土壤有机碳及碳组份测定
土壤活性有机碳分组及测定方法
土壤活性有机碳分组及测定方法每种指标的测定方法如下:一.易氧化有机质(LOM):土壤与氧化剂作用后,易被氧化、不稳定的有机质称作LOM。
目前常用的氧化剂有两种:K2CrO7与KMnO4。
KMnO4氧化法:(此方法较为常用)称取过100目筛,约含15 mg碳的土壤样品(如:有机碳含量为15g/kg,则称取1g土壤样品)于50 mL塑料旋盖的离心管中;加入25mL,333mmol/L高锰酸钾溶液,振荡1h,然后在时速2000 rpm下离心5 min,将上清液用去离子水以1∶250稀释,在分光光度计565 nm下测定稀释样品的吸光率,由不加土壤的空白与土壤样品的吸光率之差,计算出高锰酸钾浓度的变化,并进而计算出氧化的碳量(氧化过程中1 mmolKMnO4-消耗0.75 mmol或9 mg碳)。
KMnO4氧化法:(此法是在测定全量有机质基础上降低某些反应条件,衍生出的测定方法)1、水合热法:称取磨细(过0.25 mm筛)风干土1.50 g,放入500 mL三角瓶中,准确加入0.5 mol/L K2CrO7水溶液10.0mL,轻轻转动,使土粒分散。
用量筒将20 mL浓H2SO4迅速直接注入土壤悬浊液,立即小心地转动三角瓶,使土壤与试剂充分混匀1 min。
把三角瓶放在石棉网上30 min,然后注入水约200 mL,加3~4滴邻菲锣啉指示剂,用0.25 mol/L FeSO4标准溶液滴定过量的K2CrO7。
2、0.1 mol/L K2CrO7—1∶3H2SO4130℃氧化法:在油浴温度为130~140℃时将0.5 g风干土与0.1 mol/L K2CrO7)—1∶3H2SO410.0 mL共煮5 min,冷却后加入30 mL水,用0.1 mol/L FeSO4标准溶液滴定过量的K2CrO7。
二.生物量有机质(MBOM):生物量有机质是指能被土壤微生物分解利用的部分有机质。
即微生物量碳、微生物量氮。
氯仿熏蒸法测定:(此法较为简单,但氯仿为有毒物质,操作复杂)前处理步骤:将新鲜的土样品含水量调节至田间含水量的30%~50%,25℃下密封预培养7~10 d,以保持土壤均匀和所得结果的可比性。
hj 615-2011土壤 有机碳的测定 重铬酸钾氧化-分光光度法
hj 615-2011土壤有机碳的测定重铬酸钾氧化-分光光度法1. 引言1.1 概述本文旨在介绍hj 615-2011土壤有机碳的测定方法:重铬酸钾氧化-分光光度法。
土壤有机碳是土壤中最重要的有机组分之一,对于了解土壤质量、农作物生长状况以及环境变化具有重要意义。
因此,准确测定土壤中的有机碳含量对于研究土壤生态系统的健康与稳定至关重要。
1.2 研究背景随着全球环境变化和人类活动的日益增加,土壤有机碳含量及其变化对于监测和评估农田资源的可持续利用和管理至关重要。
然而,传统的测定方法存在复杂、耗时且不灵敏等问题。
因此,开发一种简单、高效且精确测定土壤有机碳含量的新方法具有现实意义。
1.3 目的与意义本文主要目的是通过研究hj 615-2011标准所推荐的重铬酸钾氧化-分光光度法,探索其在测定土壤有机碳方面的可行性和准确性。
通过对一系列土壤样品进行测定,并与其他常用方法进行比较分析,以验证该方法的准确性和可靠性。
本文的意义在于提供给科研工作者和实践者一个简单、高效且精确的土壤有机碳测定方法,有助于更好地了解土壤质量及其环境响应,为农业生产和环境保护提供科学依据。
同时,本研究还能够拓展该方法的应用范围,并为相关领域的研究提供新思路。
(注意:全文内容仅作参考,请根据具体实验结果和数据进行修改补充)2. 原理及方法:2.1 重铬酸钾氧化法原理:重铬酸钾氧化法是一种常用的测定土壤有机碳的方法。
其基本原理是通过将土壤样品中的有机碳在高温下与重铬酸钾反应,使有机物被氧化为二氧化碳。
在这个过程中,还需要加入硫酸作为媒介和硼砂作为指示剂。
重铬酸钾会被还原为Cr3+离子,并伴随着颜色的变化,由橙红色转变为绿色。
颜色的深浅可以通过分光光度法来测定,从而得出土壤样品中有机碳的含量。
2.2 分光光度法介绍:分光光度法是一种常用的分析方法,利用物质对特定波长的吸收或透射来测定其浓度。
对于重铬酸钾氧化-分光光度法来说,我们需要选择合适的检测波长,以实现最佳的灵敏度和准确性。
土壤中总有机碳的测定
土壤中总有机碳的测定土壤中总有机碳的测定是土壤科学研究中的一个重要内容。
有机碳是土壤中的主要组成部分之一,对于土壤的肥力和生态系统的功能起着重要作用。
因此,准确测定土壤中的总有机碳含量对于土壤质量评价、农田管理和环境保护具有重要意义。
一、总有机碳的定义及意义总有机碳是指土壤中所有有机物质中的碳元素的总量。
有机碳是土壤中的有机质的主要组成部分,包括植物残体、动物残体、微生物体和土壤有机质的分解产物等。
土壤中的有机碳含量直接反映了土壤的肥力、保水保肥能力和养分供应能力。
同时,土壤中的有机碳还对气候变化和环境污染具有调节作用。
二、总有机碳的测定方法目前常用的测定土壤总有机碳含量的方法主要有干燥燃烧法、湿热酸化法和光谱法等。
干燥燃烧法是一种常规方法,通过将土壤样品干燥后进行高温燃烧,然后测定燃烧后的残渣中的碳含量来计算土壤中的总有机碳含量。
湿热酸化法则是将土壤样品与浓硫酸和高温下进行反应,使有机碳转化为二氧化碳,然后通过测定二氧化碳来计算土壤中的总有机碳含量。
光谱法则是利用土壤样品中的有机质特有的吸收光谱特征,通过光谱仪器来测定土壤中的总有机碳含量。
三、测定总有机碳的注意事项在进行土壤总有机碳含量的测定时,需要注意以下几点:1.样品的采集:应根据实际需要选择代表性的样品进行采集,避免污染和混杂。
