等保2.0密码技术应用分析

等保2.0密码技术应用分析
等保2.0密码技术应用分析

1 等保三级要求的通用要求

等保三级从安全通信网络、安全计算环境、安全建设管理、安全运维管理四个域对密码技术与产品提出了要求,主要涉及以下八处密码技术:

通信传输

a)应采用校验技术或密码技术保证通信过程中数据的完整性;

b)应采用密码技术保证通信过程中数据的保密性。

身份鉴别

d)应采用口令、密码技术、生物技术等两种或两种以上组合的鉴别技术对用户进行身份鉴别,且其中一种鉴别技术至少应使用密码技术来实现。

数据完整性

a)应采用校验技术或密码技术保证重要数据在传输过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等;

b)应采用校验技术或密码技术保证重要数据在存储过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等。

数据保密性

a)应采用密码技术保证重要数据在传输过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等;

b)应采用密码技术保证重要数据在存储过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等。

安全方案设计

b)应根据保护对象的安全保护等级及与其他级别保护对象的关系进行安全整体规划和安全方案设计,设计内容应包含密码技术相关内容,并形成配套文件;

产品采购和使用

b)应确保密码产品与服务的采购和使用符合国家密码管理主管部门的要求;

测试验收

b)应进行上线前的安全性测试,并出具安全测试报告,安全测试报告应包含密码应用安全性测试相关内容。

密码管理

b)应使用国家密码管理主管部门认证核准的密码技术和产品。

2等保与0054标准中对密码技术的要求分析

将等保中对密码技术与产品的要求,细化映射到《GM/T 0054-2018 信息系统密码应用基本要求》标准(简称“0054标准”)中对密码的技术要求,如下表所示:

1等保与0054标准对数据完整性的密码技术要求分析

等保在安全通信网络、安全计算环境中提出,可以采用密码技术来保证数据的完整性,其中主要保护的主体是安全通信网络中通信数据、安全计算环境中包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息。映射到0054标准中三级要求的物理与环境安全、网络与通信

安全,设备与计算的安全中,主要保护的数据就是电子门禁系统进出记录、视频监控音像记录、通信中的数据、资源访问控制信息、重要信息资源敏感标记日志记录、访问控制策略/信息/重要信息资源敏感标记、重要数据、日志记录等数据。这些数据应采用密码技术进行保护,保证数据的完整性,主要的密码技术实现方式可采用消息鉴别码(MAC)或数字签名。

2等保与0054标准对身份鉴别中的密码技术要求分析

等保中在安全计算环境中对身份鉴别中的密码技术提出要求,要求身份鉴别中至少要使用一种密码技术,模糊原来等保中的物理与环境安全、网络与通信安全,设备与计算的安全、应用与数据安全的概念。0054标准继续沿用等保,仍从物理与环境、设备与计算、网络与通信,设备与计算的安全、应用与数据安全,对信息系统中的网络设备以及用户的登录都做了详细的密码技术要求,从而保证四大层面上网络设备的边界接入、管理员、审计员、操作用户的身份的真实性。主要的密码技术实现方式可采用对称加密、动态口令、数字签名等。

3等保与0054标准对数据保密性的密码技术要求分析

等保中安全计算环境对数据的保密性也提出了要求,映射到0054标准的网络与通信安全,设备与计算的安全、应用与数据安全三大层面中,即是对数据的机密性要求。即设备与计算中敏感信息数据字段或整个报文、网络与通信身份鉴别信息、应用与数据安全重要数据,都需要密码技术来保证机密性,主要的密码技术实现方式为加密。

4等保与0054标准对不可否认性的密码技术要求分析

此外,0054标准中对不可否认性也要做了要求,主要保证的是网络和信息系统中所有需要无法否认行为,包括发送、接收、审批、创建、修改、删除、添加、配置等操作。主要的密码技术实现方式为数字签名等。

5等保与0054标准对密码产品与服务的要求分析

等保中对产品采购、密码管理中要求密码产品与服务的采购和使用符合国家密码管理主管部门的要求,0054标准的总体要求中对密码算法、密码技术、密码产品、密码服务都做出要求,具体如下:

密码算法信息系统中使用的密码算法应当符合法律、法规的规定和密码相关国家标准、行业标准的有关要求。

密码技术信息系统中使用的密码技术应遵循密码相关国家标准和行业标准。

密码产品信息系统中使用的密码产品与密码模块应通过国家密码管理部门核准。

密码服务信息系统中使用的密码服务应通过国家密码管理部门许可。

以上要求可以看出,0054标准中要求信息系统密码应用中所使用的算法、技术、产品、服务也都需要遵循国家密码管理主管部门的要求。

6等保与0054标准对密码方案及测评验收要求分析

等保对密码方案及测评验收的要求,映射到0054标准的实施中密码方案的规划、信息系统的建设、运行,如等级保护第三级信息系统中要求:

信息系统规划阶段,责任单位应依据密码相关标准,制定密码应用方案,组织专家进行评审,评审意见作为项目规划立项的重要材料。

通过专家审定后的方案应作为建设、验收和测评的重要依据。

密码技术与应用题目与答案

密码技术与应用题目与 答案 Document number:PBGCG-0857-BTDO-0089-PTT1998

密码学技术与应用 1、B是指网络中的用户不能否认自己曾经的行为。 A.保密性 B.不可抵赖性 C.完整性 D.可控性 2. 如果消息接收方要确认发送方身份,将遵循以下哪条原则 B。 A.保密性 B.鉴别性 C.完整性 D.访问控制 3. A将不会对消息产生任何修改。 A.被动攻击 B.主动攻击 C.冒充 D.篡改 4. A 要求信息不致受到各种因素的破坏。 A.完整性 B.可控性 C.保密性 D.可靠性 5.凯撒密码把信息中的每个字母用字母表中该字母后的第三个字母代替,这种密码属于 A 。 A.替换加密 B.变换加密 C. 替换与变换加密 D.都不是 6. C 要求信息不被泄露给未经授权的人。 A.完整性 B.可控性 C.保密性 D.可靠性 7.公钥密码体制又称为D。 A.单钥密码体制 B.传统密码体制 C.对称密码体制 D.非对称密码体制 8.私钥密码体制又称为 C 。 A.单钥密码体制 B.传统密码体制 C.对称密码体制 D.非对称密码体制 9. 研究密码编制的科学称为 C 。 A.密码学 B.信息安全 C.密码编码学 D.密码分析学

