实际问题数学可以应用于解决实际问题,例如:计算购物时的找零。
计算路程和时间的关系。
计算物体的面积和体积。
2. 数学游戏数学游戏可以帮助学生提高数学思维能力和兴趣,例如:猜数字游戏。
24点游戏。
数独游戏。
3. 数学竞赛数学竞赛可以激发学生的学习兴趣和竞争意识,例如:数学奥林匹克竞赛。
华罗庚金杯赛。
小学生数学竞赛。
五、数学思维方法1. 归纳法归纳法是一种从具体事例出发,得出一般结论的思维方式。
小学五年级数学知识思维导图(无水印)
无限不循环小数
无限不循环小数指小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或 几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……。无 限不循环小数也就是无理数,不能化成分数形式
小数混合运算(5上)
表面积:立体图形表面所有面的面积之和
体积:物体所占空间的大小
容积:容器所能容纳的物体的体积
立方毫米:棱长为1毫米的正方体的体积
立方厘米:棱长为1厘米的正方体的体积
主要概念
体积单位
立方米:棱长为1米的正方体的体积 1000立方毫米=1立方厘米
1000立方厘米=1立方分米
1000立方分米=1立方米
体积与表面积
棱柱的体积=底面积×测棱长
体积的计算
直棱柱的体积=底面积×侧棱长 长棱长×棱长×棱长
统计
复式条形统计图(5下)
条形统计图分为单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者 可以同时表示多个项目的数据
统计图
复式折线统计图(5下)
折线统计图分单式或复式。复式的折线统计图有图例,用不同颜色或形状的线条区别开 来
两个连续整数中必有一个奇数和一个偶数
公倍数
两个或多个整数公有的倍数叫做它们的公倍数 两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数
公因数
两个或多个整数公有的因数叫做它们的公因数 两个或多个整数的公因数里最大的那一个叫做它们的最大公因数
一个大于1的整数,除了1和它自身外,不能被其他自然数整除的数叫做质数
长方体
长方体有6个面。每组相对的面完全相同。长方体有12条棱,相对的四条棱长度相等。 按长度可分为三组,每一组有4条棱。长方体有8个顶点。每个顶点连接三条棱。三条 棱分别叫做长方体的长,宽,高。长方体相邻的两条棱互相垂直
小学六年级数学知识思维导图(无水印)
不等式(6上)
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式
利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的 解集
解一元一次不等式的步骤:1.有分数先去分母(利用分数的基本性质,在不等式两边同 时乘分母的倍数)。2.有括号就去括号。3.利用不等式的性质,把带有未知数的项放到不 等式的一边,不带未知数的项放到不等式的另一边。4.如果需要的话,合并同类项。5.系数 化为1求得未知数的值。
比例(6下)
解比例:已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中 的未知项,叫做解比例。 解比例都是运用比例的基本性质来解的,因为两个外项的积 等于两内项的积,所以我们可以把两个外项和内项互相乘起来,然后来解这个方程。如 x:3=9:27 解:27x=3×9 27x=27 x=1
比的化简方法
基本性质法:是利用比的基本性质来化简
转换分数法:先把比转换成分数,然后把这个分数转化为最简分数,最后把这个最简分 数转化为比
比的前项和后项同时乘或除以相同的数(0除外),比值不变
比的后项不能为0
比的基本性质
比的后项乘以比值等于比的前项,比的前项除以后项等于比值 最简整数比指比的前后皆是整数且为互质数
如果用字母表示比、除法、分数三者之间的关系,可以表示为a:b=a÷b=
比(6上)
比与除法、分数比较
除法算式“被除数÷除数”用比的形式写作“被除数:除数”
比的前项相当于被除数、分子,比的后项相当于除数、分母,比值相当于商、分数值, 比号相当于除号、分数线。比值相当于商和分数值。因为除数和分母不能为“0”,所 以比的后项不能为“0”。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。 不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集 的过程叫做解不等式组
图形与几何思维导图
图形与几何思维导图
几何图形分为立体图形和平面图形,各部分不在同一平面内的图形叫做立体图形(solid figure);各部分都在同一平面内的图形叫做平面图形(Plane figure)。