2.样品的处理:样品在采集后应尽快进行处理,避免有机碳的损失和变化。
3.测定方法的选择:应根据实际需要和实验条件选择适合的测定方法,确保测定结果的准确性和可靠性。
4.仪器的校准:在进行测定前,应对仪器进行校准,确保测定结果的准确性。
5.数据的处理:测定结果应进行统计分析和数据处理,以得出准确的总有机碳含量。
四、总有机碳含量的影响因素及调控措施土壤中总有机碳含量受多种因素的影响,包括土壤类型、植被类型、土地利用方式、气候条件等。
为了提高土壤中的总有机碳含量,可以采取以下措施:1.合理施肥:适量施用有机肥和化肥,提高土壤中的有机质含量。
有机碳测定的几种方法
从表3—4 中,可以看出每种氧化还原指示剂都有自己的标准电位(E 0),邻啡罗啉 (E 0=1.11V ),2-羧基代二苯胺(E 0=1.08V ),以上两种氧化还原指示剂的标准电位(E 0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。
例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C 2H 8N 2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下:[(C 2H 8N 2)3Fe]3++e [(C 2H 8N 2)3Fe]2+淡蓝色 红色滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr 3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。
但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终占时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。
从表3-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E 0)分别为0.76V 、0.85V 。
指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。
因此使终点后移,为此,在实际测定过程中加入NaF 或H 3PO 4络合Fe 3+,其反应如下:Fe 3++2PO 43- Fe (PO 4)23-Fe 3++6F - [FeF 6] 3- 加入磷酸等不仅可消除Fe 3+的颜色,而且能使Fe 3+/ Fe 2+体系的电位大大降低,从而使滴定曲线的突跃电位加宽,使二苯胺等指示剂的变色电位进入突跃范围之内。
根据以上各种氧化还原指示剂的性质及滴定终点掌握的难易,推荐应用2-羧基二苯胺。
价格便宜,性能稳定,值得推荐采用。
3.2.1.2主要仪器 油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。
3.2.1.3试剂(1)0.008mol ·L -1(1/6K 2Cr 2O 7)标准溶液。
土壤有机碳及碳组份测定
土壤有机碳及碳组份测定Just be happy, remember on the morning of June 18, 2022①土壤有机碳测定风干土过0.25 mm土壤筛;用重铬酸钾-外加热法测定有机碳含量..②土壤重组和轻组分离取100 g干土重土;分成3等分;分别放入密度为1.70g cm-3的重液中ZnI2和KI 混合溶液;用KOH 溶液调至中性;用手摇动震荡5min;再用超声波400Jml-1震荡3 min;离心机离心;虹吸法取上清液;过滤;重复操作3 次..所得样品用100 mL 0.01 mol L-1CaCl2溶液洗涤;再用200 mL 蒸馏水反复冲洗;得到轻组..剩余部分为重组;用100ml 0.01mol L-1CaCl2溶液洗涤;再用200 mL 蒸馏水反复冲洗..样品回收率均在95%以上..将得到的组分分出一份;过0.25 mm 土壤筛;用重铬酸钾-外加热法测定有机碳含量..③土壤水溶性有机碳测定20g干土重新鲜土放入盛有60 mL 蒸馏水的三角瓶中;常温下震荡浸提30 min;用高速离心机离心;上清液过0.45μm 滤膜;用岛津TOC-V CPH仪测定浸提液有机碳浓度;得到水溶性有机碳..为了避免浓度的差异对特定波长吸收值的影响;先把所有样品的水溶性有机碳的浓度稀释到10mg/L;再用岛津UV-2550 测定250 A250、280 A280、和365 nm A365处吸收值;并计算A250/A365比值..④热水浸提碳的测定10 g干土重新鲜土放入盛有100 mL 蒸馏水的三角瓶中;先震荡10 min;80℃浸提16 h;再震荡10 min;离心后;上清液用0.45 μm 滤膜过滤;用TOC-V CPH仪测定浸提液碳浓度;得到热水浸提碳..⑤土壤微生物量碳测定土壤微生物量碳MBC采用氯仿熏蒸-K2SO4浸提法;熏蒸和未熏蒸的样品分别用0.5 M K2SO4浸提30 min;用岛津TOC-V CPH仪测定浸提液碳浓度..然后;用以下公式计算获得微生物量碳:MBC =Ec/0.38 1-1式中MBC 为微生物量碳;Ec 为熏蒸和未熏蒸样品浸提液测定的有机碳差值..用以下公式计算微生物商:MQ=MBC/TOC 1-2式中MBC 为微生物量碳;MQ 为微生物商;TOC 为土壤总有机碳。
土壤有机碳的测定
土壤有机碳的测定
土壤有机碳的测定方法:
1,经典测定的方法有干烧法(高温电炉灼烧)或湿烧法(重铬酸钾氧化)。