10. 密码分析员负责 B 。 A.设计密码方案 B.破译密码方案 C.都不是 D.都是 加密 C 位明文块。 A.32 12.同等安全强度下,对称加密方案的加密速度比非对称加密方案加密速度 A 。 A.快 B.慢 C.一样 D.不确定 13.一般认为,同等安全强度下,DES的加密速度比RSA的加密速度B。 A.慢 B.快 C.一样 D.不确定 即数据加密标准是一个分组加密算法,其(明文)分组长度是C bit,使用两个密钥的三重DES的密钥长度是 bit A.56,128 ,112 ,112 ,168 15. B 算法的安全性基于大整数分解困难问题。 A. DES B. RSA D. ElGamal 16.如果发送方用私钥加密消息,则可以实现 D 。 A.保密性 B.保密与鉴别 C.保密而非鉴别 D.鉴别 17. C 是个消息摘要算法。 A.DES B. IEDA C. MD5 D. RSA 18. C 是一个有代表性的哈希函数。 A.DES B. IEDA C. SHA-1 D. RSA 19. D 标准定义数字证书结构。 A. IP C. D. 二.填空题:

量子保密通信案例介绍

量子保密通信案例介绍 1、金融领域 通过与中国人民银行和中国银监会合作,开展了金融行业量子保密通信应用,包括同城数据备份和加密传输、网上银行加密、异地灾备、监管信息采集报送、人民币跨境收付系统应用等,并在银行、证券、期货、基金等行业成功开展了应用示范。特别是银行业,已经形成了一批典型示范用户,包括工商银行、中国银行、建设银行、交通银行等国有大型商业银行,民生银行、浦发银行等全国性股份制商业银行及北京农商行等其他商业银行。 中国银监会组织的京沪干线量子保密通信应用在同城数据备份和加密传输应用方面,工商银行、交通银行、北京农商行,浦发银行、民生银行、东方证券、国泰君安期货、华安基金等金融机构已经常态化应用。

在网上银行加密方面,交通银行、工商银行已经常态化应用。2017年2月,交通银行首次把量子保密通信技术应用于企业网银用户的实时交易,通过量子保密通信的高安全性保障客户对资金安全的高要求,标志着量子保密通信从服务银行内部数据安全向为第三方客户提供高等级安全服务跃迁。 在异地灾备方面,交通银行、中国银行、工商银行已常态化应用。2017年2月工商银行率先基于“两地三中心”的数据中心体系,利用量子保密通信技术,将工商银行网上银行业务数据从北京西三旗数据中心通过量子保密通信技术实时传输到上海嘉定和外高桥数据中心。 工商银行异地灾备量子保密通信应用 在监管信息采集报送方面,中国银监会将量子保密通信技术应用于银监会与各相关银监局、各相关银行之间的监管信息数据采集报送系统。2015年7月,银监会与民生银行、银监会与北京银监局之间的监管信息采集系统建设完成并投产。该系统每日进行一次报送,每

等保2.0密码技术应用分析

等保三级从安全通信网络、安全计算环境、安全建设管理、安全运维管理四个域对密码技术与产品提出了要求,主要涉及以下八处密码技术: 通信传输 a)应采用校验技术或密码技术保证通信过程中数据的完整性; b)应采用密码技术保证通信过程中数据的保密性。 身份鉴别 d)应采用口令、密码技术、生物技术等两种或两种以上组合的鉴别技术对用户进行身份鉴别,且其中一种鉴别技术至少应使用密码技术来实现。 数据完整性 a)应采用校验技术或密码技术保证重要数据在传输过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等; b)应采用校验技术或密码技术保证重要数据在存储过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等。 数据保密性 a)应采用密码技术保证重要数据在传输过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等; b)应采用密码技术保证重要数据在存储过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等。 安全方案设计 b)应根据保护对象的安全保护等级及与其他级别保护对象的关系进行安全整体规划和安全方案设计,设计内容应包含密码技术相关内容,并形成配套文件; 产品采购和使用

b)应确保密码产品与服务的采购和使用符合国家密码管理主管部门的要求; 测试验收 b)应进行上线前的安全性测试,并出具安全测试报告,安全测试报告应包含密码应用安全性测试相关内容。 密码管理 b)应使用国家密码管理主管部门认证核准的密码技术和产品。 2等保与0054标准中对密码技术的要求分析 将等保中对密码技术与产品的要求,细化映射到《GM/T 0054-2018 信息系统密码应用基本要求》标准(简称“0054标准”)中对密码的技术要求,如下表所示: 1等保与0054标准对数据完整性的密码技术要求分析 等保在安全通信网络、安全计算环境中提出,可以采用密码技术来保证数据的完整性,其中主要保护的主体是安全通信网络中通信数据、安全计算环境中包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息。映射到0054标准中三级要求的物理与环境安全、网络与通信安全,设备与计算的安全中,主要保护的数据就是电子门禁系统进出记录、视频监控音像记录、通信中的数据、资源访问控制信息、重要信息资源敏感标记日志记录、访问控制策略/信息/重要信息资源敏感标记、重要数据、日志记录等数据。

