九年级上册数学练习题(答案)

合集下载

九年级上册数学练习册答案 (5)

九年级上册数学练习册答案 (5)

九年级上册数学练习册答案第一章:有理数1.1 有理数的概念与表示答案略1.2 有理数的运算1.有理数的加法和减法–有理数的加法满足交换律、结合律和分配律;–有理数的减法可以转化为加法运算进行计算。

2.有理数的乘法和除法–有理数的乘法满足交换律、结合律和分配律;–有理数的除法可以转化为乘法运算进行计算。

1.3 有理数的大小比较1.有理数的大小比较方法–对于同符号的有理数,绝对值越大表示数值越大;–对于异符号的有理数,绝对值不同的比较绝对值大小。

2.有理数的大小比较练习题:1.比较下列有理数的大小:-3,-5,-4,0,-1,1;2.在数轴上表示出-7/3、-8/3、-9/3三个有理数,并比较它们的大小。

第二章:代数式与方程2.1 代数式1.代数式的概念与性质–代数式由常数和变量通过四则运算符号组成;–代数式可以进行加、减、乘、除等运算。

2.代数式化简的基本方法–同类项合并;–因式分解。

2.2 简单方程1.方程的概念与性质–方程由等号连接的两个代数式组成;–方程称为恒等式当且仅当方程对于任何数都成立。

2.一元一次方程–一元一次方程的定义与解法。

2.3 一元一次方程的应用1.一元一次方程的实际问题–利用一元一次方程解决实际问题的例题。

第三章:相交与平行线3.1 平面与角1.角的概念与性质–角是由两条射线共同起点所围成的图形;–角的比较方法:锐角、直角、钝角。

2.角的计算–利用已知角求未知角的计算方法。

3.2 平行线与相交线1.平行线与相交线的定义与判定条件–两直线平行的条件;–两直线相交的条件。

2.平行线与相交线的性质–平行线与相交线所形成的角的性质;–相交线所形成的邻补角和对顶角的关系。

3.3 平行线与相交线的应用1.解题思路与方法–利用平行线与相交线性质解决几何问题的思路与方法。

2.实际问题–利用平行线与相交线解决实际问题的例题。

第四章:平面中的图形4.1 多边形及其性质1.多边形的定义与性质–多边形是由多条线段组成的封闭图形;–多边形的边数与角数对应关系。

九年级上册数学练习册答案

九年级上册数学练习册答案

九年级上册数学练习册答案【练习一:有理数的运算】1. 计算下列各题:- (-3) + 5 = 2- 7 - (-2) = 9- (-4) × (-5) = 20- 8 ÷ (-2) = -42. 判断下列各题的符号:- -(-3) = 3,符号为正- -(-8) = 8,符号为正- -(-(-5)) = -5,符号为负3. 解决实际问题:- 某商店亏损了200元,又亏损了150元,总共亏损了多少元?答:总共亏损了 200 + 150 = 350元。

【练习二:代数式与整式】1. 化简下列代数式:- 3x + 5x - 7 = 8x - 7- 4y^2 - 3y + 2y - 6 = 4y^2 - y - 62. 根据题目条件,列出代数式:- 若一个数的3倍加上5等于这个数的4倍减去6,列出代数式: 3x + 5 = 4x - 63. 解决实际问题:- 某工厂原计划每月生产100件产品,实际每月生产120件,超产了多少件?答:超产了 120 - 100 = 20件。

【练习三:方程与不等式】1. 解下列一元一次方程:- 3x - 7 = 2x + 4,解得 x = 112. 解下列不等式:- 5 - 2x > 3x - 1,解得 x < 2/53. 解决实际问题:- 某班有40名学生,如果每名学生平均分到5本书,还剩下20本,这个班一共有多少本书?答:这个班一共有40 × 5 + 20 = 220本书。

【练习四:几何图形初步】1. 根据题目条件,计算下列图形的周长和面积:- 一个正方形的边长为4厘米,周长为4 × 4 = 16厘米,面积为4 × 4 = 16平方厘米。

- 一个圆的半径为3厘米,周长为2 × π × 3 ≈ 18.84厘米,面积为π × 3^2 ≈ 28.26平方厘米。

2. 解决实际问题:- 一个长方形的长是宽的2倍,如果长和宽都增加2米,面积增加了24平方米,求原长方形的长和宽。

九年级数学上册同步练习(含答案)

九年级数学上册同步练习(含答案)

22.1.3函数k h x a y ++=2)(的图象与性质(二) 一.选择题1. 将抛物线y =x 2向左平移2个单位得到新的抛物线的解析式是( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)22把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y3. 对称轴是直线x =-3的抛物线是( )A. y =-x 2-3B. y =x 2-3C. y =-12(x +3)2 D. y =12(x -3)2 4. 下列抛物线中,顶点坐标是(-3,0)的抛物线是( )A. y =-3x 2-3B. y =-3x 2+3C. y =-3(x -3)2D. y =-3(x +3)2 5. 抛物线y =-12(x -5)2不经过的象限是( ) A. 一、 二 B. 一、 四 C. 二、 三 D. 三、 四6. 关于抛物线①y =12x 2;②y =-12x 2+1;③y =12(x -2)2,下列结论正确的是( ) A. 顶点相同 B. 对称轴相同 C. 形状相同 D. 都有最高点7. 抛物线y =(x -1)2与y 轴的交点坐标为( )A. (1,0)B. (-1,0)C. (0,-1)D. (0,1) 8对称轴是直线2-=x 的抛物线是( ) A.22+-=x y B.22+=x y C.2)2(21+=x y D.2)2(3-=x y 9对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小10.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个B.2个C.3个D.4个二、填空题11. 抛物线y =-3(x +1)2的开口方向 ,对称轴是 ,顶点坐标是 .12. 抛物线y =-12(x -2)2可以看作是抛物线y =-12x 2向 平移 个单位得到的. 13. 二次函数y =2(x -3)2,当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大.14. 若抛物线y =3(x -1)2的图象上有三点A (-2,y 1),B (1,y 2),C (5,y 3),则y 1、 y 2、 y 3的大小关系为 .15.顶点是)0,2(,且抛物线23x y -=的形状、开口方向都相同的抛物线的解析式为 .16.对称轴为2-=x ,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为 .三.解答题17. 确定列函数图象的开口方向及对称轴、顶点坐标、最大值或最小值.(1)y =2(x +1)2 (2)y =-4(x -5)218.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?19. 如图,抛物线y =a (x +1)2的顶点为A ,与y 轴的负半轴交于点B ,且OB =OA .(1)求抛物线的解析式;(2)若点C (-3,b )在该抛物线上,求S △ABC 的值.20.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A 的横坐标为t(t >4),矩形ABCD 的周长为L 求L 与t 之间函数关系式.22.1.3函数k h x a y ++=2)(的图象与性质(二)一、选择题1.C 2.D 3.C 4.D 5.A 6.C 7.C 8.C 9.C 10.B二、填空题11.向下、1-=x 、(-1,0) 12.右 2 13.3< 3>14.312y y y << 15.2)2(3--=x y 16.2)2(43+=x y 三、解答题17.(1)由y =2(x +1)2 可知,二次项系数为2>0,∴抛物线开口向上,对称轴为直线x=-1,顶点坐标为(-1,0).(2)由y =-4(x -5)2可知,二次项系数为-4<0,∴抛物线开口向下,对称轴为直线x=5,顶点坐标为(5,0).18.根据题意得()22-=x a y , 把(1,-3)代入得3-=a ,所以二次函数解析式为()223--=x y ,因为抛物线的对称轴为直线x=2,抛物线开口向下,所以当x <2时,y 随x 的增大而增大.19.(1)由投影仪得:A (-1,0),B (0,-1),将x=0,y=-1代入抛物线解析式得1-=a :,则抛物线解析式为()12122---=+-=x x x y ; (2)过C 作CD ⊥x 轴,将C (-3,b )代入抛物线解析式得:b=-4,即C (-3,-4), 则S △ABC =S 梯形OBCD -S △ACD -S △AOB =21×3×(4+1)-21×4×2-21×1×1=3. 20.(1)∵OM=ON=4,∴M 点坐标为(4,0),N 点坐标为(0,4),设抛物线解析式为()24-=x a y , 把N (0,4)代入得16a =4,解得41=a , 所以抛物线的解析式为()424144122+-=-=x x x y ; (2)∵点A 的横坐标为t ,∴DM=t -4,∴CD=2DM=2(t -4)=2t -8,把x =t 代入42412+-=x x y 得42412+-=t t y ,∴42412+-=t t AD , ∴821)824241(2)(222-=-++-=+=t t t t CD AD L (t >4).。

九年级上册数学练习题-有答案

九年级上册数学练习题-有答案

九年级上册数学练习题-有答案(总29页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2人教版九年级上册数学测试二次根式一、填空题(每小题2分,共20分)1.中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 。