立体几何图形
可以分为以下几类:
(1)柱体:包括圆柱和棱柱。
棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;
(2)锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥;棱锥体积为;
(3)旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。
其表面积公式为:,体积公式为:(其中L是基图的周长,S是基图的面积,R是重心到轴的距离)
(4)截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。
其表面积和体积一般都是根据图形加减解答。
平面几何图形
可分为以下几类:
(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。
[1]
(2)多边形:三角形、四边形、五边形等。
(3)弓形:优弧弓、劣弧弓、抛物线弓等。
(4)多弧形:月牙形、谷粒形、太极形、葫芦形等。
3应用编辑
几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。
数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度,因此帮助学生记住定义定理是教学中一个重要环节。
若在教学中恰当地借助几何图形,数形结合,使学生对直观图形加深理解以掌握其定理。
(最全)小学五年级数学思维导图
小学五年级数学思维导图一、数的认识1. 整数自然数:0、1、2、3、4、5、6、7、8、9、10……正整数:1、2、3、4、5、6、7、8、9、10……负整数:1、2、3、4、5、6、7、8、9、10……整数:包括正整数、负整数和02. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘或除以同一个数(0除外),分数的值不变分数的大小比较:同分母分数比较分子,分子大的分数大;同分子分数比较分母,分母小的分数大分数与小数的互化:将分数化成小数,分子除以分母;将小数化成分数,将小数点后的数字作为分子,分母为10的相应次方3. 小数小数的意义:表示整数与整数之间的数小数的性质:小数点后面的数字表示小数的精确度,小数点向右移动一位,数值扩大10倍;向左移动一位,数值缩小10倍小数的大小比较:先比较整数部分,整数部分大的数大;整数部分相同,比较小数点后的数字,从左到右依次比较,直到找到不同的数字,数字大的数大小数的四则运算:加法、减法、乘法、除法二、数的运算1. 加法加法的意义:将两个数合并成一个数加法的性质:交换律、结合律加法的计算方法:将两个数相加2. 减法减法的意义:从一个数中减去另一个数减法的性质:减法是加法的逆运算减法的计算方法:将被减数减去减数3. 乘法乘法的意义:求几个相同加数的和乘法的性质:交换律、结合律、分配律乘法的计算方法:将两个数相乘4. 除法除法的意义:求一个数是另一个数的几倍或几分之几除法的性质:除法是乘法的逆运算除法的计算方法:将被除数除以除数三、几何图形1. 线段、射线、直线线段:有两个端点,长度有限射线:有一个端点,长度无限直线:没有端点,长度无限2. 角角的分类:锐角、直角、钝角、周角角的度量:使用量角器角的计算:角度的加减乘除3. 三角形三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形三角形的性质:三角形的内角和为180度三角形的计算:使用勾股定理、海伦公式等4. 四边形四边形的分类:正方形、长方形、平行四边形、梯形、菱形、矩形四边形的性质:四边形的内角和为360度四边形的计算:周长、面积的计算5. 圆圆的性质:圆的周长、面积的计算公式圆的计算:使用圆的周长、面积公式进行计算四、计量单位1. 长度单位常用长度单位:毫米、厘米、分米、米、千米长度单位之间的换算:1千米=1000米,1米=100厘米,1厘米=10毫米2. 面积单位常用面积单位:平方毫米、平方厘米、平方分米、平方米、平方千米面积单位之间的换算:1平方千米=1000000平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米3. 体积单位常用体积单位:立方毫米、立方厘米、立方分米、立方米、立方千米体积单位之间的换算:1立方千米=1000000000立方米,1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米4. 时间单位常用时间单位:秒、分、时、天、周、月、年时间单位之间的换算:1年=12个月,1个月=4周,1周=7天,1天=24时,1时=60分,1分=60秒5. 