量子密码导论

量子密码学导论期末论文 量子密码的简单介绍和发展历程及其前景 0引言 保密通信不仅在军事、社会安全等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在众多的保密通信手段中,密码术是最重要的一种技术措施。 经典密码技术根据密钥类型的不同分为两类:一类是对称加密(秘密钥匙加密)体制。该体制中的加解密的密钥相同或可以互推,收发双方之间的密钥分配通常采用协商方式来完成。如密码本、软盘等这样的密钥载体,其中的信息可以被任意复制,原则上不会留下任何印迹,因而密钥在分发和保存过程中合法用户无法判断是否已被窃听。另一类是非对称加密(公开密钥加密)体制。该体制中的加解密的密钥不相同且不可以互推。它可以为事先设有共享密钥的双方提供安全的通信。该体制的安全性是基于求解某一数学难题,随着计算机技术高速发展,数学难题如果一旦被破解,其安全性也是令人忧心的。

上述两类密码体系的立足点都是基于数学的密码理论。对密码的破解时间远远超出密码所保护的信息有效期。其实,很难破解并不等于不能破解,例如,1977年,美国给出一道数学难题,其解密需要将一个129位数分解成一个64位和一个65位素数的乘积,当时的计算机需要用64?10年,到了1994年,只用了8个月就能解出。 经典的密码体制都存在被破解的可能性。然而,在量子理论支配的世界里,除非违反自然规律,否则量子密码很难破解。量子密码是量子力学与信息科学相结合的产物。与经典密码学基于数学理论不同,量子密码学则基于物理学原理,具有非常特殊的随机性,被窃听的同时可以自动改变。这种特性,至少目前还很难找到破译的方法和途径。随着量子信息技术的快速发展,量子密码理论与技术的研究取得了丰富的研究成果。量子密码的安全性是基于Heisenberg 测不准原理、量子不可克隆定理和单光子不可分割性,它遵从物理规律,是无条件安全的。文中旨在简述量子密码的发展历史,并总结量子密码的前沿课题。 1 量子密码学简介 量子密码学是当代密码理论研究的一个新领域,它以量子力学为基础,这一点不同于经典的以数学为基础的密码体制。量子密码依赖于信息载体的具体形式。目前,量子密码中用于承载信息的载体主要有光子、微弱激光脉冲、压缩态光信号、相干态光信号和量子光弧子信号,这些信息载体可通过多个不同的物理量描述。在量子密码中,一般用具有共轭特性的物理量来编码信息。光子的偏振可编码为量子比特。量子比特体现了量子的叠加性,且来自于非正交量子比特信源的量子比特是不可克隆的。通过量子操作可实现对量子比特的密码变换,这种变换就是矢量的线性变换。不过变换后的量子比特必须是非正交的,才可保证安全性。一般来说,不同的变换方式或者对不同量子可设计出不同的密码协议或者算法,关键是所设计方案的安全性。 在量子密码学中,密钥依据一定的物理效应而产生和分发,这不同于经典的加密体制。目前,在经典物理学中,物体的运动轨迹仅山相应的运动方程所描述和决定,不受外界观察者观测的影响。但是在微观的量子世界中,观察量子系统的状态将不可避免地要破坏量子 系统的原有状态,而且这种破坏是不可逆的。信息一旦量子化,量子力学的特性便成为量子信息的物理基础,包括海森堡测不准原理和量子不可克隆定理。量子密钥所涉及的量子效应主要有: 1. 海森堡不确定原理:源于微观粒子的波粒二象性。自由粒子的动量不变,自由粒子同时 又是一个平面波,它存在于整个空间。也就是说自由粒子的动量完全确定,但是它的位置完全不确定. 2. 在量子力学中,任意两个可观测力学量可由厄米算符A B ∧∧来表示,若他们不对易,则不 能有共同的本征态,那么一定满足测不准关系式: 1,2A B A B ? ∧∧∧∧????≥ ||???? 该关系式表明力学量A ∧和B ∧不能同时具有完全确定的值。如果精确测定具中一个量必然无法精确测定以另一个力学量,即测不准原理。也就是说,对任何一个物理量的测量,都

经典保密通信和量子保密通信区别

经典保密通信和量子保密通信区别 摘要:文章介绍了经典保密通信和量子保密通信区别,说明了两者的根本区别。经典保密通信安全性主要是依赖于完全依赖于密钥的秘密性,很难保证真正的安全。而量子密码通信是目前科学界公认唯一能实现绝对安全的通信方式,其主要依赖于基本量子力学效应和量子密钥分配协议。最后分析量子保密通信的前景和所要解决的问题。 关键词:量子通信、经典保密通信、量子保密通信、量子通信发展、量子通信前景 经典保密通信 一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性. 它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’不同。整个通信系统得安全性寓于密钥之中。公钥加密体

系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。 另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密乱码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。 传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。 量子保密通信 量子密码学的理论基础是量子力学,而以往密码学的理

等保2.0密码技术应用分析

1 等保三级要求的通用要求 等保三级从安全通信网络、安全计算环境、安全建设管理、安全运维管理四个域对密码技术与产品提出了要求,主要涉及以下八处密码技术: 通信传输 a)应采用校验技术或密码技术保证通信过程中数据的完整性; b)应采用密码技术保证通信过程中数据的保密性。 身份鉴别 d)应采用口令、密码技术、生物技术等两种或两种以上组合的鉴别技术对用户进行身份鉴别,且其中一种鉴别技术至少应使用密码技术来实现。 数据完整性 a)应采用校验技术或密码技术保证重要数据在传输过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等; b)应采用校验技术或密码技术保证重要数据在存储过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等。 数据保密性 a)应采用密码技术保证重要数据在传输过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等; b)应采用密码技术保证重要数据在存储过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等。 安全方案设计

b)应根据保护对象的安全保护等级及与其他级别保护对象的关系进行安全整体规划和安全方案设计,设计内容应包含密码技术相关内容,并形成配套文件; 产品采购和使用 b)应确保密码产品与服务的采购和使用符合国家密码管理主管部门的要求; 测试验收 b)应进行上线前的安全性测试,并出具安全测试报告,安全测试报告应包含密码应用安全性测试相关内容。 密码管理 b)应使用国家密码管理主管部门认证核准的密码技术和产品。 2等保与0054标准中对密码技术的要求分析 将等保中对密码技术与产品的要求,细化映射到《GM/T 0054-2018 信息系统密码应用基本要求》标准(简称“0054标准”)中对密码的技术要求,如下表所示:

量子保密通信与金融业信息传输安全

量子保密通信与金融业信息传输安全 发表时间:2019-08-30T14:40:39.980Z 来源:《城镇建设》2019年第13期作者:富咏梅[导读] 随着社会的发展,我国的智能化建设的发展也突飞猛进。 中国电信股份有限公司嘉善分公司浙江杭州 310000摘要:随着社会的发展,我国的智能化建设的发展也突飞猛进。金融是一个国家的经济“血脉”,金融业的信息安全关系到整个经济体系的稳定、健康运行。20世纪60年代以来,随着计算机科学与互联网技术的不断发展,传统的金融业经营模式逐步被颠覆,转而形成以信 息技术为基础的新型发展模式。数字化、智能化发展趋势推动着金融与信息技术的深度融合,金融核心系统、关键流程、客户关系管理、业务往来等均依托于在信息技术。可见,信息技术已然成为现代金融发展的重要基石之一。然而,金融信息化发展使得各类敏感信息和关键信息都存储在计算机信息系统之中,并且通过电子网络完成传输和交换。这些信息中除了大量金融行业自身的机密数据外,还包括海量与客户相关的账户数据、交易数据和客户基本信息等敏感数据。这些信息数据涉及到金融机构和客户的资金安全,容易成为金融违法犯罪活动所针对的目标。与此同时,全球数据总量包括金融领域数据量每年都呈指数增长态势,增加了金融业的数据管理负担。而网络应用的普及和计算机技术的不断发展,又使得黑客的攻击活动变得更加难以追踪和防范。在此背景下,金融信息安全和隐私保护问题更加突出,这也成为整个金融行业共同面临的一项重大挑战关键词:量子保密通信;金融业;信息传输安全引言随着金融信息化发展和数据规模不断扩大,数据管理成为金融业运营和管理面临的一大难题,其中信息传输是最易遭受攻击且难以防范的环节。量子保密通信作为一种安全性较高的信息传输方式,在金融业具有广泛的应用前景。然而,目前来看,量子保密通信技术短期内还无法实现在金融业中的大规模应用。下一步量子保密通信技术研发和推广运用需要把握以下几个关键点:一是推进量子保密通信“稳定、高速、远距离”是规模化应用的前提;二是加快量子中存储技术的发展是实用化应用的关键;三是建立规范、统一的量子通信标准是与金融业融合发展的基础。为此,提出如下建议:一是加大科研投入,攻克量子保密通信核心技术难关、实现量子中继使用和远程传输;二是建立政、银、校、企协同合作机制,共同推进量子保密通信发展,特别是要重视货币当局、金融监管当局的参与,防范新技术应用中的操作风险;三是加强基础设施建设,建立量子通信广域网络,满足金融系统跨地区、跨领域、跨机构的信息保密传输需求。 1金融业信息传输的特点在金融信息化环境下,信息传输成为金融活动的基础环节之一。随着互联网金融和新兴金融业务的快速发展,金融机构的信息传输需求变得更加旺盛,金融交易、客户关系、金融监管、跨境金融业务等无一例外地需要依托于信息传递或交换。金融信息的传输与交换,成为金融机构运转不可或缺的重要环节,海量信息的高效、安全、隐蔽传输成为金融机构的日常运营、管理的重要事项。对于金融业信息传输而言,最突出的特点在于安全性,保障信息安全、可靠地传输是金融业信息传输的重中之重。信息传输安全无论对于金融机构还是金融消费者而言,都尤为重要,这关系到金融机构和金融消费者资金的安全,也关系到金融机构的稳健运行,一旦信息传输过程中遭受严重攻击,将会带来无法估量的损失(谢清河,2014)。然而,在网络信息时代,金融业信息传输面临着窃听、篡改、破译密码等网络攻击的威胁。此外,随着信息科技水平的不断提高,不法分子所使用的攻击手段也愈发多样且经常变换,使得金融机构和金融消费者难以应对,金融领域信息传输的安全问题越来越突出。这就要求金融机构乃至整个金融体系必须不断更新、升级信息安全防护措施,采用更加先进的技术手段才能保障信息传输的安全性。 2金融业信息传输的方式从金融业信息传输的方式来看,主要分为有线和无线两大类型,分别运用于不同的场景之中。其中,有线信息传输主要应用于容量大的静态设备之间的数据传输,如金融机构与监管当局之间、金融同业之间、金融机构内部数据中心之间的数据传输,通过电缆、光纤等方式进行有线通信;而金融机构后台与移动端应用(如手机APP、移动POS机等)的连接,主要采取无线信息传输方式。需要说明的是,有线传输与无线传输都属于传统网络信息传输的范畴。 3量子保密通信在金融业的应用对于金融业来说,数据传输和交换是金融系统正常运行的基础,保障信息、数据的高效、安全传输和交换是金融机构必须要面对和解决的问题(杨利民和於学松,2018)。量子保密通信技术能够在物理层面实现金融数据加密传输,满足金融通信的安全需求,具有重要的战略意义。我国在量子保密通信领域具有领先优势,为国内金融系统实现信息保密传输提供了支撑和保障。我国货币当局、商业银行都在积极探索量子保密通信的应用场景,致力打造更加安全的金融业信息传输系统。2017年,人民银行组织开展量子保密通信技术验证和应用示范项目,实现了商业银行之间“人民币跨境收付信息管理系统(RCPMIS)”的加密通信。中国银行基于国家量子保密通信“京沪干线”,启动京沪异地生产和灾备数据中心之间量子加密传输应用项目,成功实现该行京沪异地数据中心间生产运维数据的量子加密传输,提升了数据在跨地域、跨管理域长距离传输过程中的安全性。工商银行作为试点单位参与了量子保密通信“京沪干线”技术验证及应用示范项目,并率先实现了电子档案数据在同城内量子加密传输(吕仲涛,2017)。交通银行首次实现将量子通信技术应用于网络银行实时交易。北京农商行运用量子加密通信技术,实现总行、数据中心、业务处理中心之间的办公、生产、同城灾备数据的安全传输。徽商银行运用量子通信技术,实现该行与中国金融认证中心间的数字证书信息端到端加密。网商银行通过部署量子保密通信设备,实现京沪之间信贷业务数据的量子通信加密传输。总之,在我国,量子保密通信技术正逐步运用于金融业的信息传输和交换之中,在提高金融业信息传输安全性和效率性方面取得了初步成效。目前,尽管量子保密通信的实用化通信距离已经达到400km,工作频率达到GHz,但用于商用系统的工作频率仅为50MHz,通信距离为50km,安全码率仅为kb/s级,与金融业的实际应用需求还存在较大差距。换言之,基于现有的量子保密传输技术,尚未在通信距离、通信速率、抗干扰力等方面形成对金融业现有通信系统的明显优势。要突破这些瓶颈,必须研制更加稳定、高速、远距的量子保密通信系统。这就需要强化硬件上的支持,如高速单光子源、高速量子随机数发生器等。从发展趋势来看,中短期内或将推出1~10GHz高速实用化商用量子通信系统,有望为金融业的量子保密通信系统应用创造条件。结语