3.的结果是_____________4.5. 实数a在数轴上的位置如图所示:化简:1______a -=.6. 已知三角形底边的边长是6cm,面积是12cm 2,则此边的高线长 .7.若()2240a c -+-=,则=+-c b a . 8. 计算:20102010)23()23(+-= 9. 已知2310x x -+=,则10.===,……,请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是.二、选择题(每小题3分,共24分)11. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 12. 下列二次根式中,x 的取值范围是2≥x 的是( )线 03A .2-xB .x+2C .x -2D .1x -213. 实数a b c ,,在数轴上的对应点的位置如图所示,式子①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个D.4个14. 下列根式中,是最简二次根式的是( )A. B.D.15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .1122-=+-x x xD .3392-•+=-x x x16.设4a ,小数部分为b ,则1a b-的值为( )A.12-C.12+D. 17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -18.2,则a 的取值范围是( )A.4a ≥B.2a ≤C.24a ≤≤D.2a =或4a =4三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y=﹣112x 2+23x+53.则他将铅球推出的距离是( )m . A .8B .9C .10D .112.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( ) A .4元或6元B .4元C .6元D .8元3.为了响应“足球进校园”的目标,兴义市某学校开展了多场足球比赛.在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式 ℎ=−5t 2+v 0t 表示,其中t(s)表示足球被踢出后经过的时间,v 0(m /s)是足球被踢出时的速度,如果要求足球的最大度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s4.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月5.小杰把班级勤工俭学挣得的班费500元按一年期存入银行,已知年利率为x ,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( ) A .y=500(x+1)2B .y=x 2+500C .y=x 2+500xD .y=x 2+5x6.一个球从地面竖直向上弹起时的速度为8米/秒,经过t 秒时球的高度为h 米,h 和t 满足公式:表示球弹起时的速度,g 表示重力系数,取 g =10 米/秒2) ,则球不低于3米的持续时间是( ) A .0.4 秒B .0.6 秒C .0.8 秒D .1秒7.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 y =−125x 2 ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A.2m B.4m C.10m D.16m8.如图,已知二次函数y=mx2-4mx+3m(m>0)的图像与x轴交于A,B两点,与y轴交于点C,连接AC、BC,若CA平分∠OCB,则m的值为()A.√3B.√2C.√22D.√33二、填空题9.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是m .10.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是m.三、解答题13.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2√6米,此时水位上升了多少米?14.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.15.某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:种 品价 目出厂价(元/吨) 成本价(元/吨)排污处理费甲种生活用纸48002200200(元/吨)每月还需支付设备管理、维护费20000元乙种生活用纸7000﹣10x1600400(元/吨) (1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y 1元和y 2元,分别求出y 1和y 2与x 的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?16.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S .(1)求S 与x 的函数关系式;(2)并求出当AB 的长为多少时,花圃的面积最大,最大值是多少?17.某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当x=40时,y=300;当x=55时,y=150. (1)求y 与x 之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.18.如图,抛物线L :y=ax 2+bx+c 与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案1.C2.C3.C4.D5.A6.A7.B8.D9.310.8√511.√512.15413.解:以点E为原点、EF所在直线为y轴,垂直EF的直线为x轴建立平面直角坐标系根据题意知E(0,0)、A(﹣3,﹣3)、B(3,﹣3)设y=kx2(k<0)将点(3,﹣3)代入,得:k=﹣13x2∴y=﹣13将x=√6代入,得:y=﹣2∴上升了1米.14.(1)解:设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82 答:每套课桌椅的成本为82元(2)解:60×(100﹣82)=1080(元)答:商店获得的利润为1080元15.解:(1)依题意得:y 1=(4800﹣2200﹣200)x ﹣20000=2400x ﹣20000 y 2=(7000﹣10x ﹣1600﹣400)x=﹣10x 2+5000x ;(2)设该月生产乙种生活用纸m 吨,则生产甲种生活用纸(300﹣m )吨,总利润为W 元 依题意得:W=2400(300﹣m )﹣20000﹣10m 2+5000m =720000﹣2400 m ﹣20000﹣10 m 2+5000m =﹣10 m 2+2600 m+700000 ∵W=﹣10(m ﹣130)2+869000. ∵﹣10<0∴当m=130时,W 最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元. 16.(1)解:∵围成中间隔有一道篱笆的长方形花圃 AB=EF=CD=x 米,BC=(24-3x )米 S=(24-3x )x =-3x 2+24x (平方米) ∵x > 0,且 15≥24-3x > 0 ∴3≤x <8S=-3x 2+24x ( 3≤x <8 )(2)解:S=(24-3x )x =-3x 2+24x =-3(x-4)2+48 ∵a=-3<0,二次函数图形开口向下,函数有最大值 当x=4时,S 最大=48平方米∴当AB 长为4m ,宽BC 为12m 时,有最大面积,最大面积为48平方米. 17.(1)解:设y 与x 之间的函数关系式: y =kx +b 由题意得: {40k +b =30055k +b =150 ,解得: {k =−10b =700∴y 与x 之间的函数关系式为: y =−10x +700 (2)解:设利润为 w 元由题意,得 −10x +700≥240 ,解得 x ≤46 则 w =(x −30)(−10x +700) =−10x 2+1000x −21000=−10(x −50)2+4000 ∵−10<0∴x <50 时, w 随 x 的增大而增大 ∴x =46 时答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元 (3)解: w −150=−10x 2+1000x −21000−150=3600 −10(x −50)2=−250 解得: x 1=55 结合二次函数图象可得:当 45≤x ≤55 时,捐款后每天剩余利润不低于3600元 18.(1)解:∵抛物线的对称轴x=1,B (3,0) ∴A (﹣1,0)∵抛物线y=ax 2+bx+c 过点C (0,3) ∴当x=0时,c=3.又∵抛物线y=ax 2+bx+c 过点A (﹣1,0),B (3,0) ∴{a −b +3=09a +3b +3=0 ∴{a =−1b =2∴抛物线的解析式为:y=﹣x 2+2x+3 (2)解:∵C (0,3),B (3,0) ∴直线BC 解析式为y=﹣x+3 ∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4 ∴顶点坐标为(1,4)∵对于直线BC :y=﹣x+1,当x=1时,y=2;将抛物线L 向下平移h 个单位长度 ∴当h=2时,抛物线顶点落在BC 上; 当h=4时,抛物线顶点落在OB 上∴将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界)则2≤h≤4(3)解:设P(m,﹣m2+2m+3),Q(﹣3,n)①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N 点,如图所示:∵B(3,0)∵△PBQ是以点P为直角顶点的等腰直角三角形∴∠BPQ=90°,BP=PQ则∠PMQ=∠BNP=90°,∠MPQ=∠NBP在△PQM和△BPN中∴△PQM≌△BPN(AAS)∴PM=BN∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6∴﹣m2+2m+3+3﹣m=6解得:m=1或m=0∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线于N点同理可得△PQM≌△BPN∴PM=BN∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3则3+m=m2﹣2m﹣3解得m= 3+√332或3−√332.∴P(3+√332,−√33−92)或(3−√332,√33−92).综上可得,符合条件的点P的坐标是(1,4),(0,3),(3+√332,−√33−92)和(3−√332,√33−92).。

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。

九年级上册数学习题带答案

九年级上册数学习题带答案

九年级上册数学习题带答案九年级上册数学习题带答案数学作为一门学科,对于学生来说可能是喜欢的,也可能是让人头疼的。

不管是哪种情况,掌握数学的基础知识和解题技巧都是至关重要的。

在九年级上册的数学课程中,有许多重要的知识点和习题需要我们掌握和练习。

下面我将为大家整理一些九年级上册数学习题,并附上答案,希望能够帮助大家更好地学习和理解数学。

第一章:代数基础1. 计算下列各式的值:(1) 3x + 4y,当x = 2,y = 5时;(2) 5a - 2b,当a = 3,b = 7时。

答案:(1) 3x + 4y = 3*2 + 4*5 = 6 + 20 = 26;(2) 5a - 2b = 5*3 - 2*7 = 15 - 14 = 1。

2. 求下列各式的值:(1) 2x^2 + 3x - 4,当x = 1时;(2) 3a^2 - 4ab + b^2,当a = 2,b = 3时。

答案:(1) 2x^2 + 3x - 4 = 2*1^2 + 3*1 - 4 = 2 + 3 - 4 = 1;(2) 3a^2 - 4ab + b^2 = 3*2^2 - 4*2*3 + 3^2 = 12 - 24 + 9 = -3。

第二章:平面直角坐标系1. 在平面直角坐标系中,已知点A(2, 3),B(-1, 4),求线段AB的长度。

答案:设AB的长度为d,根据两点间距离公式可得:d = √[(x2 - x1)^2 + (y2 - y1)^2]= √[(-1 - 2)^2 + (4 - 3)^2]= √[(-3)^2 + (1)^2]= √[9 + 1]= √10。

2. 在平面直角坐标系中,已知点A(-2, 5),B(3, -1),求线段AB的斜率。

答案:设AB的斜率为k,根据斜率公式可得:k = (y2 - y1) / (x2 - x1)= (-1 - 5) / (3 - (-2))= (-6) / (3 + 2)= -6 / 5。

九年级上学期数学练习册答案【四篇】

九年级上学期数学练习册答案【四篇】

【导语:】以下是为您整理的九年级上学期数学练习册答案【四篇】,欢迎⼤家查阅。

⼆次函数y=a(x-h)2+k的图像和性质第1课时答案 基础知识 1、题⽬略 (1)(0,0);y轴 (2)(0,c);y轴;上;c 2、y=x2-1 3、上1 4、y=2x2+1 5、>;< 6、向上;y轴;(0,-7) 7、题⽬略 (1)抛物线与x轴的交点y=0,则0=-x²+4,解得x=±2,则坐标(-2,0)和(2,0) (2)当-20,当x2,y<0 能⼒提升 8、C 9、D 10、B 11、题⽬略 (1)将原点(0,0)代⼊抛物线⽅程,得2m-m²=0,解得m=0或2 (2)由顶点坐标(0,2m-m²)得2m-m²=-3,解得m=3或-1 12、把(1,-4)代⼊y=ax²-2得a-2=-4,解得a=-2,所以⼆次函数解析式为y=-2x²-2; 当y=0时,-2x²-2=0,即x²+1=0,⽅程⽆实数解,所以⼆次函数的图象与x轴的没有交点,函数的值为-2。

⼆次函数y=a(x-h)2+k的图像和性质第2课时答案 基础知识 1、向下;x=-3;(-3,0) 2、左;3;右;3 3、y=3x²+2;y=3x²-1;y=3(x+1)²; y=3(x-3)² 4、1;向上;x=-1 5、(1,0) 6、A 7、题⽬略 (1)形状相同,开⼝⽅向都向上 (2)y=1/2x²顶点坐标为(0,0),对称轴是y轴 y=1/2(x+2)²顶点坐标为(-2,0),对称轴是x=-2 y=1/2(x-2)²顶点坐标为(2,0),对称轴是x=2 (3)y=1/2(x+2)²是y=1/2x²向左平移2个单位长度得到, y=1/2(x-2)²是y=1/2x²向右平移2个单位长度得到。

九年级上册数学试卷附答案

九年级上册数学试卷附答案

九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。

A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。

答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。

答案:903. 下列各数中,是整数,但不是自然数的是______。

答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。

答案:15. 设集合A={x | x为偶数},则A的元素个数是______。

答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。

2024年九年级上册数学第四单元基础练习题(含答案)

2024年九年级上册数学第四单元基础练习题(含答案)

2024年九年级上册数学第四单元基础练习题(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)2. 下列函数中,哪一个是一次函数?()A. y = 2x^2 + 1B. y = 3x 5C. y = x^3D. y = √x3. 已知等腰三角形的底边长为10cm,腰长为8cm,则该等腰三角形的周长为()A. 26cmB. 24cmC. 22cmD. 20cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. 0.333…5. 下列关于x的不等式中,有解的是()A. x^2 < 0B. x^2 > 0C. x^2 = 0D. x^2 ≠ 06. 一个长方体的长、宽、高分别为a、b、c,若a:b:c=3:2:1,则这个长方体的对角线长度是()A. √(14)B. √(26)C. √(10)D. √(6)7. 下列关于方程的说法,正确的是()A. 一次方程只有一个解B. 二次方程有两个解C. 一次方程和二次方程都有无数个解D. 一次方程和二次方程都没有解8. 已知平行线l1:3x 4y + 7 = 0,l2:3x 4y 5 = 0,则这两条平行线之间的距离是()A. 3B. 4C. 6D. 129. 若a、b是实数,且a≠b,则下列哪个选项一定成立?()A. a^2 > b^2B. a^3 > b^3C. a + b > 0D. a b ≠ 010. 在平面直角坐标系中,点P(3, 4)关于y轴的对称点坐标是()A. (3, 4)B. (3, 4)C. (3, 4)D. (4, 3)二、判断题:1. 任何两个无理数相加都是无理数。