放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
用上述方法测定土壤有机碳时,也包括土壤中各元素态碳及无机碳酸盐。
因此,在测定石灰性土壤有机碳时,必须先除去CaCO3。
除去CaCO3的方法,可以在测定前用亚硫酸处理去除之,或另外测定无机碳和总碳的含量,从全碳结果
中减去无机碳。
干烧法和湿烧法测定CO2的方法均能使土壤有机碳全部分解,不受还原物质的影响,可获得准确的结果,可以作为标准方法校核时用。
由于测定时须要一些
特殊的仪器设备,而且很费时间,所以一般实验室都不用此法。
2,高温电炉灼烧和气相色谱装置相结合制成碳氮自动分析仪。
已应用于土壤分析中,但由于仪器的限制,所以未能被广泛采用。
3,容量分析法。
虽然各种容量法所用的氧化剂及其浓度或具体条件有差异,但其基本原理是相同的。
土壤有机碳(SOC)是表征土壤肥力变化的一个重要指标,它深刻地影响着土壤的物理、化学和生物学性质,是作物高产稳产和农业可持续发展的基础。
土壤、植物有机碳的测定
1—3 土壤/植物有机碳的测定(重铬酸钾容量法)100目过筛1.原理:在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。
其反应式为:重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O硫酸亚铁滴定剩余重铬酸钾的反应:K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O2 试剂2.1重铬酸钾标准溶液:0.8000mol/L,称取经150℃烘干2h的39.2248g重铬酸钾(K2Cr2O7),精确至0.0001g,加400mL水,加热溶解,冷却后,加水稀释至1000mL。
2.20.2mol/L FeSO4标准溶液。
准确称取分析纯硫酸亚铁(FeSO4·7H2O)56g或硫酸亚铁铵[Fe(NH4)2(SO4)2·6H2O]80g,溶解于蒸馏水中,加浓硫酸(H2SO4)5ml,然后加水稀释至1L,此溶液的标准浓度,可以用0.0167mol/L重铬酸钾(K2Cr2O7)标准溶液标定。
标定:吸取10.00mL重铬酸钾标准溶液置于250mL锥形瓶中,加入40mL水和10mL 硫酸,再加3滴~4滴邻菲啰啉指示剂,用硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。
同时做空白试验。
硫酸亚铁铵标准溶液浓度按下式计算:式中:C——硫酸亚铁铵标准溶液浓度,mol/L;C1——重铬酸钾标准溶液浓度,mol/L;V1——重铬酸钾标准溶液体积,mL;V2——硫酸亚铁铵标准溶液用量,mL;V0——空白试验消耗硫酸亚铁铵标准溶液体积,mL。
2.3邻菲啰啉指示剂:称取 1.485g 邻菲啰啉(C12H8N2·H2O)和0.695g 硫酸亚铁(FeSO4·7H2O),溶于100mL水中,形成的红棕色络合物贮于棕色瓶中。
土壤溶解性有机碳组分连续分级测定方法
科技创新导报 Science and Technology Innovation Herald83DOI:10.16660/ki.1674-098X.2018.29.083土壤溶解性有机碳组分连续分级测定方法①臧榕 赵海超*黄智鸿 赵海香 乔赵崇(河北北方学院 河北张家口 075000)摘 要:有机碳是土壤中的重要组分,有机碳组分是影响土壤有机碳活性及生态效应的主要内因。
为更好的揭示有机碳组分对生态环境演变的响应规律,系统的分级土壤有机碳是研究的重点。
该研究为获得土壤有机碳多级浸提方法,在前人研究的基础上选择四种浸提剂,确定浸提时间,并对冀北坝上土壤进行测定。
结果表明,浸提方法为:(1)水溶性有机碳,按照土水质量比1:2加入去离子水,振荡浸提12h,获得低分子量活性有机碳,占总有机碳的1.13%~3.35%;(2)热水解有机碳,残渣加入去离子水,在100℃下水浴2h,获得土壤团聚体表面吸附的有机碳等,占总有机碳2.75%~7.14%;(3)酸解有机碳,残渣加入1mol ·L -1的盐酸,浸提2h,获得富里酸等大分子有机碳,占总有机碳2.11%~7.15%;(4)碱解有机碳,残渣加入0.2mol ·L -1的NaOH,浸提6h,获得胡敏酸等稳定态腐殖质,占总有机碳8.17%~51.07%。
浸提方法能较好反映不同溶解性有机碳组分对土地利用方式的响应。
关键词:土壤 有机碳 溶解性有机碳 连续分级方法中图分类号:S153.6 文献标识码:A 文章编号:1674-098X(2018)10(b)-0083-05A bstract: Organic carbon is an important component in soil, and organic carbon components were the main internal factor affecting soil organic carbon activity and ecological effects. The research of the systematic classif ication of soil organic carbon can be to reveal the response laws of organic carbon components to the evolution of ecological environment. This study had obtained a multi-stage extraction method