BB84协议的安全性分析及计仿真研究1

BB84协议的安全性分析及计仿真研究 第一章绪论 1.1引言 秘密通信是人类长久以来的愿望。计算机的出现和互联网普及,促使这种愿望变为一种必然需要(对于银行交易、电子商务、个人档案和Internet通信等)。一般情况,有两种方法可以保证消息安全的传输到接收方而不被第三方(未授权者)在传输过程中截取消息的内容。一种方法就是隐藏消息本身的存在,如通过不可见的墨水来写消息;另一种方法是通过加密所传输的消息。 密码技术特别是加密技术是信息安全技术的核心,它与网络协议等安全技术相结合,成为解决认证、数据加密、访问控制、电子签名、防火墙和电子货币等的关键技术。研究传输信息采取何种秘密的交换,以确保不被第三方截获信息。密码技术可分为密码编制学和密码分析学。密码编制学是寻求产生安全性高的有效密码算法,以满足对消息进行加密或认证的要求;而密码分析学是破译密码或伪造认证码,实现窃取机密信息或进行诈骗破坏活动。传统的加密系统,不管是对私钥技术还是公钥技术,其密文的安全性完全依赖于密钥本身的秘密性。由于截获者的存在,从技术层面上来说,真正的安全很难保证,而且密钥的分配总是会在合法使用者无从察觉的情况下被消极窃听[1]。 近年来,由于量子力学和密码学的紧密结合,演变出了量子密码学(Quantum Cryptography),它可以完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决了通信线路被消极窃听的问题。已经有研究表明,使用量子力学的特征可以实现两个陌生人之间通信的完美保密。 1.2传统密码通信 密码通信主要是依赖密钥、加密算法、密码传送、解密算法、解密的保密来保证其安全性,它的基本目的使机密信息变成只有自己或合法授权的人才能认出的乱码。具体操作时都要使用密码将明文(被屏蔽的消息)变成密文(屏蔽后的消息),称为加密,密码称为密钥。完成加密的规则称为加密算法,将密文传送到接收方称为密码传送,把密文变成明文称为解密,完成解密的规则称为解密算法。传统密码通信的最大难题是被人破译而却不被察觉,从而导致严重的后果。 一般而言,传统保密通信可分作两大类,一是非对称密码系统(asymmetrical cryptosystem )另一是对称密码系统(symmetrical cryptosystem )。传统保密通信原理如图1.1 所示。 原理图中Alice和Bob是一般通讯中信息发送者和信息接收者的代称。Alice对信息明文

量子保密通信系统及其关键技术的研究

量子保密通信系统及其关键技术的研究 【摘要】:量子信息学的研究发现,如果能通过量子态编码来传送密码信息的话,那么依据量子力学不确定性原理,任何对量子载体的测量或复制行为都将改变原量子态。这为我们提供了一种主动发现窃听者的方法,即量子保密通信。与任何传统密码术都不同的是,它借助于自然法则的威力,从根本上杜绝了非法窃听的可能性,将为人们提供一种“无条件”的安全通信方法。本文工作致力于量子保密通信技术初步实用化的研究,目标是探索量子密钥分发的新方案与新技术,并完成长距离长期稳定的光纤型量子密钥分发系统。在量子密钥分发方案研究方面,我们主要着力于提高保密通信的稳定性和成码率。因而我们首先提出了基于Sagnac干涉仪的量子保密通信方案。该方案巧妙地使用了环形光路的结构,不借助任何主动或被动元件就可以自动补偿相位抖动;采用分时相位调制技术控制单光子干涉,密码交换方法简单可靠。是目前为数不多的利用双向自动补偿而实现稳定传输密钥的长距离保密通信方案之一。本论文还提出了法拉第反射镜与相位差分方案结合(“PhlgPlay”+DSP)的量子密钥分发方案。该方案通过相位调节伺服系统和往复光路补偿技术,能够有效地克服单光子单向传输过程中的相位抖动和偏振模式色散(PMD)等问题,具有高稳定性;并结合Yamamoto等人提出的相位差分编码方法,能够实现高达2/3的密钥成码率。该方案还具有很强的可扩展性。在不改变总体结构的情况下,仅仅通过增加部分光路元件的方法就可以使密钥成码效率提