()2. 两个平行线的斜率相等。

()3. 一次函数的图像是一条直线。

()4. 任意两个等腰三角形的面积相等。

()5. 两条平行线之间的距离处处相等。

九年级数学上册《圆周角》练习题含答案

九年级数学上册《圆周角》练习题含答案

九年级数学上册《圆周角》练习题复习巩固1.如图,O是△ABC的外接圆,连接OB,OC,若OB=BC,则∠BAC等于()A.60°B.45°C.30°D.20°2.如图,已知CD是O的直径,过点D的弦DE平行于半径OA,若∠D=50°,则∠C=()A.50°B.40°C.30°D.25°3.如图,四边形ABCD内接于O,若∠C=36°,则∠A的度数为()A.36°B.56°C.72°D.144°4.如图,小华同学设计了一个圆的直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,当测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位5.如图,已知点E是圆O上的点,B,C分别是劣弧AD的三等分点,∠BOC=46°,则∠AED的度数为__________.6.如图,量角器外沿上有A,B两点,它们的读数分别是70°,40°,则∠1的度数为__________.7.如图,点C在O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°).若∠AOB=30°,∠BCA′=40°,则∠α=_________°8.如图,O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是__________.9.如图,已知AB为O的直径,AB=AC,BC交O于点D,AC交O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.能力提升10.如图,以原点O为圆心的圆交x轴于A,B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若∠DA B=20°,则∠OCD=__________.11.如图,正方形ABCD内接于O,P是劣弧AD上任意一点,则∠ABP+∠DCP=__________.12.如图,点A,D,B,C都在O上,OC⊥AB,∠ADC=30°(1)求∠BOC的度数;(2)求证:四边形AOBC是菱形.13.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.参考答案复习巩固1.C 2.D 3.D4.B连接EF,∵∠EOF=90°,∴EF是圆的直径.由勾股定理,得EF=2222OE OF+=+=10.故选B.865.69°∵B,C分别是劣弧AD的三等分点,∠BOC=46°,∴∠AOD=3×46°=138°.∠AOD=69°.∴∠AED=126.15°由题意知,∠AOB=70°-40°=30°.∠AOB=15°.因此∠1=127.110°∵∠BCA′=40°,∴∠BOA′=2∠BCA′=80°.∴∠α=∠AOB+∠BOA′=30°+80°=110°.8.30°如图,延长AO交O于点D,连接CD,则∠D=∠B=60°.∵AD是O的直径,∴∠ACD=90°.∴∠CAO=90°-∠D=30°.9.(1)解:如图,连接AD.∵AB为O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴∠BAD =∠CAD =22.5°. ∴∠EBC =∠CAD =22.5°. (2)证明:∵AB =AC ,AD ⊥BC , ∴BD =CD .能力提升10.65° 设O 交y 轴的负半轴于点E ,连接AE ,则∠OCD=∠DAE =∠DAB +∠BAE .∵∠EOB =90°, ∴∠BAE =12∠EOB =12×90°=45°. ∴∠OCD =20°+45°=65°.11.45° 连接AO ,DO ,则∠AOD =90°,所以AD 的度数为90°, 即AP 与DP 的度数之和为90°. 故∠ABP +∠DCP =45°.12.(1)解:∵点A ,D ,B ,C 都在O 上,OC ⊥AB ,∴AC BC =. ∵∠ADC =30°,∴∠BOC =∠AOC =2∠ADC =60°. (2)证明:由(1)得AC BC =, ∴AC =BC .又∵CO =BO ,∠BOC =60°,∴△BOC 为等边三角形.∴BC =BO =CO .∴AO =BO =AC =BC . ∴四边形AOBC 是菱形.13.证法一:(1)如图①,连接DF .图①∵∠ACB =90°,D 是AB 的中点, ∴BD =DC =12AB . ∵DC 是O 的直径,∴DF ⊥BC .∴BF =FC ,即F 是BC 的中点. (2)∵D ,F 分别是AB ,BC 的中点, ∴DF ∥AC ,∠A =∠BDF . ∵∠BDF =∠GEF , ∴∠A =∠GEF .图②证法二:(1)如图②,连接DF ,DE . ∵DC 是O 的直径,∴∠DEC =∠DFC =90°. ∵∠ECF =90°,∴四边形DECF 是矩形.∴EF =C D ,DF =EC .∵D是AB的中点,∠ACB=90°,∴EF=CD=BD=12 AB.∴Rt△DBF≌Rt△EFC(HL).故BF=FC,即F是BC的中点.(2)∵△DBF≌△EFC,∴∠BDF=∠FEC,∠B=∠EFC.∵∠ACB=90°,(也可证AB∥EF,得∠A=∠FEC)∴∠A=∠FEC.∵∠FEG=∠BDF,由(1)可知DF∥AC,∴∠A=∠BDF.∴∠A=∠GEF.。