质量单位常用质量单位:克、千克、吨质量单位之间的换算:1吨=1000千克,1千克=1000克五、统计与概率1. 统计数据的收集:调查、观察、实验等方法数据的整理:表格、图表等方法数据的分析:平均数、中位数、众数、方差等2. 概率概率的定义:事件发生的可能性概率的计算:使用公式、实验等方法概率的性质:概率的范围在0到1之间,包括0和1六、方程与不等式1. 方程方程的定义:含有未知数的等式方程的解:使方程成立的未知数的值方程的求解:使用代数方法求解方程,如移项、合并同类项、化简等2. 不等式不等式的定义:表示两个数之间大小关系的式子不等式的解集:满足不等式的所有解的集合不等式的求解:使用代数方法求解不等式,如移项、合并同类项、化简等七、数学应用1. 解决实际问题应用数学知识解决生活中的问题,如购物、测量、分配等使用数学方法分析问题,如比例、百分比、统计等2. 数学建模将实际问题转化为数学模型,如线性方程、不等式、函数等使用数学模型解决问题,如优化问题、预测问题等八、数学思维1. 逻辑思维通过逻辑推理得出结论,如归纳推理、演绎推理等分析问题,找出问题的因果关系,如因果推理2. 创新思维运用创造性思维解决问题,如逆向思维、类比思维等提出新的观点和方法,如创新算法、创新模型等九、数学学习策略1. 复习与预习复习已学知识,巩固记忆预习新知识,提前了解学习内容2. 做题与练习通过做题巩固所学知识通过练习提高解题能力3. 交流与合作与同学、老师交流学习心得,分享学习经验与同学合作完成学习任务,共同进步十、数学文化1. 数学历史了解数学的发展历程,如古代数学、现代数学等学习数学家的故事,如欧几里得、毕达哥拉斯、阿基米德等2. 数学趣闻探索数学的趣味知识,如数学谜题、数学游戏等了解数学在生活中的应用,如数学与艺术、数学与音乐等十一、数学竞赛1. 竞赛内容参加数学竞赛,如数学奥林匹克、数学联赛等学习竞赛技巧,如解题策略、时间管理等2. 竞赛准备备赛阶段,系统复习数学知识模拟竞赛,熟悉竞赛题型和时间分配十二、数学实验1. 实验目的通过实验加深对数学概念的理解培养学生的动手能力和观察能力2. 实验内容进行几何图形的拼装、测量等实验进行数学模型的制作、验证等实验十三、数学与科技1. 数学在科技中的应用学习数学与科技相关的知识,如算法、编程、数据分析等2. 科技对数学的影响探讨科技对数学发展的影响,如计算工具、计算方法等了解科技与数学的交叉领域,如信息论、密码学等十四、数学与艺术1. 数学在艺术中的应用了解数学在艺术领域的作用,如建筑设计、音乐创作等学习数学与艺术相关的知识,如黄金分割、对称性等2. 艺术对数学的影响探讨艺术对数学发展的影响,如艺术作品中的数学元素了解艺术与数学的交叉领域,如艺术史、艺术批评等。
小学数学几何图形概念、公式大全-思维导图
上次和孩子一起做了小学数学几何图形的思维导图,今天把这个导图彻底完善了下,把所有的计算公式都加进去了,整个导图画下来,等于把这些几何图形知识全部复习了一遍,同时找到不同几何图形之间的关联,加深了孩子的记忆。
里面还有些图形孩子目前还没学到,我在填充的时候,着重给孩子讲解了公式的由来,实在讲不出来的,就直接写上公式了,等于给孩子预习,也方便孩子以后的复习。
下面直接上图。
一、基本图形在认识线和角的基础上,主要回顾了计量单位以及换算。
线段的长度单位:千米:km、米:m、分米:dm、厘米:cm、毫米:mm换算:1千米=1000米、1米=10分米、1分米=10厘米、1厘米=10毫米、1米=100厘米、1米=1000毫米角的计量单位:(°)二、平面图形平面图形在认识三角形、四边形、圆的基础上,主要是回顾计量单位、周长、面积计算公式,还有些图形对应的性质。
面积的计量单位:1、周长:围成一个图形的所有边长的总和就是这个图形的周长周长的计量单位和换算和线段一样2、面积:物体的表面或围成的平面图形的大小,叫做它们的面积面积的计量单位:平方千米、公顷、平方米、平方分米、平方厘米单位换算:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米长方形:周长:长方形周长=(长+宽)× 2面积:长方形面积=长×宽正方形:正方形周长= 边长× 4正方形面积= 边长×边长长方形和正方形的周长和面积公式,孩子都记得比较熟悉,所以直接列出来。
平行四边形:平行四边形的周长是四条边相加,但对边相等,所以只要是两条边相加×2就可以了。
面积:平行四边形的面积是通过剪切和平移,转化成一个长方形来计算,最后演变结果是:平行四边形面积=底×高。
即:S=ah梯形:周长比较好计算,四边相加即可。
梯形的面积演变过程,因为两个一样的梯形可以拼成一个平行四边形,所以梯形的面积就是:梯形面积=(上底+下底)×高÷2。
小学数学六年级总复习之第二模块 - 几何(知识点+习题)教师版含答案
【例 4】下图中,有哪些是轴对称图形?