of soil organic carbon, selected four kinds of extractants based on previous studies to determine the extraction time and determined the soil organic carbon in the Weibei Dam. The results showed that the four extraction methods were followed. (1) To extract water-soluble organic carbon. The deionized water was added to soil according to the mass ratio of soil to water 1:2, and oscillated for 12 h to obtain low molecular weight active organic carbon. It accounted for 1.13%-3.35% of total organic carbon. (2) To obtain thermal hydrolysis of organic carbon. The residue was added to deionized water and heated for 2 h by water bath at 100 °C, and obtained the organic carbon adsorbed on the surface of the soil aggregate. The thermal hydrolysis of organic carbon accounted for 2.75% to 7.14% of the total organic carbon. (3) Fulvic acid and other macromolecular organic carbon (2.11-7.15%) were obtained by acidolysis of organic carbon and adding 1 mol L-1 hydrochloric acid to the residue for 2 h. (4) To obtain alkaliolytic organic carbon. The residue was added with 0.2molL-1 NaOH, and extracted for 6h to obtain stable humus such as humic acid, which accounted for 8.17~51.07% of total organic carbon. The extraction method could better ref lected the response of different dissolved organic carbon components to land use method.Key Words: Soil; Organic carbon; Dissolved organic carbon; Continuous grading method①基金项目:河北北方学院国家级大学生创新创业项目(项目编号:2017003); 河北北方学院卓越农林项目;河北北方学 院博士基金(项目编号:12995543);河北省科技攻关项目(项目编号:13226402D );河北省科技支撑重点项目 (项目编号:13226402D );张家口科技支撑项目(项目编号:1611050C )。
土壤、植物有机碳的测定
1—3 土壤/植物有机碳的测定(重铬酸钾容量法)100目过筛1.原理:在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。
其反应式为:重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O硫酸亚铁滴定剩余重铬酸钾的反应:K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O2 试剂2.1重铬酸钾标准溶液:0.8000mol/L,称取经150℃烘干2h的39.2248g重铬酸钾(K2Cr2O7),精确至0.0001g,加400mL水,加热溶解,冷却后,加水稀释至1000mL。
2.20.2mol/L FeSO4标准溶液。
准确称取分析纯硫酸亚铁(FeSO4·7H2O)56g或硫酸亚铁铵[Fe(NH4)2(SO4)2·6H2O]80g,溶解于蒸馏水中,加浓硫酸(H2SO4)5ml,然后加水稀释至1L,此溶液的标准浓度,可以用0.0167mol/L重铬酸钾(K2Cr2O7)标准溶液标定。
标定:吸取10.00mL重铬酸钾标准溶液置于250mL锥形瓶中,加入40mL水和10mL 硫酸,再加3滴~4滴邻菲啰啉指示剂,用硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。
同时做空白试验。
硫酸亚铁铵标准溶液浓度按下式计算:式中:C——硫酸亚铁铵标准溶液浓度,mol/L;C1——重铬酸钾标准溶液浓度,mol/L;V1——重铬酸钾标准溶液体积,mL;V2——硫酸亚铁铵标准溶液用量,mL;V0——空白试验消耗硫酸亚铁铵标准溶液体积,mL。
2.3邻菲啰啉指示剂:称取 1.485g 邻菲啰啉(C12H8N2·H2O)和0.695g 硫酸亚铁(FeSO4·7H2O),溶于100mL水中,形成的红棕色络合物贮于棕色瓶中。