九年级数学上册《中心对称》练习题及答案解析

九年级数学上册《中心对称》练习题及答案解析

九年级数学上册《中心对称》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.将一张圆形纸片对折再对折,得到如下左图,然后沿着虚线剪开,得到两部分.其中一部分展开后的平面图形是()A.B.C.D.2.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形BC ,BC边上的高为4,则图中阴影部分的面3.如图,在平行四边形ABCD中,AC,BD为对角线,6积为()A.3B.6C.12D.244.成中心对称的两个图形,下列说法正确的是()①一定形状相同;②大小可能不等;③对称中心必在图形上;④对称中心可能只在一个图形上;⑤对称中心必在对应点的连线上.A .①③B .③④C .④⑤D .①⑤5.如图,点A 是反比例函数()20=>y x x 的图象上任意一点,AB x ∥轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C ,D 在x 轴上,则ABCD S 为( )A .6B .5C .4D .36.如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12 B C D二、填空题7.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.8.在平面内,相交的两条直线是中心对称图形,它的对称中心是________.9.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,△BAC =90°,则AE 的长是_________.10.在Rt ABC 中,90ACB ∠=︒,8AC =,6BC =,D 是AB 中点,点F 在射线AC 上,连接DF ,将ADF 沿DF 翻折,点A 对应点为点G ,当DG AC ⊥时,线段AG 的长为______.11.如图,在菱形ABCD 中,AB =6,60ABC ∠=︒,AC 与BD 交于点O ,点N 在AC 上且AN =2,点M 在BC 上且BM =23BC ,P 为对角线BD 上一点,则PM ﹣PN 的最大值为____.12.如图,在平面直角坐标系中,等边ABC 与等边BDE 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE 的边长为12,则点C 的坐标为_________.三、解答题13.请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).14.如图,已知ABC 和A B C ''''''△ 及点O .(1)画出ABC 关于点O 对称的;(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.15.已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是_________;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示).16.全等三角形知识结构图17.在平面直角坐标系中,(),P a b 是第一象限内一点,给出如下定义:1a k b =和2k b a=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点()6,2P 的“倾斜系数”k 的值;(2)△若点(),P a b 的“倾斜系数”2k =,请写出a 和b 的数量关系,并说明理由;△若点(),P a b 的“倾斜系数”2k =,且3a b +=,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y x =运动,(),P a b 是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <a 的取值范围.参考答案与解析:1.C【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可根据折痕形成的对角线特点进行判定.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直平分.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力,以及菱形的判定.掌握“对角线互相垂直平分的四边形是菱形”是解题关键.2.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C【分析】由题意,图中阴影部分的每一块都与非阴影部分的某一块关于平行四边形的中心对称,所以可以由中心对称图形的性质得到解答.【详解】由题意,图中阴影部分的每一块关于平行四边形的中心对称图形都在平行四边形上,且都是非阴影的部分,所以由中心对称图形的性质可得:所求的面积=116412 22ABCDS=⨯⨯=.故选C.【点睛】本题考查中心对称图形的判定和性质,掌握中心对称图形的性质是解题关键.4.D【分析】根据成中心对称的图形的性质,对各小题分析判断后利用排除法求解.【详解】△成中心对称的两个图形能够完全重合,所以一定形状相同,故本小题正确;△成中心对称的两个图形能够完全重合,所以大小一定相等,故本小题错误;△对称中心不一定在图形上,故本小题错误;△对称中心不一定在任何一个图形上,故本小题错误;△对称中心为对应点连线的中点,所以必在对应点的连线上,故本小题正确.综上所述:正确的有△△.故选D.【点睛】本题考查了中心对称,是基本概念题,熟练掌握成中心对称图形的性质是解题的关键.5.B【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【详解】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x得,b=2x,则x=2b,即A的横坐标是2b;把y =b 代入y =-3x 得,b =-3x ,则x =3b ,B 的横坐标是:-3b. 则AB =2b -(-3b)=5b . 则S ▱ABCD =5b×b =5. 故选:B .【点睛】本题考查了是反比例函数与平行四边形的综合题,理解A 、B 的纵坐标是同一个值,表示出AB 的长度是关键.6.C【分析】连接DB ,AC ,OE ,利用对称得出OE =EB ,进而利用全等三角形的判定和性质得出OC =BC ,进而解答即可.【详解】解:连接DB ,AC ,OE ,△四边形ABCD 是矩形,△AC =DB ,△ABC =90°,OC =OA =OB =OD ,△点B 与点O 关于CE 对称,△OE =EB ,△OEC =△BEC ,在△COE 与△CBE 中,OE BE OEC BEC CE CE =⎧⎪∠=∠⎨⎪=⎩,△△COE△△CBE (SAS ),△OC =CB ,△AC =2BC ,△△ABC =90°,△AB,即CB :AB故选:C .【点睛】此题考查中心对称,全等三角形的性质与判定,矩形的性质,和勾股定理,利用对称得出OE=EB 是解题的关键.7.110º【分析】先根据等腰三角形的性质求出△ABC的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出△2+△ABE=180º,代入求解即可.【详解】解:△ABC是等腰三角形,△A=120º,△△ABC=△C=(180º-△A)÷2=30º,△四边形ODEF是平行四边形,△OF∥DE,△△2+△ABE=180º,即△2+30º+40º=180º,△△2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.8.两条直线的交点【分析】根据中心对称图形定义,我们可知图形绕交点旋转180°后,仍然能与原图形重合,所以两条直线的交点即为图形的对称中心.【详解】解:△两条相交直线绕他们的交点旋转180°后,仍能与原图形重合△两直线的交点就是图形的对称中心.故答案为:两条直线的交点.9.【分析】根据中心对称的性质AD=DE及△D=90゜,由勾股定理即可求得AE的长.【详解】△△DEC与△ABC关于点C成中心对称,△△ABC△△DEC,△AB=DE=2,AC=DC=1,△D=△BAC=90°,△AD=2,△△D=90°,△AE故答案为【点睛】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.10.【分析】由勾股定理求得AB 的长,延长GD 交AC 于E ,则DE △BC ,DE 是△ABC 的中位线,可得AE 、DE 、DG 的长,再由勾股定理解Rt △AGE 即可解答;【详解】解:由题意作图如下,延长GD 交AC 于E ,·Rt △ABC 中,由勾股定理得:AB 10=,△GE △AC ,BC △AC ,△DE △BC ,△D 是AB 中点,△DE 是△ABC 的中位线,△DE =12BC =3,AE =12AC =4,由折叠性质可得:DG =AD =12AB =5,Rt △AGE 中,EG =ED +DG =8,由勾股定理得:AG=故答案为:【点睛】本题考查了勾股定理,三角形的中位线,折叠的性质,正确作出辅助线是解题关键.11.2【分析】作点N 关于BD 的对称点N ',连接,MN PN '',从而可得PM PN PM PN MN ''-=-≤,再根据菱形的性质、等边三角形的判定证出CMN '△是等边三角形,然后根据等边三角形的性质可得2MN '=,由此即可得. 【详解】解:四边形ABCD 是菱形,6AB =, 6AB BC ∴==,OA OC =,AC BD ⊥,60ABC ∠=︒,ABC ∴是等边三角形,6,60AC AB ACB ∴==∠=︒,3OA OC ∴==,2AN =,1ON ∴=,如图,作点N 关于BD 的对称点N ',连接,MN PN '',则1,ON ON PN PN ''===,2,CN OC ON PM PN PM PN MN ''''∴=-=-=-≤,当且仅当,,P N M '共线时,等号成立, 23BM BC =,6BC =, 123CM BC ∴==, CMN '∴是等边三角形,2MN CM '∴==,即PM PN -的最大值为2,故答案为:2.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、轴对称的性质等知识点,熟练掌握菱形的性质是解题关键.12.(4,【分析】作CF △AB 于F ,根据位似图形的性质得到BC △DE ,根据相似三角形的性质求出OA 、AB ,根据等边三角形的性质计算,得到答案.【详解】解:作CF △AB 于F ,△等边△ABC与等边△BDE是以原点为位似中心的位似图形,△BC△DE,△△OBC△△ODE,△BC OB DE OD=,△△ABC与△BDE的相似比为13,等边△BDE边长为12,△1, 12123==+BC OBOB解得,BC=4,OB=6,△OA=2,AB=BC=4,△CA=CB,CF△AB,△AF=2,由勾股定理得,CF△OF=OA+AF=2+2=4,△点C的坐标为(4,故答案为:(4,.【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键.13.见解析【详解】试题分析:根据平行四边形的性质,过平行四边形中心的直线把平行四边形分成面积相等的两部分;根据圆的性质,过圆心的直线把圆分成面积相等的两部分,所以过平行四边形的中心与圆心的直线就是所要求作的直线.所以过平行四版型的中心和圆心的直线就是所求做的直线.解:如图所示.点睛:本题考查了中心对称图形的性质,熟悉过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.14.(1)见解析(2)见解析【分析】(1)连接三角形的各顶点与O 的连线,并延长相同长度,找到对应点,顺次连接.(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点O 就是对称点.(1)(2)【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.15.(1)BF =CF(2)成立;理由见解析 (3)62m PD =-或PD =0或62m PD =-【分析】(1)连接AF ,先根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.(1)解:BF =CF ;理由如下:连接AF ,如图所示:根据旋转可知,90DAE α∠==︒,AE =AD ,△△BAC =90°,△90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌(SAS ),△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .故答案为:BF =CF .(2)成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD ,△BAC α∠=,△EAC CAD α∠-∠=,BAD CAD α∠-∠=,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌,△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .(3)△60α=︒,AB =AC ,△△ABC 为等边三角形,△60ABC ACB BAC ∠=∠=∠=︒,AB AC BC ===,当60BAD ∠︒<时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, △1302BAF CAF BAC ∠=∠=∠=︒,△AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:△60DAE ∠=︒,AE AD =,△△ADE 为等边三角形,△△ADE =60°,△9030ADB BAC ∠=︒-∠=︒,△603090ADE ∠=︒+︒=︒,△此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌,△1302BAF CAF BAC ∠=∠=∠=︒,△AB =tan tan30BFBAF AB ∴∠=︒=,即tan304BF AB =⨯︒==,4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,△906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 16.见解析 【详解】17.(1)3(2)△a -2b 或b =2a,△OP (3)a>【分析】(1)直接由“倾斜系数”定义求解即可;(2)△由点(),P a b 的“倾斜系数”2k =,由a b =2或b a =2求解即可;△由a =2b 或b =2a ,又因a +b =3,求出a 、b 值,即可得点P 坐标,从而由勾股定理可求解;(3)当点P 与点D 重合时,且ka 有最小临界值,此时,b a 2a a+a ;当点P 与B 点重合,且ka 有最大临界值,此时,ab =2a a =-a得k <a 的取值范围.(1) 解:由题意,得632=,2163=, △3>13,△点()6,2P 的“倾斜系数”k =3;(2)解:△a =2b 或b =2a ,△点(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b ; 当ba =2时,则b =2a ,△a =2b 或b =2a ;△△(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b△3a b +=,△2b +b =3,△b =1,△a =2,△P (2,1),△OP= 当ba =2时,则b =2a ,△3a b +=,△a +2a =3,△a=1,△b=2,△P(1,2)△OP=综上,OP(3)解:由题意知,当点P与点D重合时,且ka有最小临界值,如图,连接OD,延长DA交x轴于E,此时,ba则2 aa+=解得:a;△k<则1a>;当点P与B点重合,且ka有最大临界值,如图,连接OB,延长CB交x轴于F,此时,a b =则2a a - 解得:a△k <则3a >综上,若P 的“倾斜系数”k <a>【点睛】本题考查新定义,正方形的性质,正比例函数性质,解题的关键是:(1)(2)问理解新定义,(3)问求临界值.。

九年级数学上册练习册答案(共10篇)

九年级数学上册练习册答案(共10篇)