高到(n-1)/n(n=3,4,5,…),是一种有潜力的新方案。围绕量子保密通信系统的研究,我们发展了一系列关键性的技术。在单光子探测方面,我们提出了多种单光子探测的技术方案。解决了APD光纤耦合、低温制冷控温(-50℃--110℃)等技术难题,研制出实用化的单光子探测器,并成功应用于单光子干涉实验和量子保密通信系统中,为红外单光子信息处理等领域提供了高灵敏的探测手段。其核心指标,暗计数率与量子效率的{确要比值(Pd/几)超过商售同类产品一个数量级。为解决相位差分编码方案中时间信息检测的问题,找们提出了一种基于多重探测门(multi一gate)的单光子11寸序检测器(Timediseriminator)。一般认为,山于InGaAS雪崩光电二极管的后脉冲发生机率较大,不适于快速的时间探测。而实验中我们恰恰不lJ 用了发生在{i汀后相继的多个脉冲门中的后脉冲来帮助识别单光子时间信息,为近红外单光子时序检测提供了一种有效方法。在单光子十涉和单光子操控的研究中,我们提出并实现了华十光纤S雌11ac 干涉仪的长距离单光子干涉和单光子路山实验。在50公啾的光纤环路中获得的单光子干涉可见度达到95%;基于s雌11ac二卜涉仪的长距离单光子路山器有望应运于单光子量子信息研究。我们还发展了偏振量子随机源技术,首次将USBZ.O数据接口应用于高速光量子真随机信号发生器,实现了“即插即用”的功能。该系统使用简便,随机码的采样速率可达SMHZ,随机数的序列相关性达到10一“量级,单字节嫡值不小于7.99;将为量子保密通信的安全性提供有力保障。该随机信号发生器也适用于经典密码学和模拟计算等其它领域。最后,采

量子保密通信

量子保密通信实验 引言 自古以来,人们就希望各种保密的信息能安全地交流,于是便发明了各种密码术。但是随着加密方法的公开和科技的发展,各种加密方法都面临着被轻易破解的危险:如古老的凯撒密码就可以通过字频分析结合穷举法实现破解;而现在应用的最为广泛的RSA公钥密码体系理论上已被证明可以用Shor算法实现破解。迄今为止,只有一次一密的加密方案在理论上被证明是理想安全的。随着信息安全日趋重要,怎样保密通信已成为当今最为紧迫的问题之一。一次一密的加密方案安全性毋庸置疑,然而如何找到一条安全的途径,实现大量的密钥分发又成为一个关键的问题。于是基于量子不可克隆定理的量子密码学应运而生。量子密码学不仅是一门科学,而且是一门精巧的通信艺术。通过量子密码实验系统,不仅可以让我们直观的理解BB84协议和了解量子保密通信,并且可以进一步以此作为平台,进行一系列的科学研究。 实验目的 1. 学习使用BB84协议实验中常用的仪器设备 2. 理解量子保密通信实验中BB84协议理论 3. 观测量子保密通信实验中的成码率,误码率,加密解密效果 实验原理 BB84协议是Charles H. Bennett 与 Gilles Brassard 1984年提出的描述如何利用光子的偏振态来传输信息的量子密钥分发协议:发送方Alice和接收方Bob用量子信道(如果光子作为量子态载体,对应的量子信道就是传输光子的光纤)来传输量子态;同时双方通过一条公共经典信道(比如因特网)比较测量基矢和其他信息交流,进而两边同时安全地获得和共享一份相同的密钥。 BB84协议基本条件首先是拥有一个量子信号源,并可以随机地调制产生两套基矢总共四种不同的量子态信号;其次,调制后的量子信号可以通过一个量子信道如光纤或者自由空间来进行传输;再次,接受到的量子信号可以被有效地测量,其中测量所用的基矢也是随机选择的,同时需要一个辅助的经典公共信道可以传输经典的基矢对比等信息。另外该经典公共信道要求是认证过的,任何窃听者虽