土壤全碳的测定方法
土壤全碳的测定方法
《土壤全碳的测定方法》
土壤中的有机碳是土壤生态系统的重要组成部分,对于了解土壤的碳循环、评估土壤质量以及推动可持续农业发展具有重要意义。
因此,准确测定土壤中的全碳含量成为土壤科学研究中的一项基础工作。
本文将介绍几种常见的土壤全碳测定方法。
一、干燥燃烧法
该方法是将土壤样品在低温下逐渐干燥,然后通过高温燃烧将有机碳转化为CO2,并使用气体分析仪测定CO2的含量。
该方法操作简单、准确度较高,适用于大量样品快速测定,但需要使用高温炉和气体分析仪。
二、酸碱滴定法
该方法是将土壤样品与酸溶液反应,使有机碳转化为CO2,然后使用酸碱滴定进行测定。
该方法操作简单、成本较低,适用于大规模土壤样品的测定。
但由于酸、碱和滴定剂的浓度和体积的精确控制比较困难,测定结果可能存在一定的误差。
三、连续燃烧法
该方法是将土壤样品连续燃烧,在高温下将有机碳转化为CO2,并通过红外光谱仪或红外探测器进行测定。
该方法测定简便、准确度高,并且对样品处理过程中的氧化物含量不敏感,适用于大规模样品的测定。
四、质谱法
该方法是利用质谱仪对土壤样品进行直接测定,通过质谱仪的碳同位素比值进行判断。
该方法准确度高,但设备价格较高,操作复杂,适用于专业实验室。
以上是几种常见的土壤全碳测定方法,每种方法都有其适用的场景和优缺点。
在实际应用中,可以根据实验目的、样品数量和实验条件等因素进行选择。
同时,为了减少测定误差,还需在每个步骤中严格控制实验条件和质量控制,以确保得到准确可靠的土壤全碳含量数据。
有机碳库测定方法
土壤活性有机碳(1)土壤活性有机碳测定:称量处理过约含15 mg 有机碳的土样,放在塑料瓶(100 ml) 内,用333 mmol/ L KMnO4 溶液25 ml 震荡处理1 h,震荡后离心5min (4 000 r/ min) ,取上清液,用去离子水按1∶250 比例稀释,然后用分光光度计565nm 比色测定,根据KMnO4 浓度的变化计算活性有机碳含量,单位mg C/ g (即每1 g 干土中含活性有机碳量) 。
计算公式碳库指数(CPI) = 农田土壤有机碳/参考农田土壤有机碳;碳库活度(A) = 活性碳/稳态碳;碳库活度指数(AI) = 农田碳库活度/参考土壤碳库活度;碳库管理指数(CPMI) = 碳库指数×碳库活度指数×100 。
(2)土壤易氧化碳含量测定方法为称取含15~30mg 碳的土样置100mL 塑料瓶内,加入浓度为333mmol/ L的KMnO4 溶液25mL 振荡1h (同时进行空白试验) 后,以4000r/ min转速离心5min ,取其上清液用去离子水按1∶250 稀释后于565nm 波长处进行比色(其标准液浓度一定要包括1mgC) ,根据KMnO4 的消耗量求出土壤易氧化碳含量。
(在分光光度计565 nm 下测定稀释样品的吸光率, 由不加土壤的空白与土壤样品的吸光率之差, 计算出高锰酸钾浓度的变化, 并进而计算出氧化的碳量(氧化过程中1 mmol MnO4 -消耗0.75 mmol 或9 mg 碳)。
C 库管理指数( CPMI) 计算式为:CPMI = CPI ×A I ×100 (1)式中, CPI 为C 库指数, A I 为C 库活度指数。
CPI = 样品全C/ 对照土壤全C (2)A I = 样品C 库活度/ 对照土壤C 库活度(3)A = C A / C UA (4)C T = C A + C UA (5)式中, C T 为有机碳, C A 为易氧化碳, C UA为稳态碳。
土壤碳库的研究方法
土壤碳库的研究方法
土壤碳库研究是生态学、土壤学和环境科学中重要的研究领域之一、
土壤碳库研究的目的是了解土壤中的有机碳储量和其在碳循环中的作用。
近年来,随着全球气候变化日益严重,对土壤碳库研究的需求也日益迫切。
以下将介绍一些常用的土壤碳库研究方法。
1.土壤取样和分析:土壤取样是土壤碳库研究的第一步,通常要选取
不同类型的土壤样点。
然后将样品带回实验室进行分析,包括测定土壤有
机碳含量、土壤有机碳组分、土壤颗粒分布情况等。
2.土壤剖面分析:土壤剖面分析可用于了解土壤碳库的垂直分布情况。
常用的方法包括土壤剖面取样和分析,通过分析不同深度的土壤样品的有
机碳含量和组分,进而了解土壤碳在不同土层中的储量和分布情况。
4. 土壤碳动态模型:土壤碳动态模型是模拟土壤碳储量和碳循环过
程的重要工具。
常用的土壤碳动态模型包括RothC模型、DayCent模型等,通过输入不同的土壤环境和管理措施等参数,可以预测土壤碳库的变化情况。
5.土壤微生物分析:土壤微生物在土壤碳循环中起着重要作用。
通过
测定土壤微生物数量、活性和多样性等指标,可以揭示土壤碳库与土壤微
生物之间的相互关系及其对碳循环的影响。
6.土壤生态系统碳平衡测量:通过测量土壤和植被净碳的吸收和排放,可以估算土壤生态系统的碳平衡。
常用的方法包括土壤呼吸测量、土壤碳
捕获和植被碳含量测量等。
总之,土壤碳库研究是一个复杂而综合的领域,需要多种方法的综合运用。
不同的研究方法可以相互补充,从不同的角度揭示土壤碳库的特征和功能,为环境保护和碳循环研究提供重要参考依据。
土壤有机碳组分化学测定方法及碳指数研究进展
Chemical methods to determine soil organic carbon fractions and carbon indexes:A review