九年级数学上册练习册答案(共10篇)九年级数学上册练习册答案(一): 九年级数学上册配套练习册答案我不会延长等腰三角形abc的腰ba和ca分别到点d,e使ad=ab,ae=ac,b,c,d,e.试判定四边形bcde的形状,并证明你的结论请采纳答案,支持我一下.九年级数学上册练习册答案(二): 九年级上册语文/数学配套练习册答案(山东出版总社)【九年级数学上册练习册答案】gergser43534九年级数学上册练习册答案(三): 九年级上册数学人教版拓展题目求九年级上册数学一本练习册:重点、难点、拓展题目,最好比较难的求书名~~!!![最重要是拓展题,难点的无所谓,只要有解析]←最好再发个题目上来我看看谢谢了五年中考三年模拟!非常好用哦或者是启东作业本也不错举例一题阅读材料,材料:我们知道,若(x-a)(x-b)=0.则x1=a,x2=b若(x-a)(x-b)(x-c)=0,则x1=a,x2=b,x3=c,依此类推,若(x-p1)(x-p2)(x-p3).(x-n)=0,则x1=p1,x2=p2,x3=p3.xn=pn(1)若方程x(x+1)(x-3/2)=0,则x的值是A x1=0 x2=-1 x3=3/2B x1=0 x2=1 x3= -3/2C x1=0 x2=-1 x3=-3/2D x1=0 x2=1 x3=3/2(2)仿照材料的解法,请你试着解方程:x -3x -10x=0九年级数学上册练习册答案(四): 人教版九年级上册数学复习题22的答案设甬道的宽为x米两条纵向甬道面积=2*80*x=160x等腰梯形中位线=(上底+下底)/2=(100+180)/2=140横向甬道=中位线*高=140x甬道的面积=160x+140x-2x*x=300x-2x^2等腰梯形总面积=140*80甬道的面积是花坛的总面积的六分之一则6*(300x-2x^2)=140*80-(300x-2x^2)x^2-150x+800=0解得x=75-5√193 ≈5.5米九年级数学上册练习册答案(五): 九年级上册数学一元二次方程27页练习题答案2.(1)4个完全相同的正方形的面积之和是25,求正方形的边长(2)一个长方形的长比宽多2,面积是100,求长方形的长X?(3)把长为1的木条分成两段,是较短一段的长与全长的积,等于较长一段的长的平方,秀较短一段的长X设正方形的边长为a.则面积为axa=a^2四个面积=4a^2=25 a^2=25/4 a=5/2(a大于0) a=2.5设长方形的长为x .那么宽就为x-2长方形面积为长乘宽x(x-2)=100 x^2-2x-100=0 x^2-2x+1=101 (x-1)^2=101x-1=根101(x大于0)x-1=根101 x=根101+1设较短一段的长为x,较长一段的长就等于1-xx乘以1=(1-x)^2 x=(1-x)^2 x=1-2x+x^2x^2-3x+1=0 x^2-3x+9/4-5/4=0 x^2-3x+9/4=5/4 (x-3/2)^2=5/4x-3/2=(根5)/2 或-(根5)/2 x=(根5+3)/2或 x=(-根5+3)/2由于x小于1,又大于0,所以x=(3-根5)/2九年级数学上册练习册答案(六): 九年级数学一单元的题有答案的!九年级上册数学都可以的!【九年级数学上册练习册答案】九年级(上)单元测试卷第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分,共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE.其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A、2B、3C、4D、5(第2题图) (第4题图) (第5题图)6、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是()7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm8、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图) (第9题图) (第10题图)10、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则ABC的大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分,共15分)11、如果等腰三角形的一个底角是80°,那么顶角是度.12、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件 .(第12题图) (第13题图) (第15题图)13、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C= °.14、在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是度.15、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于D点,则∠BCD的度数为 .三、解答题:(共75分,其中16、17题每题6分;18、19题每题7分;20、21题每题8分;22题10分,23题11分,24题12分)16、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC17、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.18、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.19、已知D是Rt△ABC斜边AC的中点,DE⊥AC交BC于E,且∠EAB∶∠BAC=2∶5,求∠ACB的度数.20、已知:如图,AB=AC,CE⊥AB于E,BD⊥AC于D,求证:BD=CE.21、已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE = CD.求证:BD = DE.22、(10分)已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.23、(11分)阅读下题及其证明已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确若正确,请写出每一步推理根据;若不正确,请指出错在哪一步并写出你认为正确的推理过程.24、(12分)如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)汇智教育九年级第一单元证明(二)测试卷答案一.选择题1.D 2.A 3.C 4.D 5.C 6.A 7.B 8.B 9.B 10.B二填空题11.2012.∠B=∠E 或∠A=∠D 或 AC=FD13.2014.9015.1016:在17:在又18:又在19:设即则20::解21:证明:22:证明:23:错误由边边角得不出三角形全等正确的过程为:24:(1) 易证则(2)九年级数学上册练习册答案(七): 九年级数学拓展二练习册P35-38答案1、[格言] 征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验.2、[格言] 莫找借口失败,只找理由成功.(不为失败找理由,要为成功找方法)3、[格言] 大学不仅仅是为了解决现实社会问题和适应当前社会需求而设立的,大学还有它更为重要的任务,它传授的是一代又一代学生一生需要的最基本、最重要的思想、知识和方法,他要探求人类最有普遍意义和恒久价值的真理和学理,它更多地关注“应当怎样”和理想培养,而不是实际的操作和现实的受协方案.4、[名言警句] 成功=艰苦的劳动+正确的方法+少谈空话.——爱因斯坦5、[名言警句] 所有的人都以快乐幸福作为他们的目的;没有例外,不论他们所使用的方法是如何不同,大家都在朝着这同一目标前进.——帕斯卡6、[名言警句] 成功=艰苦劳动+正确的方法+少说空话.——爱因斯坦7、[名言警句] 完成工作的方法是爱惜每一分钟.——达尔文8、[名言警句] 你可以从别人那里得来思想,你的思想方法,即熔铸思想的模子却必须是你自己的.——拉姆9、[名言警句] 读书之法,在循序而渐进,熟读而精思.——朱熹10、[名言警句] 学习知识要善于思考,思考,再思.我就是靠这个方法成为科学家的.——爱因斯坦11、[名言警句] 知识本身并没有告诉人们怎样运用它,运用的方法乃在书本之外.——培根12、[名言警句] 成功=艰苦劳动+正确方法+少说空话——爱因斯坦九年级数学上册练习册答案(八): 数学九年级上册复习题22第12题答案一个小球以5m/s的速度开始向前滚动,并且均匀减速,4/s后小球停止运动(1)平均每秒小球的滚动速度减少多少(2)小球滚动到5m约用了多少时间(结果保留小数点后一位)每秒减少5/4=1.25m/s.设滚动到5m时间为t,则此时速度为5-1.25t,两者平均速度为(5+5-1.25t)/2,则可得方程(5+5-1.25t)/2*t=5,解得t=4-2√2,约等于1.2.希望对你有所帮助.九年级数学上册练习册答案(九): 九年级上册数学关于圆的练习题已知⊙O的半径为2cm.弦长AB=2根号3cm,则这条弦的中点,到弦所对的劣弧的中点的距离为().半径为5cm的圆中,圆心到6cm长的弦的距离是-----.弓形的弦长24cm,弓形高8cm,则弓形所在圆的直径长为-----弦心距=√{2^2-[(2√3)/2]^2}=1x=2+1=3(优弧)2*2-3=1(劣弧)圆心O、弦左端点A、弦右端点B、劣弧中点C连接OA、OB则OA=2连接OC交AB于P则∠AOC=∠BOC,易得△OPA≡△OPB.于是OC垂分AB、P即AB中点求得OP=1所求即为PC,距离1厘米2.过圆心O向弦AB作垂线,垂足为c,则oc为圆心到ab的距离连接ao,bo,三角形aob为等腰三角形,aoc为直角三角形由勾股定理得oc^2=5^2-3^2所以oc=43,弓形的弦长24cm,弓形高8cm,则弓形所在圆的直径长为----,26九年级数学上册练习册答案(十): 人教版九年级数学上册复习题21的8题怎么做好吧,说下题:电流通过导线是会产生热量,设电流是I(安培),导线电阻为R(欧姆),t秒产生的热量为Q(焦),根据物理公式Q=I方Rt.如果导线的电阻为5欧姆,1秒时间导线产生30焦的热量,求电流的值(精确到0.01安培). I=(30÷5)开方≈2.45。

九年级上册数学同步练习含答案大全

九年级上册数学同步练习含答案大全

九年级上册数学同步练习含答案大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

下面是小编为大家整理的关于九年级上册数学同步练习含答案,希望对您有所帮助!九年级数学第21章同步测试题与答案二次根式(第二课时)随堂检测1、化简| -2|+ 的结果是( )A.4-2B.0C.2D.42、下列各式中,一定能成立的是( )A. B.C. D.3、已知x<y,化简 p="" 为_______.4、若,则 _________;若,则 ________.5、当时,求|2- |的值是多少?典例分析有一道练习题是:对于式子先化简,后求值.其中 .小明的解法如下: = = = = .小明的解法对吗?如果不对,请改正.分析:本题中有一个隐含条件,即,并由此应将化简为 .对这个隐含条件的敏感度是正确解决问题的关键.解:小明的解法对不对.改正如下:由题意得,,∴应有 .∴ = = = = .课下作业拓展提高1、当-1< <1时,化简得( )A.2B.-2C.2D.-22、计算 =_______.3、观察下列各式:请你将发现的规律用含自然数n(n≥1)的等式表示出来 .4、把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3) (4)x(x≥0)5、在实数范围内分解下列因式:(1) (2) (3)6、已知实数满足,求的值是多少?体验中考1、(2009年,长沙)已知实数在数轴上的位置如图所示,则化简的结果为( )A.1B.-1C.D.(注意:由图可知,我们可以直接利用这个结论解题.)2、(2008年,广州)实数在数轴上的位置如图所示,化简 .(提示:由图可知,可以选择利用和解题.)参考答案:随堂检测1、A. ∵ 有意义,∴ ,∴原式= ,故选A.2、A. ∵只有A选项不含代数字母,等式总成立.故选A.3、0. ∵x4、,∵当时,由得 ;当时,由得,即 .5、解:当时, , ,∴|2- |=|2- |=| |= .课下作业拓展提高1、A. ∵当-1< <1时,∴ , ,∴ ,故选A.2、可以直接利用 ( )的结论解题. = .3、 = .4、解:(1)5=( )2 (2)3.4=( )2(3) =( )2 (4)x=( )2(x≥0).5、解:(1)(2)(3)6、解:∵实数满足,∴ ,∴ ,∴ ,∴由可得:,化简得:,∴ ,∴ .体验中考1、A 由题图可知,∴ ,∴原式= ,故选A.2、由图可知,∴原式= .九年级上册数学练习带答案一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙O内D. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6B.0.75C.0.8D.3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN‖BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是A.外离B.外切C.内切D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2B.y=-(x+1)2-1C.y=-x2+x-5D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .10.在反比例函数y= 中,当x>0时,y 随x的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.三、解答题(本题共30分, 每小题5分)13. 计算:cos245°-2tan45°+tan30°- sin60°.14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.求证:△ABC的面积S△ABC= bcsinA.17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD 于点G,延长AG交BC于点F. 求证:AB2=BF•BC.18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).(1)求 a 的'值;(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.(1)画出与四边形ABCD关于直线CD对称的图形;(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.(1)从口袋中随机摸出一一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).(1)求函数y2的解析式;(2)在同一直角坐标系中,画出函数y1和y2的图象草图;(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y122. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.(1)求⊙O1、⊙O2的半径r1、r2的长;(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.(1)判断直线BP与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?(3)点M能是AB边上任意一点吗?请求出AM的取值范围.25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、 ACCB DABB二、 9. :1 10. k< -1 11. , 12.三、13. 原式= -2+ - ×= -2 + - ……………………………………4分= -3+ ……………………………………………………5分14. 作AE⊥BC于E,交MQ于F.由题意,BC×AE=9cm2 , BC=6cm.∴AE=3cm. ……………………………1分设MQ= xcm,∵MQ‖BC,∴△AMQ∽△ABC. ……………………2分∴ . ……………………3分又∵EF=MN=MQ,∴AF=3-x.∴ . ……………………………………4分解得 x=2.答:正方形的边长是2cm. …………………………5分15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分又∵在Rt△ACD中,∠D=25°,=tan∠D, ……………………………3分∴CD= ≈ ≈12.8(米).答:调整后的楼梯所占地面CD长约为12.8米. (5)分16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分∵ 不论点D落在射线AB的什么位置,在Rt△ACD中,都有CD=ACsinA. …………………4分又∵AC=b,AB=c,∴ S△ABC= AB×A九年级数学上册练习题及答案一选择题:1、下列命题中的真命题是、A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形第2题图2、如右图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cmB.3cm C.23cm D.25cm3、如图,BD是⊙O的直径,∠CBD=30?,则∠A的度数.A、30?B、45?C、60?D、75?、已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是 A.ac<0B、b-4ac<0C、 b>0D、 a>0,b<0,c>05、抛物线y= x 向左平移8个单位,再向下平移个单位后,所得抛物线的表达式是A、 y=2-B、 y=2+C、 y=2-D、y=2+96. 如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是2第3题图第4题图7、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为 x,则下面所列方程中正确的是A、2892=25B、2562=289C、289=25D、256=2898、如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切、若点A 的坐标为,则圆心M的坐标为A、B、C、D、9.若点A的坐标为O为坐标原点,将OA绕点O按顺时针方向旋转90得到OA′,则点A′的坐标是A、B、C、D、10、下列各点中,在函数y=-6x 图像上的是12A、B、C、D、11.抛物线y=x?2x?3与坐标轴交点为A.二个交点 B.一个交点C.无交点D.三个交点12.关于x的一元二次方程x2+x+m+1=0有两个相等的实数根,则m的值是A、0B、C、422D、 0或二、填空题:13 、使x的取值范围是、 A DB E D14、将二次函数y=x2-4x+5化为y=2+k的形式,则15 、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落 CC 在D′,C′的位置.若∠EFB=65,则∠AED′等于16、菱形OABC在平面直角坐标系中的位置如图所示, ?AOC?45,OC?B的坐标为.17、如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠A ED的正切值等于、三、解答题:18、解方程:2 x+6x-11=019、如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A,B,C、、画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标; 、画出△ABC绕原点O顺时针方向旋转90后得到的△A2B2C2,并写出点C2的坐标;,第16B A C第17题图将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3,在坐标系中画出△ A3B3C3,并写出点A3的坐标。