密码技术与密码系统的应用

论文:密码技术与密码系统的应用 ——风糜灵琛 【摘要】随着科学技术和社会的发展,网络信息更为人们所熟知,计算机科学技术应用于各行各业,给人们带来了随踵而至的社会、经济效益,同时也为那些非法用户提供了更为便捷的犯罪途径。因此,网络信息安全就显得十分重要,尤其是密码学(密码技术和密码系统)就更被人们所重视。当今,各个国家都在抓紧时间来研发网络安全与密码学,希望借此来降低网络犯罪率,保证网络信息的安全性。当然我过也正在研究当中,并取得了不小的成果。 因此,做好对密码学的研究就显得十分重要。现在,我主要从一下几个方面来叙述该课程。(1)对网络技术做一个简单的介绍及国内外对网络安全的发展概况。(2)对密码学做一个详细的介绍,并对一些简单的解密和加密问题进行解决。(3)对本篇课程的论述做个小结。 密码技术与密码系统对于网络的安全性在于即使是非法用户能进入但也 无法知道你的信息,防止你的资料遭到非法用户的攻击。 【关键字】密码技术,密码系统,电子银行,网络安全,公开密钥密码体系。【Key Words】Key Technology,Key System,E-Bank,Internet’s Safty, Public Key Infranstructures。 【正文】 一·我国信息网络安全研究历经了通信保密、数据保护两个阶段,正在进入网络信息安全研究阶段,现已开发研制出防火墙、安全路由器、安全网关、黑客入侵检测、系统脆弱性扫描软件等。但因信息网络安全领域是一个综合、交叉的学科领域它综合了利用数学、物理、生化信息技术和计算机科学与技术等诸多学科的长期积累和最新发展成果,提出系统的、完整的和协同的解决信息网络安全的方案,目前应从安全体系结构、安全协议、现代密码理论、信息分析和监控以及信息安全系统五个方面开展研究,各部分相互协作形成有机整体。但与国外发达国家相比,我们在密码学方面还存在一定的差距。 二·密码学是研究如何隐密地传递信息的一门学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,从工程学的角度,这相当于密码学与纯数学的异同。密码学是网络安全、信息安全等相关议题,如认证、访问控制的核心。密码学的首要目的是隐藏信息的涵义,并不是要隐藏信息的存在。密码学也促进了计算机科学的发展,尤其是关于计算机与网络安全所使用的技术的方面,如访问控制与信息的机密性。密码学已被广泛应用于日常生活:包括自动柜员机的银行卡、一卡通、计算机使用者存取密码、数字签名、电子商务等等。密码学通常指加密算法:将普通信息(明文)转换成难以理解的资料(密文)的过程;解密算法则是其相反的过程:由密文转换为明文;密码系统包含两种算法:一般加密即同时指称加密与解密的技术。密码系统的具体运作由两部分共同决定:一个是算法,另一个是钥匙。钥匙是一个用于密码机算法的秘密参数,通常只有通讯者拥有。密码协议(cryptographic protocol)是使用密码技术的通信协议

全球量子保密通信网络发展研究

Computer Science and Application 计算机科学与应用, 2018, 8(10), 1628-1641 Published Online October 2018 in Hans. https://www.360docs.net/doc/4f8555222.html,/journal/csa https://https://www.360docs.net/doc/4f8555222.html,/10.12677/csa.2018.810179 Development Analysis on Global Quantum Secure Communication Network Feifan Chen1, Xinyu Hu1, Yinghao Zhao1, Yongzhan Hu2, Zhengzheng Yan1, Hongxin Li1,3 1PLA Strategic Support Force Information Engineering University, Luoyang Henan 2Zhengzhou Audit Center, Zhengzhou Henan 3State Key Laboratory of Cryptology, Beijing Received: Oct. 7th, 2018; accepted: Oct. 22nd, 2018; published: Oct. 30th, 2018 Abstract With the popularization of international Internet technology and the rapid development of quantum information technology, the construction of quantum secure communication networks (QSCN) has received extensive attention and the strategic significance of developing quantum secure commu-nication technologies is becoming more and more important. This paper introduces and analyzes the construction of QSCN in major quantum R & D countries and regions such as the United States, the European Union, Japan and China around the world over the past decade in details. It re-searches and compares the pivotal technology used in the construction of typical QSCN. And the development trends and characteristics of future QSCN are summarized and forecasted. Keywords Quantum Cryptography, Quantum Private Communication, Quantum Communication Network, Quantum Key Distribution 全球量子保密通信网络发展研究 陈非凡1,胡鑫煜1,赵英浩1,胡勇战2,闫争争1,李宏欣1,3 1中国人民解放军战略支援部队信息工程大学,河南洛阳 2郑州审计中心,河南郑州 3密码科学技术国家重点实验室,北京 收稿日期:2018年10月7日;录用日期:2018年10月22日;发布日期:2018年10月30日 摘要 随着国际互联网技术的普及和量子信息技术的飞速发展,量子保密通信网络建设受到了广泛关注,发展

量子密码

量子密码 摘要 论文说明了量子密码的现实可行性与未来可行性,强调了量子密码比传统密码和公开密钥更加方便和安全,探讨了量子密码的理论基础与试验实践。密码技术是信息安全领域的核心技术,在当今社会的许多领域都有着广泛的应用前景。量子密码术是密码技术领域中较新的研究课题,它的发展对推动密码学理论发展起了积极的作用。量子密码技术是一种实现保密通信的新方法,它比较于经典密码的最大优势是具有可证明安全性和可检测性,这是因为量子密码的安全性是由量子物理学中量子不可克隆性Heisenburg 测不准原理来保证的,而不是依靠某些难解的数学问题。自从BB84量子密钥分配方案提出以来,量子密码技术无论在理论上还是在实验上都取得了大量研究成果。 关键词:密码学;量子;偏光器;金钥;量子密码;金钥分配 目录 1.密码学原理............................................................................................................. - 2 - 1.1密码学概念...................................................................................................... - 2 - 1.2对称密钥.......................................................................................................... - 2 - 1.3公开密钥.......................................................................................................... - 2 - 2.量子密码学原理.................................................................................................... - 2 - 2.1量子密码学概念.............................................................................................. - 2 - 2.2量子密码工作原理.......................................................................................... - 3 - 2.3量子密码理论基础.......................................................................................... - 4 - 2.4试验与实践...................................................................................................... - 5 - 3.结论 ........................................................................................................................... - 5 - 参考文献................................................................................................................ - 6 -