【答案】四个都是 3.解决实际问题 【例 5】有一块长方形麦地,长 300 米,宽 200 米,每公顷产小麦 5000 千克,这块地共产小麦多 少千克?
【答案】长方形麦地面积: S 300 200 60000m2 6公顷
小麦总产量 =65000=30000千克
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
高:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,交点叫垂足,那么这个顶点和垂足ຫໍສະໝຸດ 的线段叫做三角形的高线,简称为高。
圆的半径为 r,直径为 d。
周长
面积
长方形
周长=(长+宽) 2 C (a b) 2
面积=长 宽 S ab
3
正方形 三角形 平行四边形 梯形
平行四边形 梯形
三角形
4 条边都是直直的,其中一组对边是倾斜的。
4 条边都是直直的,有一组对边是平行的
梯形
直角梯形:有一个内角是直角的梯形 等腰梯形:两腰相等的梯形
有 3 条直直的边,内角和是 180 度
2
圆 【例 1】
锐角三角形:三个角都是锐角的三角形 按角分 直角三角形:有一个角是直角的三角形
列式得:424a=43ab
5b
解得:ba
6 4
则小长方形面积为ab 6 4 24,大长方形面积=24 5=120
【例 9】一个平行四边形,若底增加 2 厘米,高不变,则面积增加 6 平方厘米;若高增加 1 厘米,
底不变,则面积增加 4 平方厘米,原平行四边形的面积是多少?
【答案】
设原平行四边形底为a,高为h,则:
锐角
大于 0 且小于 90 的角。
人教版五年级上册数学全册思维导图
人教版五年级上册数学全册思维导图一、数与代数1. 整数的认识自然数、整数、正数、负数、绝对值、相反数、倒数2. 分数的认识分数、真分数、假分数、带分数、分数的基本性质、约分、通分3. 小数的认识小数、小数点、小数的基本性质、小数的加减乘除、小数的四则混合运算4. 比较大小整数、分数、小数的大小比较5. 数的估算整数、分数、小数的估算方法二、空间与图形1. 图形的认识点、线、面、体、平面图形、立体图形2. 图形的周长和面积线段、角的周长,正方形、长方形、平行四边形、梯形的面积,圆的周长和面积3. 图形的变换平移、旋转、对称、相似、放大与缩小4. 三角形三角形的定义、性质、分类、内角和、外角和、三角形的稳定性5. 四边形四边形的定义、性质、分类、平行四边形、矩形、菱形、正方形的性质和判定三、统计与概率1. 数据的收集与整理调查问卷、统计表、统计图(条形图、折线图、扇形图)2. 数据的分析与处理平均数、中位数、众数、方差、标准差3. 概率事件、必然事件、不可能事件、随机事件、概率的计算方法四、解决问题1. 问题解决的基本步骤提出问题、分析问题、制定计划、解决问题、回顾与反思2. 解决问题的策略图形法、列表法、树状图法、表格法、枚举法、方程法、逻辑推理法3. 解决问题的应用实际问题、数学问题、逻辑问题、趣味问题人教版五年级上册数学全册思维导图五、数学实践活动1. 数学实验通过实际操作,验证数学规律,如利用图形拼摆验证勾股定理、利用实验数据验证概率等2. 数学游戏设计与数学相关的游戏,如24点游戏、数独、数学谜题等,培养数学兴趣和思维3. 数学故事通过讲述数学故事,激发学生对数学的兴趣,如数学家的故事、数学趣闻等4. 数学竞赛组织数学竞赛,提高学生的数学素养和竞争意识,如口算比赛、解题比赛等六、数学文化1. 数学史了解数学发展的历史,如古代数学、现代数学、数学家的贡献等2. 数学名人认识数学领域的杰出人物,如欧几里得、阿基米德、高斯等3. 