九年级上册数学练习册答案 (2)

九年级上册数学练习册答案 (2)

九年级上册数学练习册答案第一章:有理数1. 能力提升题1.由1可知,有理数包括整数和分数。

2.由2可知,-10是有理数。

3.由3可知,3/4是有理数。

4.由4可知,-5是有理数。

2. 选择题1.A2.B3.C4.D3. 计算题1.0.5的相反数是-0.5。

2.5/8的倒数是8/5。

3.-1.2的绝对值是1.2。

第二章:代数式与方程1. 能力提升题1.设袋子中黑球的个数为x,则总共球的个数为2x+12,根据题意可以得到方程2/5 = x/(2x+12),解方程可得x=12。

2.设一个数为x,则另一个数为x+1,根据题意可以得到方程(x+1)/(x+9) = 5/8,解方程可得x=1。

3.设梯形的两个底边长度分别为x和x+2,根据题意可以得到方程(2x+8)/(x+7) = 5/4,解方程可得x=2。

2. 选择题1.C2.B3.D3. 计算题1.根据题意可以列方程:x+5=20,解得x=15。

2.根据题意可以列方程:2(x+3)=10,解得x=2。

第三章:图形的认识1. 能力提升题1.正方形的边长为x,则周长为4x,根据题意可以得到方程4x=36,解方程可得x=9。

2.设长方形的长为x,宽为y,则根据题意可以得到方程2(x+y) = 40,解方程可得x+y=20。

2. 选择题1.A2.C3.B3. 计算题1.正方形的面积是边长的平方,所以边长为5的正方形的面积是25平方单位。

2.直角三角形的面积是两条直角边的乘积的一半,所以直角边长分别为4和3的直角三角形的面积是(4*3)/2 = 6平方单位。

第四章:一次函数1. 能力提升题1.设数字为x,则另一个数字为3x,根据题意可以得到方程(1/4)x * 3x = 30,解方程可得x=10。

2.数字a与数字b的和为c,根据题意可以得到方程a +b = c。

3.小明买了x本书,每本书的价格为y元,根据题意可以得到方程x * y = 50。

2. 选择题1.A2.C3.D3. 计算题1.根据题意可以列方程:2x+3=7,解得x=2。

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. 3x^2 5x + 2C. √x + 1D. 1/x + 24. 一个正方形的边长为6cm,那么它的面积是多少cm²?()A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 两个等腰三角形的底边长相等,那么这两个三角形全等。

()2. 一个数的平方根有两个,它们互为相反数。

()3. 两个负数相乘,结果一定是正数。

()4. 任何数乘以0都等于0。

()5. 两个正方形的面积相等,那么它们的边长也相等。

()三、填空题1. 一个等边三角形的边长为6cm,那么它的周长是____cm。

2. 一个数的平方是64,那么这个数是____。

3. 两个数的和为9,它们的差为3,那么这两个数分别是____和____。

4. 一个长方形的长是8cm,宽是4cm,那么它的面积是____cm²。

5. 下列各数中,____是合数。

四、简答题1. 解释什么是素数。

2. 解释什么是等腰三角形。

3. 解释什么是多项式。

4. 解释什么是无理数。

5. 解释什么是长方形的面积。

五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

3. 解方程:2x + 3 = 11。

4. 计算下列各式的值:√9,√16,√25。

5. 判断下列各数中,哪些是素数:23,39,47,57。

六、分析题1. 两个等腰三角形的底边长相等,那么这两个三角形是否全等?为什么?2. 两个正方形的面积相等,那么它们的边长是否相等?为什么?七、实践操作题1. 画出一个边长为6cm的正方形,并计算它的面积。