ZHANG Fang-fang1,2, YUE Shan-chao1,2*, LI Shi-qing1,2* (1.College of Resources and Environmental Science, Northwest A&F University, Yangling 712100, China; 2.State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, China) Abstract:There are many methods by which to determine the fractions of soil organic carbon, each with specific advantages, disadvantages, and scopes for application. Previous studies were used to comprehensively review the principles, characteristics, and scopes of applying the potassium permanganate, modified Walkley –Black, and acid hydrolysis methods for determining soil organic carbon fractions; these have been used widely in recent years. The advantages and disadvantages of the three methods were emphasized. Improvements in the methods to calculate the carbon management index(CMI)with the development of the organic carbon fraction determination method was described, and the difference in calculating the recalcitrant index(RI) of the recalcitrant soil organic carbon fraction classified by different determination methods was discussed. The citations of the three methods in the recent 19 years(2001—2019)and the citation trend over the recent decade(2010—2019) in CMI and carbon sequestration studies were compared using bibliometric analysis. Given the disadvantages of the three methods and the citation trend in the recent years, the following conclusions can be drawn. First, the potassium permanganate method is suitable for determining the labile soil organic carbon fraction and calculating CMI, and the use of 20 mmol·L-1
土壤有机碳含量测定方法
土壤有机碳含量测定方法
土壤有机碳含量测定方法主要有以下三种:
1. 测定CO2法:将土样中有机碳高温氧化后,测定释放出的CO2的量。
2. 湿烧法:土壤样品中的有机质(碳)与铬酸、磷酸溶液在160℃下进行消煮,氧化有机碳所产生的二氧化碳,被连接在烧瓶上的截流装置中的氢氧化钾所吸收,形成的碳酸盐用氯化钡溶液沉淀之,过量的标准氢氧化钾,以酚酞为指示剂,用标准酸回滴,即可从消耗的标准氢氧化钾量求出土壤有机碳含量。
3. 高温灼烧法:风干土壤样品在燃烧炉中加热至900℃以上,样品中有机碳
被氧化为二氧化碳,产生的二氧化碳用过量的氢氧化钡溶液吸收生成碳酸钡沉淀,反应后剩余的氢氧化钡用草酸标准溶液滴定,由空白滴定和样品滴定消耗的草酸标准溶液的体积差计算二氧化碳产生,根据二氧化碳产生量计算
土壤中的有机碳含量。
以上信息仅供参考,具体方法需要根据实际情况选择。
土壤活性有机碳分组及测定方法
土壤活性有机碳分组及测定方法土壤活性有机碳(SOC)是指土壤中与活性微生物密切相关的有机碳部分,对于评估土壤肥力和健康状况具有重要意义。
根据其活性程度和组成特点,SOC可以分为三个主要组分:可溶性有机碳(SOC-s)、酸解有机碳(SOC-a)和微生物量有机碳(MBC)。
本文将介绍各组分的测定方法以及常用的土壤活性有机碳分组方法。
一、可溶性有机碳(SOC-s)的测定方法可溶性有机碳是指土壤中以溶解态存在的有机碳物质,通常包括有机酸、糖类和氨基酸等。
测定SOC-s的方法主要有以下几种:1.高温燃烧法:将土壤样品在高温下燃烧,燃烧前后样品中的有机碳含量差即为SOC-s。
2.淋洗法:用适量的纯水或稀酸溶液淋洗土壤样品,经过滤、干燥和称重后,计算含量差得到SOC-s。
3.筛选法:利用氨基酸和糖类等可溶性有机物的筛选特性,通过酸水解得到SOC-s。
二、酸解有机碳(SOC-a)的测定方法酸解有机碳是指土壤中通过酸水解方法释放的有机碳,主要包括复合酸解有机碳和可氧化有机碳。