数学趣闻学习数学趣闻,如数学笑话、数学谜语、数学趣题等,增加学生对数学的了解和兴趣4. 数学与生活探讨数学在生活中的应用,如购物、旅游、理财等,让学生体会到数学的实用性七、数学与科技1. 数学与计算机了解计算机科学中的数学原理,如算法、数据结构、编程语言等2. 数学与物理探讨数学在物理学中的应用,如牛顿力学、电磁学、量子力学等3. 数学与生物了解数学在生物学中的应用,如遗传学、生态学、生物信息学等4. 数学与经济探讨数学在经济领域中的应用,如统计学、运筹学、博弈论等八、数学与艺术1. 数学与音乐了解音乐中的数学原理,如音阶、节奏、和声等2. 数学与绘画探讨绘画中的数学元素,如黄金分割、透视法、几何图形等3. 数学与建筑了解建筑中的数学原理,如比例、对称、结构稳定性等4. 数学与雕塑探讨雕塑中的数学元素,如几何形状、比例、空间关系等人教版五年级上册数学全册思维导图九、数学学习策略1. 预习与复习通过预习了解新知识,复习巩固已学知识,形成完整的知识体系2. 课堂笔记记录关键知识点、解题思路、易错点等,便于课后复习和查阅3. 作业与练习认真完成作业,及时巩固所学知识,通过练习提高解题能力4. 课外阅读阅读数学课外书籍、杂志、网络资源等,拓宽数学视野,增加知识储备5. 小组讨论与合作学习与同学一起讨论问题,分享学习心得,互相学习、互相帮助十、数学与思维1. 逻辑思维通过数学学习,培养逻辑思维能力,如归纳、演绎、推理等2. 空间想象通过几何图形的学习,培养空间想象力,如三维图形的构造、空间位置关系等3. 创新思维鼓励学生从不同角度思考问题,提出新颖的解题方法,培养创新意识4. 解决问题的能力通过数学问题的解决,提高学生分析问题、解决问题的能力5. 数学建模学习将实际问题转化为数学模型,培养学生的建模能力人教版五年级上册数学全册思维导图一、认识数学数学是研究数量、结构、变化以及空间等概念的学科。
小学数学思维导图课件
在学习中应用思维导图
梳理知识结构
利用思维导图,可以将数学知识 点进行系统梳理,形成清晰的知 识结构,帮助学生更好地理解数
学概念和公式。
记忆和回忆
思维导图具有直观性和逻辑性,有 助于学生记忆数学知识点,同时也 可以帮助学生回忆相关内容,提高 复习效率。
培养逻辑思维
通过绘制思维导图,学生可以更好 地理解数学概念之间的联系和区别 ,培养逻辑思维和推理能力。
设计思维导图的布局
中心主题明确
设计时需确定中心主题, 并将其放置在思维导图的 中央。
层次分明
根据小学数学的知识点, 将内容按照层次进行划分 ,确保各部分之间的逻辑 关系清晰。
使用颜色和图像
通过使用不同的颜色和图 像来突图像
关键词
根据小学数学的知识点,提炼出 关键内容,并将其作为关键词添 加到思维导图中。
02
小学数学基础知识
数的认识
小数
小数点后有若干个数字,如 3.14、-0.5。
百分数
表示一个数是另一个数的百分 之几,如50%表示0.5。
整数
包括正整数、0和负整数,如1 、-3、0。
分数
表示部分与整体的关系,如 1/2、3/4。
千分数
表示一个数是另一个数的千分 之几,如1/1000表示0.001。
案例二:图形与几何思维导图
总结词
图形结合,注重几何形状的特点及关系 。
VS
详细描述
该思维导图以网状结构呈现了图形与几何 的知识点,包括平面图形、立体图形、图 形的测量、图形的运动等。通过不同形状 和颜色的图形符号标记,展示了各知识点 之间的关联和区别。同时,每个图形都配 有简短的文字说明,帮助学生更好地记忆 和理解几何形状的特点及关系。
小学数学思维导图