人教版九年级数学上册《配方法的应用》专项练习题-附带答案

人教版九年级数学上册《配方法的应用》专项练习题-附带答案

人教版九年级数学上册《配方法的应用》专项练习题-附带答案类型一 配方法求字母的值1.如果221016890x y x y +--+= 求x y的值. 【答案】58 【解析】【分析】先将89拆成64+25 然后配成两个完全平方式相加 再根据非负数的性质“两个非负数相加和为0 这两个非负数的值都为0” 解出x 、y 的值即可求解.【详解】解:由已知221016890x y x y +--+=得()()22580x y -+-=()()225=080x y ∴--=, 5,8x y ∴==58x y ∴=. 【点睛】本题考查了配方法的应用和非负数的性质 解题关键是掌握两个非负数相加和为0 这两个非负数的值都为0.2.阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式 例如:把x 2 + 6x ﹣16分解因式 我们可以这样进行:x 2 + 6x ﹣16=x 2 +2·x ·3+32-32﹣16(加上32 再减去32)=(x +3)2-52(运用完全平方公式)=(x +3+5)(x +3﹣5) (运用平方差公式)=(x +8)(x ﹣2)(化简)运用此方法解决下列问题:(1)把x 2﹣8x ﹣9分解因式.(2)已知:a 2+b 2﹣6a +10b +34=0 求多项式4a 2 +12ab +9b 2的值.【答案】(1)()()19x x +-;(2)81【解析】【分析】(1)按照阅读材料的方法进行因式分解即可;(2)利用配方法把原式变形得()()22350a b -++= 从而可得3a =5b =- 再由()222412923a ab b a b ++=+ 进行求解即可. 【详解】解:(1)289x x --22224449x x =-⋅⋅+--()2245x =--()()4545x x =-+--()()19x x =+-;(2)∵22610340a b a b +-++=∵226910250a a b b -++++=∵()()22350a b -++=∵3a = 5b =-∵()()222241292361581a ab b a b ++=+=-=.【点睛】本题考查的是配方法的应用 掌握完全平方公式和平方差公式、偶次方的非负性是解题的关键.3.已知a -b =2 ab +2b -c 2+2c =0 当b ≥0 -2≤c <1时 整数a 的值是_____.【答案】2或3【解析】【分析】由a −b =2 得出a =b +2 进一步代入2220ab b c c +-+= 利用完全平方公式得到()()222130b c +---= 再根据已知条件求出b 的值 进一步求得a 的值即可. 【详解】解:∵a −b =2∵a =b +2∵222ab b c c +-+()2222b b b c c =++-+()2242b b c c =+--()()22213b c =+---=0∵()()22213b c +=-+∵b ≥0 −2≤c <1∵310c -≤-<∵()2019c <-≤∵()231312c <-+≤∵3<()22b +≤12∵a 是整数∵b 是整数∵b =0或1∵a =2或3故答案为:2或3.【点睛】此题考查配方法的运用 掌握完全平方公式是解决问题的关键.4.若a =x +19 b =x +20 c =x +21 则a 2+b 2+c 2-ab -bc -ac =___________.【答案】3【解析】【分析】先利用已知条件求解,,,a b b c a c 再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦ 再整体代入求值即可. 【详解】 解: a =x +19 b =x +20 c =x +211,1,2,a b b c a c∴ a 2+b 2+c 2-ab -bc -ac =()22222221222a b c ab bc ac ++--- 22222212222a ab b b bc c a ac c 22212a b b c a c 222111126322故答案为:3【点睛】本题考查的是利用完全平方式的特点求解代数式的值 因式分解的应用 掌握“完全平方式的特点”是解题的关键.5.阅读材料:若m 2+2mn +2n 2﹣6n +9=0 求m 和n 的值.解:∵m 2+2mn +2n 2﹣6n +9=0∵m 2+2mn +n 2+n 2﹣6n +9=0∵(m +n )2+(n ﹣3)2=0∵m +n =0且n ﹣3=0∵m =﹣3 n =3根据你的观察 探究下面的问题:(1)若x 2+2xy +2y 2﹣2y +1=0 求x 、y 的值;(2)已知a b c 是∵ABC 的三边长 满足a 2+b 2=10a +12b ﹣61 且∵ABC 是等腰三角形 求c 的值.【答案】(1)x =-1 y =1;(2)5或6【解析】【分析】(1)仿照材料的过程进行凑成两个非负数的和为0 即可求得结果;(2)仿照材料的过程进行凑成两个非负数的和为0 即可分别求得a和b的值再根据等腰三角形的性质可求得c的值.【详解】(1)∵x2+2xy+2y2﹣2y+1=0∵x2+2xy+y2+y2﹣2y+1=0∵(x+y)2+(y﹣1)2=0∵x+y=0且y﹣1=0∵x=﹣1 y=1(2)∵a2+b2=10a+12b﹣61∵a2+b2-10a-12b+61=0∵(a-5)2+(b﹣6)2=0∵a-5=0且b﹣6=0∵a=5 b=6∵∵ABC是等腰三角形∵c=a=5或c=b=6即c的值为5或6.【点睛】本题是材料问题考查了配方法的应用平方非负性的性质等腰三角形的性质等知识关键是读懂材料中提供的解题过程和方法.6.在平面直角坐标系xOy中满足不等式x2+y2≤2x+2y的整数点坐标(x y)的个数为_____.【答案】9【解析】【分析】由已知不等式变形后利用完全平方公式化简根据x与y均为整数确定出x与y的值即可得到结果.【详解】解:由题设x2+y2≤2x+2y得0≤(x﹣1)2+(y﹣1)2≤2因为x y 均为整数 所以有或22(1)0(1)1x y ⎧-=⎨-=⎩或22(1)1(1)1x y ⎧-=⎨-=⎩或22(1)1(1)0x y ⎧-=⎨-=⎩ 解得:11x y =⎧⎨=⎩ 或12x y =⎧⎨=⎩或10x y =⎧⎨=⎩或01x y =⎧⎨=⎩或00x y =⎧⎨=⎩或02x y =⎧⎨=⎩或21x y =⎧⎨=⎩或20x y =⎧⎨=⎩或22x y =⎧⎨=⎩ 以上共计9对(x y ).故答案为:9.【点睛】本题考查坐标与图形的性质、配方法的应用、非负数的性质等知识 是重要考点 掌握相关知识是解题关键.7.阅读下面的材料:若22228160m mn n n -+-+= 求m n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-= 2(4)0n -=.4n ∴= 4m =.根据你的观察 探究下列问题:(1)已知等腰三角形ABC 的两边长a b 都是正整数 且满足221012610a b a b +--+= 求ABC 的周长;(2)已知6a b -= 216730ab c c +-+= 求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【解析】【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值 然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =- 然后代入等式可得()2616730a a c c -+-+= 进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=∵22102512360a a b b -++-+=∵()()22560a b -+-=∵50,60a b -=-=∵5,6a b ==∵等腰三角形ABC 的两边长a b 都是正整数∵当5a =为腰 则6b =为底 满足三角形三边关系 故ABC 的周长为5+5+6=16;当6b =为腰 则5a =为底 满足三角形三边关系 故ABC 的周长为5+6+6=17;(2)∵6a b -=∵6b a =-∵()221673616730ab c c a a c c +-+=-+-+=226916640a a c c -++-+=()()22380a c -+-=∵30,80a c -=-=∵3,8a c ==∵363b =-=-∵8a b c ++=.【点睛】本题主要考查配方法的应用 熟练掌握完全平方公式是解题的关键.类型二 配方法求最值8.已知y =x y 均为实数) 则y 的最大值是______.【答案】【解析】【分析】将根据题意0y ≥ 14x ≤≤ 原式y = 可得248y ≤≤故2y ≤≤进而即可求得最大值.【详解】解:0y ≥ 15x ≤≤ 244y =+=+248y ∴≤≤.0y ≥2y ∴≤≤∴y的最大值为故答案为:【点睛】本题考查了二次根式的求值问题 配方法的应用 解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.9.已知实数m n 满足21m n -= 则代数式22242m n m ++-的最小值等于___________.【答案】3【解析】【分析】由21m n -=可得21,n m 再代入22242m n m ++- 再利用配方法配方 从而可得答案.【详解】 解: 21m n -=21,n m ()222242=2142m n m m m m ∴++-+-+-264m m()23133,m =+-≥ 所以22242m n m ++-的最小值是3故答案为:3【点睛】本题考查的是代数式的最值 配方法的应用 熟练的运用配方法求解代数式的最值是解本题的关键. 10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式 此公式与古希腊几何学家海伦提出的公式如出一辙 即三角形的三边长分别为a b c 记2a b c p ++= 则其面积S =这个公式也被称为海伦—秦九韶公式.若3p = 2c = 则此三角形面积的最大值是_________.【解析】【分析】根据公式算出a +b 的值 代入公式 根据完全平方公式的变形即可求出解.【详解】解:∵2a b c p ++=p =3 c =2 ∵232a b ++= ∵a +b =4∵a =4−b∵S∵当b =2时 S【点睛】本题考查了二次根式与完全平方公式的应用 解答本题的关键是明确题意 表示出相应的三角形的面积.二、解答题(共0分)11.【阅读材料】把代数式通过配凑等手段 得到局部完全平方式 再进行有关运算和解题 这种解题方法叫做配方法.如:对于268a a ++.(1)用配方法因式分解:223x x +-;(2)对于代数式2128x x - 有最大值还是最小值?并求出2128x x-的最大值或最小值.【答案】(1)()()31x x +-(2)代数式2128x x -有最大值 最大值为18- 【解析】【分析】(1)先用配方法 再用平方差公式分解即可;(2)先利用配方法变形 根据偶次方的非负性可知最小值 继而即可求得2128x x-的最大值. (1)223x x +-2214x x =++- ()214x =+- ()()1212x x =+++-()()31x x =+-;(2)∵228x x -()224x x =-()22444x x =-+-()2224x ⎡⎤=--⎣⎦()2228x =--∵当2x =时 ()2228x --即228x x -有最小值-8∵代数式2128x x -有最大值 最大值为18-. 【点睛】本题考查配方法在因式分解中的应用及代数式求值 解题的关键是熟练掌握配方法. 12.阅读下面的解答过程 求y 2+4y +5的最小值.解:y 2+4y +5=y 2+4y +4+1=(y +2)2+1∵(y +2)2≥0 即(y +2)2的最小值为0∵y2+4y+5=(y+2)2+1≥1∵y2+4y+5的最小值为1仿照上面的解答过程求:(1)m2﹣2m+2的最小值;(2)3﹣x2+2x的最大值.【答案】(1)1;(2)4【解析】【分析】(1)利用完全平方公式把原式变形根据偶次方的非负性解答即可.(2)利用完全平方公式把原式变形根据偶次方的非负性解答即可.【详解】解:(1)m2﹣2m+2=m2-2m+1+1=(m-1)2+1∵(m-1)2≥0∵(m-1)2+1≥1 即m2﹣2m+2的最小值为1;(2)3-x2+2x=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4∵(x-1)2≥0∵-(x-1)2≤0∵-(x-1)2+4≤4 即3-x2+2x的最大值为4.【点睛】本题考查的是配方法的应用掌握完全平方公式、偶次方的非负性是解题的关键.13.配方法可以用来解一元二次方程还可以用它来解决很多问题.例如:求﹣3(a+1)2+6的最值.解:∵﹣3(a+1)2≤0 ∵﹣3(a+1)2+6≤6 ∵﹣3(a+1)2+6有最大值6 此时a=﹣1.(1)当x=时代数式2(x﹣1)2+3有最(填写大或小)值为.(2)当x=时代数式﹣x2+4x+3有最(填写大或小)值为.(3)如图矩形花园的一面靠墙另外三面的栅栏所围成的总长度是16m 当垂直于墙的一边长为多少时花园的面积最大?最大面积是多少?【答案】(1)1 小3(2)2 大7(3)当垂直于墙的一边长为4米时花园有最大面积为32【解析】【分析】(1)先根据平方的性质求出代数式的取值范围再进行分析计算即可;(2)先配方把多项式变成完全平方形式再进行分析计算;(3)根据总长为16m 构造方程求解即可.(1)解:∵2(x﹣1)2≥0∵2(x﹣1)2+3≥3∵当x=1时代数式有最小值为3.故答案为:1 小3.(2)解:﹣x2+4x+3=﹣(x2﹣4x)+3=﹣(x2﹣4x+4﹣4)+3=﹣(x﹣2)2+7∵﹣(x﹣2)2≤0∵﹣(x﹣2)2+7≤7∵当x=2时代数式有最大值为7.故答案为:2 大7.(3)解:设垂直于墙的一边长为x m 则平行于墙的一边长为(16﹣2x)m花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x)=﹣2(x2﹣8x+16﹣16)=﹣2(x﹣4)2+32∵﹣2(x﹣4)2≤0∵﹣2(x﹣4)2+32≤32∵当x=4时代数式有最大值为32即当垂直于墙的一边长为4米时花园有最大面积为32.【点睛】本题主要考查配方法的实际运用解题的关键在于通过配方法把代数式化成完全平方式再进行分析.类型三配方法在几何图形中的应用14.如图∵ABC=90° AC=6 以AB为边长向外作等边∵ABM连CM则CM的最大值为________________.【答案】3##3+【解析】【分析】过点M作MD∵BC交BC的延长线于点D设AB=x利用勾股定理表示出BC利用解直角三角形表示出MD BD再利用勾股定理求得CM的长根据配方法利用非负数的性质即可得到CM的最大值.【详解】如图 过点M 作MD ∵BC 交BC 的延长线于点D设AB =x 则BC∵∵ABM 是等边三角形∵BM =AB =x ∵ABM =60°∵∵ABC =90°∵∵MBD =30°∵MD ∵BC1122MD BM x ∴==BD x ==在Rt∵MDC 中CM =∵当x 2=18时 CM369723+∵CM 的最大值为:3.故答案为:3.【点睛】本题考查勾股定理以及配方法 掌握配方法求出最值是解题的关键.15.已知点P 的坐标为(2 3) A 、B 分别是x 轴、y 轴上的动点 且90APB ∠=︒C 为AB 的中点 当OC 最小时则点B 的坐标为____.【答案】(0,3)【解析】【分析】利用中点坐标公式将C 点坐标表示出来后 运用勾股定理222AP PB AB +=得到y 与x 的关系式再将OC 的长度用含有y 的式子表示出来 利用配方法即可求出当OC 最小时点B 的坐标.【详解】解:设A 点坐标为(,0)x B 点坐标为(0,)y 则中点C 点坐标为(,)22x y;∵90APB ∠=︒∵222AP PB AB +=∵2222(2)94(3)x y x y -+++-=+化简得:2313x y +=1332yx -=∵12OC ==将1332yx -=代入上式得:12OC =变形得:OC∵当3y =时 OC 最小 此时B 点坐标为(0,3).故答案为(0,3).【点睛】本题主要考查运用配方法求解动点问题 正确理解题意、熟练掌握相关知识、灵活应用数形结合思想是解题的关键 属于综合类问题.16.已知:如图 在Rt ABC 中 90B ∠=︒ 8cm AB BC ==.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动 同时点Q 从点B 开始沿BC 边向点C 以1cm/s 的速度移动.(1)求几秒后 PBQ △的面积等于26cm(2)求几秒后 PQ 的长度等于?(3)求几秒后 PQ 的长度能取得最小值 其最小值为多少cm ?【答案】(1)2秒或6秒;(2)1秒或7秒;(3)4 【解析】【分析】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据三角形面积公式列出方程即可;(2)设运动时间为y 秒 则8PB y =- PQ y = 根据勾股定理列出方程即可;(3)设运动时间为t 秒 则8PB t =- PQ t = 根据勾股定理列出2PQ 的式子 根据配方法即可求得最小值;【详解】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据题意得:()1862x x -= 解得122,6x x ==答:2秒或6秒后 PBQ △的面积等于26cm(2)设运动时间为y 秒 则8PB y =- PQ y =90B ∠=︒在Rt PQC 中222PQ PB BQ =+(()2228y y =-+ 解得121,7y y ==答:1秒或7秒后 PQ 的长度等于(3)设运动时间为t 秒 则8PB t =- PQ t =90B ∠=︒在Rt PQC 中222PQ PB BQ =+22(8)t t =-+221664t t =-+22(816)32t t =-++22(4)32t =-+32≥∴当4t =时 取得最小值为PQ ==即4秒后 PQ 取得最小值 最小值为【点睛】本题考查了一元二次方程的应用 配方法的应用 根据题意列出方程是解题的关键.17.配方法在初中数学中运用非常广泛 可以求值 因式分解 求最值等.如:求代数式的最值:2222(1)1x x x 在1x =-时 取最小值1(1)求代数式24x x -的最小值.(2)2245x x --+有最大还最小值 求出其最值.(3)求221x x +的最小值.(4)22614a b ab b ++-+的最小值.(5)三角ABE 和三角形DEC 的面积分别为4和9 求四边形ABCD 的面积最小值.【答案】(1)-4;(2)有最大值 且为7;(3)2;(4)2;(5)25【解析】【分析】(1)(2)(3)(4)利用配方法变形 可得最值;(5)设S △BEC =x 由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED从而可得S △AED =36x再将四边形ABCD 的面积变形得到21312++ 可得结果.【详解】解:(1)()222444424x x x x x -=-+-=--∵在x =2时 有最小值-4;(2)2245x x --+=()2225x x -++=()222115x x -++-+=()2217x -++∵当x =-1时 有最大值 且为7;(3)221x x +=2221x x ⎛⎫⎪⎭+-≥⎝∵当x =1时 221x x +的最小值为2;(4)22614a b ab b ++-+ =22213612244a ab b b b +++-++ =()22134224a b b ⎛⎫++-+ ⎪⎝⎭当a =-2 b =4时 代数式有最小值2;(5)设S △BEC =x 已知S △AEB =4 S △CED =9则由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED∵x :9=4:S △AED∵S△AED=36 x∵四边形ABCD面积=4+9+x+36x=21312++∵当x=36时四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的需要正确变形才可以应用本题中等难度略大.。