酸解有机碳的测定方法主要有以下几种:1.硫酸热酸解法:将土壤样品与浓硫酸进行加热酸解,然后用稀碱溶液滴定浸提液中的酸,计算酸解有机碳含量。
2.高温燃烧法:将酸解后的土壤样品在高温下燃烧,测定燃烧前后的有机碳含量差值得到SOC-a。
3.辅助酸解法:在硫酸酸解过程中添加助解剂(如氧化剂、还原剂)以增加酸解的效果,进一步提高SOC-a的测定效果。
三、微生物量有机碳(MBC)的测定方法微生物量有机碳是指土壤微生物体内所含的有机碳。
常用的MBC测定方法主要有以下几种:1.直接抑制法:利用苯酚酚灭菌土进行微生物活性抑制,对比土壤样品和抑制土壤样品中有机碳的含量差,计算MBC。
2.溶菌酶法:将土壤样品与溶菌酶溶解后,利用色谱法或荧光法测定溶解液中的有机碳含量,计算MBC。
3.氧耗测定法:在一定条件下,测定土壤样品中微生物对有机物氧化的耗氧量,通过计算耗氧量得到MBC。
森林土壤有机碳分组及其测定方法_胡慧蓉
收稿日期:2009-04-02基金项目:西南地区生物多样性保育国家林业局重点实验室资助作者简介:胡慧蓉(1964-),女,昆明人,博士研究生,副教授,从事森林土壤与肥料工作。
E-mail:hhrxl@ *通讯作者:E-mail:hutx001@森林土壤有机碳分组及其测定方法胡慧蓉1,2,马焕成1,2,罗承德2,胡庭兴2*(1.西南林业大学西南地区生物多样性保育国家林业局重点实验室,云南昆明6502242.四川农业大学林学院,四川雅安625014)摘要:陆地生态系统碳循环在全球碳平衡中占重要地位。
土壤是陆地生态系统的核心,森林土壤有机碳是陆地碳库的重要组成部分,其量随土地利用变化、森林经营管理、自然与人为干扰等影响而呈现较强动态变化。
导致这一现象的原因之一,是由于构成土壤有机碳的不同组分在不同环境条件下有不同的分解响应。
目前,森林土壤有机碳常用的分组研究方法是:化学分组(传统的腐殖质分组研究)、物理分组(对有机碳的密度分组或颗粒分组)和稳定性分组(即有机碳的活性分组)。
研究目的不同,对各组分的概念认识、成分划定不同,导致所采用的分组测定方法,以及研究结果所反映的问题等也不同,使研究内容或测定结果缺乏可比性。
森林土壤有机碳分组方法标准化与各组分的概念统一化;土壤有机碳各组分的组成成分划定;测定各组分的方法标准化与统一化等内容,可能成为土壤有机碳分组研究的工作重点。
关键词:碳循环;土壤有机碳组分;测定方法中图分类号:S151.95文献标识码:A文章编号:0564-3945(2010)04-1018-07Vol.41,No.4Aug.,2010土壤通报Chinese Journal of Soil Science第41卷第4期2010年8月碳是地球生命的重要组成成分。
在漫长的地质时期,植物通过光合作用对碳素的固定是大气中产生氧气的近乎唯一的来源,它决定了整个地球环境的发展趋势,碳循环是生物圈健康发展的重要标志[1]。
土壤活性有机碳的测定
土壤活性有机碳的测定(高锰酸钾氧化法)土壤样品经粘磨过0.5mm筛,根据土壤全有机碳含量,计算含有15mg碳的土壤样品量作为待测样品的称样重,然后将样品转移至50ml带盖的塑料离心管中,以不加土样作为空白。
向离心管中加入25ml浓度为333mmol/L的高锰酸钾溶液,在25℃左右,将离心管振荡(常规震荡即可)1小时,然后在转速2000rpm 下离心5分钟,将上清液用去离子水以1:250倍稀释,吸取1ml上清液转移至250ml容量瓶中,加去离子水至250ml即可。
稀释样品用分光光度计在565纳米处测定吸光值。
配制不同浓度梯度的高锰酸钾的标准溶液,同样于分光光度计上测定吸光值,建立高锰酸钾的浓度和吸光值的线性直线方程,将稀释好的待测样品的吸光值代入方程得到氧化有机碳后剩余高锰酸钾的浓度,同样得到空白的高锰酸钾浓度,前后二者之差即为氧化活性有机碳后高锰酸钾溶液的浓度变化值,根据假设,氧化过程中高锰酸钾浓度变化1mmol/L消耗0.75mM或9mg碳。
其中能被333mmol/L高锰酸钾氧化的碳是活性有机碳,不能被氧化的碳上非活性有机碳。
高锰酸钾标准曲线配制:首先配制0(去离子水)、15、30、60、100、150、300mmol/L的高锰酸钾标准梯度溶液,从每个浓度的标准溶液中吸取1ml标准溶液转移至250ml容量瓶中定容(既稀释250倍),这样能够就得到浓度梯度为0、0.06、0.12、0.24、0.4、0.6、1.0、1.2mmol/L的标准高锰酸钾梯度溶液,然后同样用分光光度计在565纳米处测定吸光值,绘制高锰酸钾的浓度与吸光值间的标准曲线。
注意标准曲线配制过程中尽量避光,以防高锰酸钾氧化消耗,可以将容量瓶套上信封袋以避光,还有容量瓶等一定要清洗干净,以防高锰酸钾氧化杂质而消耗,影响测定结果。
活性有机碳(mg/g) =高锰酸钾浓度变化值×25×250×9称样重×1000。
实验十四土壤有机碳的测定
实验十四土壤有机碳的测定一、实验目的通过实验,要求学生掌握土壤有机碳测定的基本原理和方法。
二、实验意义土壤有机碳(SOC)是评价土壤质量的重要指标,尽管一般只占土壤质量的1~10%,但它却有十分重要的农业生产价值和环境价值。
SOC在调节土壤养分、改善土壤结构及减少环境负面影响方面具有非常重要的作用。
因此,为了保证农业持续发展,维持和提高有机碳的数量和质量是十分必要的。
三、测定原理在一定温度加热条件下,用一定浓度的K2Cr2O7-H2SO4溶液,氧化土壤有机C反应如下:2Cr2O72- + 3C + 16H+ = 4Cr3+ + 3CO2 + 8H2O反应剩余的Cr2O72-,以邻菲罗啉为指示剂,用Fe2+ 标准溶液滴定:Cr2O72- + 6 Fe2+ + 14 H+ = 2 Cr3+ + 6 Fe3+ + 7 H2O由氧化有机C的Cr2O72- 净消耗量计算土壤中有机碳含量,再换算为有机质的量。