12.1解决问题.........................................................................22 12.2常见应用题.....................................................................23
1.5百分数的认识.....................................................................5
2.1-1整数的四则运算............................................................6
一、数与代数总图
一、二、三年级
五年级
用字母表示数量关系、运算定律、公式 将数值代入式子求值 方程的意义、等式的性质 方程的解和解方程
六年级
比的意义和基本性质 求比值和化简比 比例的意义和基本性质 解比例 正比例与反比例 比例尺
六年级
整数
整数的分类和读写
整数的比较大小、改写和求近似 数
一、二、四年级
二、图形与几何
图形 与 几何
平面图形
平面图形的认识
究
必 线段、直线、射线、角
二、四年级
版 三角形(分类、性质)
四年级
盗
有 四边形(分类、性质)
三、四年级
所 圆、圆环、扇形
六年级
版权 常见平面图形的周长
三、六年级
司 平面图形的度量
维
7.4圆、圆环、扇形................................................................18
小学数学四年级数学(下)第一单元思维导图
小学数学四年级数学(下)第一单元思维导图一、数的认识1. 整数自然数整数的表示方法整数的加减法整数的乘除法2. 分数分数的概念分数的表示方法分数的加减法分数的乘除法3. 小数小数的概念小数的表示方法小数的加减法小数的乘除法二、几何图形的认识1. 平面图形线段、射线、直线角三角形四边形多边形2. 立体图形长方体正方体圆柱圆锥球三、量的计量1. 长度单位毫米、厘米、分米、米、千米长度的换算2. 面积单位平方毫米、平方厘米、平方分米、平方米、平方千米面积的换算3. 体积单位立方毫米、立方厘米、立方分米、立方米体积的换算四、数据的收集与整理1. 数据的收集调查问卷访谈实验观察2. 数据的整理数据的整理方法数据的表示方法(表格、条形图、折线图等)五、数学问题的解决1. 问题的分析问题类型的识别关键信息的提取2. 问题的解决解决问题的策略解决问题的步骤3. 问题的检验解答的正确性检验解答的合理性检验小学数学四年级数学(下)第一单元思维导图一、数的认识1. 整数自然数:理解自然数的概念,包括0、1、2、3、4……,并能够熟练地进行自然数的加减法运算。
整数的表示方法:掌握用数字和数位表示整数的方法,如百位、十位、个位等。
整数的加减法:掌握整数加减法的运算规则,能够熟练地进行整数加减法运算。
整数的乘除法:掌握整数乘除法的运算规则,能够熟练地进行整数乘除法运算。
2. 分数分数的概念:理解分数的意义,包括分子、分母和分数线。
分数的表示方法:掌握用数字和分数线表示分数的方法。
分数的加减法:掌握分数加减法的运算规则,能够熟练地进行分数加减法运算。
分数的乘除法:掌握分数乘除法的运算规则,能够熟练地进行分数乘除法运算。
3. 小数小数的概念:理解小数的意义,包括整数部分和小数部分。
小数的表示方法:掌握用数字和小数点表示小数的方法。
小数的加减法:掌握小数加减法的运算规则,能够熟练地进行小数加减法运算。
小数的乘除法:掌握小数乘除法的运算规则,能够熟练地进行小数乘除法运算。