量子保密通信在电力通信中的应用

量子保密通信在电力通信中的应用 发表时间:2020-03-16T15:25:20.777Z 来源:《电力设备》2019年第20期作者:陈冠晟 [导读] 摘要:量子保密通信作为新时代的产物,有着传统保密模式难以比拟的优势,若将量子保密通信应用在电力通信当中,电力通信将获得绝对性的信息安全保障。 (广东电网有限责任公司江门供电局广东江门 529000) 摘要:量子保密通信作为新时代的产物,有着传统保密模式难以比拟的优势,若将量子保密通信应用在电力通信当中,电力通信将获得绝对性的信息安全保障。对此,本文以量子保密通信为研究对象,简单介绍量子保密通信的相关内容,阐述国内外量子保密通信技术在电力通信中的应用现状,分析当前应用存有的不足之处,并提出相应优化策略,希望能够进一步提升量子保密通信在电力通信的应用力度,为我国电力通信领域的各类信息提供强有力的安全保障。 关键词:量子保密通信;电力通信;应用现状 一、量子保密通信的相关内容 (一)量子保密通信的简单介绍 量子保密通信是以量子密钥分发技术为基础,其最大优势在于安全性能佳、失真度较低,从上个世纪九十年代初第一个量子密钥问世以来,量子保密通信便风靡国际,在国内外都得到了迅猛发展。在量子保密通信发展的三十多年间,通过科研人员大量的实验,现在的量子保密通信技术已经逐步走向成熟,理论及实验等方面都较为完善,当下实用化最强的则是量子信息技术。 (二)量子保密通信与电网通信之间的关联 电网通信关系到国民经济的发展,是各行各业发展及人们日常生产的关键,因此,电网通信的安全性至关重要,将直接影响国家能源安全以及国民经济的发展。 随着国民经济发展进程的不断加快,我国电网通信的整体规模也随之不断扩大,过去电网通信的保密工作主要是依赖计算复杂程度,以来计算复杂程度的安全隐患也接踵而来:科技水平的不断发展促进了人们计算机水平的提高,由许多过去难以破解的计算难题都被逐一破解,当前尚未破解的计算难题在未来存在被破解的风险,一旦计算难题被破解,电网通信不再具有安全性与保密性,后果将不堪设想,例如2015年乌克兰电力部门的电网通信遭到了黑客恶意攻击导致乌克兰大面积停电,停电期间许多行业都被迫停业,造成了巨大的经济损失。 量子保密通信技术作为信息化时代的新兴产物,有“海森堡测不准原理”和“不可克隆原理”作安全保障,其安全性是传统以计算复杂程度为依托的保密工作无法比拟的;另一方面,电网通信对安全性有特殊的要求,且随着科技的发展,今后电网通信对安全性的要求只高不低,传统保密工作将很难适应电网通信的发展需要,综上所述,量子保密通信工作是当下最适合电网通信安全的保密技术。 二、量子保密通信在电网通信的应用现状 量子保密通信具有高效、安全等特点,广阔的应用领域及应用前景吸引了众多的眼光,国际上有许多国家都纷纷加入量子保密通信的实验队伍,国际上赫赫有名的上市公司也同样前仆后继,有部分国家甚至成立了相关的实验机构,从国际对待量子保密通信的态度不难看出其商业价值及应用空间。 (一)国外的应用现状 美国早在2012年便有相关团队研究出将量子保密通信系统应用在电网通信系统当中,随之展示出了加密成果及控制指令,成功的开发出了相关的保密系统,随后将该保密系统应用在某高校的可信网络基础设施的电网系统中;同年,M2M即“可实现不间断机器之间的”相关服务问世,并广泛应用在电网系统的安全通信当中;近些年来,国外许多著名公司都专注于量子保密通信的应用工作当中,投入了大量的研发成本与研发精力,还有许多知名公司如美国“OakRidge”实验室及“IDQ”公司共同联合展开相关实验项目。 (二)国内的应用现状 “十二五”以来,量子保密通信作为我国重点发展的前沿技术,已经被列入我国《中长期科学和技术发展规划纲要》当中,在电网通信方面的应用力度更是只多不少,“中国电科院”与“中科大”两大研究团队都相继开展了相关科研工作,在电网通信系统中安装相关量子保密通信系统,将最终成果与传统保密系统相比较,提出传统保密系统存在的不足之处,并制定相关的改善措施;在2015年,“中国电科院”与“中科大”共同致力于建设绝对安全、保密的电网通信,展开了“电力工业量子通信网”的研发工作,我国首次搭建电力工业量子通信网,这是极具意义的重大事件,相信在不久的将来我国一定能够突破当下的发展瓶颈,实现绝对安全、绝对保密的电网通信。 三、电网通信应用量子保密通信的相关内容 (一)量子保密通信的主要应用方向 第一,利用量子保密通信保障电力业务,建议在电网通信系统中布置相关的量子保密通信链路,保证业务数据、管理数据等信息的安全传输,为重要场合的用电安全提供极大的安全保障;第二,利用量子保密通信调度电力业务,建议在电网通信系统的相关防火墙外设置相关保密技术,对其展开加密保护,杜绝恶意代码入侵事件的风险;第三,利用量子保密通信提高配电业务的安全性与保密性,建议制定相关量子密钥管理方案及操作流程,要周期性更换量子密钥,确保量子密钥的随机性;第四,应用在容灾备份方面,利用量子保密通信加强数据与数据之间的共享力度,并进一步强化数据传输的安全性能。 (二)应用量子保密通信的优势及存有的不足之处 优势:量子保密通信的安全性能极高,在电网通信中应用量子保密通信便可以绝对性的杜绝窃听,且量子保密通信具备不可克隆原理,窃听者无法对未知量子展开克隆工作,为电网通信提供了极大的安全保障。 不足之处:虽然当下我国电网公司具有十分庞大的电网光线,同时具备十分强大的科研团队并且得到了国家的大力支持,但在量子保密通信应用方面,仍存在技术及管理方面的不足之处,这些不足之处严重束缚了量子保密通信的应用。 (三)优化建议 首先,建议电网公司务必要深入调研相关通信业务,要建立相应的信息系统安全生态表,根据不同效果划分安全等级,加强管理,明确不同程度的安全需要;其次,加大人才培养力度,可以加强与专业团队的合作力度,将有基础、有能力的人才送往学习,提高建设队伍各方面的软、硬实力;再次,建立相关的管理体系,确保量子保密通信系统应用具有一系列的标准规范。

相关文档
最新文档