由于此法对有机质氧化还不够完全,所以测得的有机质需乘以一个氧化校正系数,方能与经典的重量法的结果一致。
氧化校正系数因测定时氧化剂的浓度,消煮的温度与时间、催化剂的存在与否以及样品中有机质的含量不同而有变化。
常用的外热源法(用油浴、石蜡浴或磷酸浴加热),测得的结果与重量法(干烧法)对比,只能氧化90%左右的有机质,因此测得的结果应乘以氧化校正系数1.1。
土壤中如有Cl- 和Fe2+ 存在,在测定时也能被K2Cr2O7-H2SO4溶液氧化而导致结果偏高,须设法消除其干扰。
在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+)近终点时变为灰绿色。
当Fe2+ 溶液过量半滴时,溶液则变为棕红色,表示颜色已到终点。
四、实验设备电子天平;调温电热板;磨口三角瓶(150 mL);磨口简易空气冷凝管(直径0.9 cm,长19 cm);定时钟;滴定管(25.00 mL);小型日光滴定台。
实验六土壤中有机碳的测定:TOC仪测定法
实验六 土壤中有机碳的测定:TOC仪测定法一、实验目的和要求1. 掌握利用TOC分析仪测定土壤有机碳的方法2. 了解土壤有机碳在环境科学研究的意义二、实验原理广泛分布于地球表面的陆地和水体中的土壤和沉积物中的有机碳包含多种物质,从简单的糖类,到复杂的大分子蛋白质、脂肪和有机酸等。
土壤有机碳在土壤中含量并不高,一般在5%以下。
土壤中有机碳还是土壤形成的主要标志。
土壤有机碳的复杂组成使其具有许多特性,例如,它与重金属离子和水氧化物相结合,既而形成水溶性和不溶性复合体;可以与粘土矿物和颗粒物相结合;吸附各种污染物;吸收和释放植物营养元素;保持土壤水分等。
因此,土壤有机碳对土壤的性质以及各种污染物在土壤中的歉意和转化有很大的影响是环境分析测定的基本项目之一。
此外,在全球气候变化的研究中,碳循环处于一个极其重要的核心地位,而土壤有机碳是全球碳循环的重要组成部分,对于大气二氧化碳的固定或释放有重要影响。
在环境演化研究中,土壤中的有机碳含量是重要的气候替代指标。
因此,准确测定土壤中总有机碳含量具有重要意义。
土壤有机碳的测定过程包括样品氧化合检测两部分。
样品氧化可有干法氧化合湿法氧化,本实验采用干法氧化,即燃烧法。
干烧法是将土壤样品置于炉中通过高温燃烧,使其中的有机碳氧化成CO2,然后通过滴定法、重量法、热量法、分光光度法和气相色谱技术测定CO2量,并最终计算出TOC的含量。
有机质燃烧不充分时可能产生一定量的CO,为将其完全转化成CO2,经常需要借助一些过渡金属,如Pt、Cu、Ir、Ni等的氧化物进行催化氧化。
当燃烧温度过高时,诸如碳酸盐类矿物会发生分解释放出CO2,因此,在测定前,通常需要去除土壤样品中的所有碳酸盐矿物。
三、仪器、试剂和材料1. 仪器及设备TOC仪、天平、分析筛(100目)、烘箱、样品舟(陶瓷舟)2. 主要试剂盐酸溶液(1 M)量取85ml浓盐酸,边搅动边缓慢倒入500ml水中,用水稀释至1000ml,混匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①土壤有机碳测定
风干土过0.25 mm土壤筛,用重铬酸钾-外加热法测定有机碳含量。
②土壤重组和轻组分离
取100 g(干土重)土,分成3等分,分别放入密度为1.70g cm-3的重液中(ZnI
2和KI 混合溶液,用KOH 溶液调至中性),用手摇动震荡5min,再用超声波400Jml-1震荡3 min,离心机离心,虹吸法取上清液,过滤,重复操作3 次。
所得样品用
100 mL 0.01 mol L-1CaCl
2
溶液洗涤,再用200 mL 蒸馏水反复冲洗,得到轻组。
剩余部分为重组,用100ml 0.01mol L-1 CaCl
2
溶液洗涤,再用200 mL 蒸馏水反复冲洗。
样品回收率均在95%以上。
将得到的组分分出一份,过0.25 mm 土壤筛,用重铬酸钾-外加热法测定有机碳含量。
③土壤水溶性有机碳测定
20g(干土重)新鲜土放入盛有60 mL 蒸馏水的三角瓶中,常温下震荡浸提30 min,用高速离心机离心,上清液过0.45μm 滤膜,用岛津TOC-V CPH仪测定浸提液有机碳浓度,得到水溶性有机碳。
为了避免浓度的差异对特定波长吸收值的影响,先把所有样品的水溶性有机碳的浓度稀释到10 mg/L,再用岛津UV-2550 测
定250 (A
250)、280 (A
280
)、和365 nm (A
365
)处吸收值,并计算A
250
/A
365
比值。
④热水浸提碳的测定
10 g(干土重)新鲜土放入盛有100 mL 蒸馏水的三角瓶中,先震荡10 min,80℃浸提16 h,再震荡10 min,离心后,上清液用0.45 μm 滤膜过滤,用TOC-V CPH 仪测定浸提液碳浓度,得到热水浸提碳。
⑤土壤微生物量碳测定
土壤微生物量碳(MBC)采用氯仿熏蒸-K
2SO
4
浸提法,熏蒸和未熏蒸的样品分
别用0.5 M K
2SO
4
浸提30 min,用岛津TOC-V CPH仪测定浸提液碳浓度。
然后,用
以下公式计算获得微生物量碳:
MBC =Ec/0.38 (1-1)
式中MBC 为微生物量碳,Ec 为熏蒸和未熏蒸样品浸提液测定的有机碳差值。
用以下公式计算微生物商:
MQ=MBC/TOC (1-2)
式中MBC 为微生物量碳,MQ 为微生物商,TOC 为土壤总有机碳。