2024年人教版九年级上册数学第三单元课后练习题(含答案和概念)

2024年人教版九年级上册数学第三单元课后练习题(含答案和概念)

2024年人教版九年级上册数学第三单元课后练习题(含答案和概念)试题部分一、选择题:1. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)2. 下列函数中,哪一个是一次函数?()A. y = 2x^2 + 1B. y = 3x + 4xC. y = x^2D. y = 5x3. 已知等腰三角形的底边长为10,腰长为8,则该等腰三角形的周长为()A. 26B. 36C. 16D. 244. 下列各数中,是无理数的是()A. √9B. √16C. √3D. 0.3333…5. 下列各式中,是二次根式的是()A. √(x+1)B. √(x^2 4)C. √(x^3 3x)D. √(x^2 + 1)6. 已知a、b为实数,且a+b=5,ab=3,则a^2 + b^2的值为()A. 16B. 24C. 26D. 287. 下列关于x的不等式中,有解的是()A. x^2 < 0B. x^2 = 0C. x^2 > 0D. x^2 ≤ 08. 在平面直角坐标系中,点P(a, b)关于x轴对称的点是()A. (a, b)B. (a, b)C. (a, b)D. (a, b)9. 下列关于x的一次函数中,斜率为正的是()A. y = 3x + 2B. y = 4 2xC. y = x 5D. y = x + 310. 若平行线l1:2x + 3y + 1 = 0,l2:2x + 3y 5 = 0,则这两条平行线之间的距离是()A. 2B. 3C. 4D. 6二、判断题:1. 两个无理数的和一定是无理数。

()2. 任何两个实数的乘积都是实数。

()3. 一次函数的图像是一条直线。

()4. 二次根式的被开方数必须是正数。

()5. 若a > b,则a^2 > b^2。

()6. 平行线的斜率相等。

()7. 两条直线垂直,则它们的斜率乘积为1。

九年级上册数学课本练习题及答案

九年级上册数学课本练习题及答案

九年级上册数学课本练习题及答案伟大的成功和辛勤的劳动是成正比的,有一分劳动就有一分收获,日积月累,从少到多,奇迹就可以创造出来。

下面就是小编为大家梳理归纳的知识,希望能够帮助到大家。

九年级上册数学课本练习题及答案习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴原方程的根为x1=0,x2=-2.x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)?(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2 的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2 )=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ...描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y 轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴ 抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2∴函数解析式为y=2x2+x-2解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=ax2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=ax2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10) 习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学测试《第二^一章二次根式》 练习题一、填空题(每小题 2分,共20分)1•在 £M a、 a b'- 1 令 x---------、卞x 1 、、 3 中是二次根式的个数有个.2.当X =时,二次根式、X 1取最小值,其最小值为。

3. ____________________________________ 化简存一@的结果是4. 计算:胡2 -3=5. 实数a 在数轴上的位置如图所示:化简:a - 1 + J (a 」2)2 - _____ •+ U b 令 +i c N ) = 0,则 a b +c猜想到的规律用含自然数 n ( n >1)的代数式表示出来是二、选择题(每小题 3分,共24 分)F 列式子一定是二次根式的是(~JrC •x 212.F 列二次根式中,x 的取值范围是x - 2的是(6.已知三角形底边的边长是■- 6 cm,面积是 • 12 cm 2,则此边的高线7.8. 计算:(3 2)2010( 32) 9. 已知x 23x 1-0,则10. 观察下列各式:11.A • x v2 2010,??,请你将x+2 C • x - 2 D •(在数轴上的对应点的位置如图所示,式子c ③bc ac ④ab ac 中―c七2 10 12313. ①b cxa ,实数0 ② a b a17.把一 一根号外的因式移到根号内,得' mA . mA. a > 4三、解答题(76分)(2 5- 3) 214. 下列根式中,是最简二次根式的是()A.・0.2bB.. 12a 12b C.x 2- -y 2D..5ab 215. 下列各式中,一定能成立的是()A .(2.5) 2-(2.5)2B .v a 2=(a )2C .x 2-2 x 1 - x 1 D .x 2- 9三Ex+3-3厂116. 设4 L 、电2的整数部分为 a ,小数部分b ,则a的值为(正确的有(1个 C. 3个 D. 4个A. )b45• 108 - 1 1 一 1253-0)1( 3 2) ° 42 8)B. 2个A.B. 2C.D .18.若代数式■. (2 a) 2( a 4)2的值是常数则a 的取值范围是(19. (12 分)计算:(1)__ _x 2+ 2 X Jx 2二x • 2 x 2 x 122.(8分)如图所示,有一边长为 面成.求一块方砖的边长.21.( 8 分)已知:y =p'x a -22 水 J 3 r 求:- 4(x y )的值。

20.( 8分)先化简,再求值:1,其中x3 2=v —8米的正方形大厅,它是由黑白完全相同的方砖密铺32 ;23. ( 8分)如图所示的 Rt △ABC 中,/B=90。

,点P 从点B 开始沿BA 边以1厘米/? 秒的速度向点 A 移动;同时,点 Q 也从点B 开始沿BC 边以2厘米/秒的速度向点 C 移动.问: 几秒后△ PBQ 的面积为 35平方厘米? PQ 的距离是多少厘米?(结果用最简二次根式表示)24. ( 10分)阅读下面问题:1 (21) ’--------- : ------ —2 1 ; JJ 一 2 「2 1)( 2 1)-52,??。

试求:(52)( 5 2)■- 3 232 )(1)的值;丁7 " 6(2 ) _________ 1( n 为正整数)的值。

(3 )根据你发现的规律,请计算:丸命n 1n1 1 1 1 1 -)(^.1 2011)八■醪)123 2 • 5 2 2010 2009 2011 2010乙说N 的值比M 大.请你判断他们谁的结论是正确的,并说明理由.25. ( 10分)已知M2xy同学在y 二x 88 x 18的条件下分别计算了M 和N 的值.甲说M 的值比N 大,26. ( 12分)如图:面积为 48 cm 2的正方形四个角是面积为四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的底面边长和体积分别是多参考答案、填空题7. 18n -(n T)n 2、选择题少?(精确到0.1 cm, 3 1.732 )3 cm 2的小正方形,现将10。

11 . C12 . B13 . C14 . 15. A16 . 17 . 18 . 三、解答题 19.x ( x 1) 2 x _1=—x 2* 2 (x 1)( x 1)X X 11_______________________ ___ _________________________________________ •x 2 x 2321 . 22 . 23. 24。

因此x y x y x • y3.8-2 186 一2 -6 226 10 26 10 026。

底面边长为3.5cm25。

解:乙的结论正确.理由: 由y 一 x =汇88 x =18 ,可得x 8, y- 18 .20.解:原式 一 3 2代入得:原式M N ,即N 的值比M 大.汁八;8 . 18 -已知m 方程x 2*x —1 - 0的一个根,则代数式 m 2 - m 的值等于(C.2 12-7 t -4=0 化为(t - 7 )2三;81D.3y 2-4 y -2=0 化为(y _2)2w :1041639 6、下面是李明同学在一次测验中解答的填空题,其中答对的是().&据《武汉市 2002年国民经济和社会发展统计公报》报告:武汉市 2002年国内生产总值达1493亿元,比 2001年增长11.8 %.下列说法:① 2001年国内生产总值为1493 ( 1—1493亿元;③2001年 国内生产总值为仁 11.8%一、选择题(每小题3分,共 24分)1、下列方程中,关于 2A. 3X 1— 2X 1)x 的一元二次方程是B. 1 一 1_ 2 0 x 2 x)2C. ax bx c 0_2 2D. x 卅 2x _xA. — 1B.0C.1D.23、( 2005 •广东深圳) 方程x 2- 2x 的解为( A. x = 2 B. x = 0 C. x = 2,2 1D.4、解方程(5x1)2-3(5x 1)的适当方法是(A 、开平方法5、用配方法解下列方程时,配方有错误的是( A. X 2-2 x -99=0 化为(x -1) 2=100B.B 、配方法C、公式法、因式分解法)X2+8X +9=0 化为(x +4) 2=25 2、( 2005 •甘肃兰州)A.若 x 2=4,贝U x = 2B.C.若 x 2-5xy-6y 2=0 ( xy),贝亡=6或上=yy2.7、用配方法解一元二次方程2^1 + — ax bx c方程x (2 x — 1) = 2x — 1的解为x = 12-1。

D.若分式x ---------- 3^2值为零,则x = 1,10,此方程可变形为()J*■2■ T LA 、r b 4 _ b _4acBxV ]・ £ 2 / 4a 22a2C 、儿b■ = b ° 4acx4 2/ 4aDY2a2a 4a& b 24a 2 b x2a4aC b 24a 2—11.8 %)亿元;②2001年国内生产总值为1493亿元;④若按11.8%的年增长率计算, 2004年的国内生产总值预计为 1493 (11 11.8%+ 11.8 %) 2亿元•其中正确的是( )A.③④B.②④C. ①④D. ①②③ 9、从正方形的铁皮上,;截去 2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A.9cm 2B.68cm2C.8cm 2D.64cm 2二、填空题(每小题23分,共 215分)10、 若方程 mx +3x -4=3 x 是关于x 的一元二次方程,则 m 的取值范围是 _________11、 把方程(2x+1 ) ( x — 2) =5 - 3x 整理成一般形式后,得 ,其中二次项系数是 _____ ,一次项系数是 ______ ,常数项是 ______ 。

12、 配方:x 2 — 3x+ __ =_(x— __ 丄 2; 4x 2— 12x+15 = 4()2+ 613、 一元二次方程 ax 2+bx+c=0 (a 工0)的求根公式是: ______________________ 。

14、 认真观察下列方程,指出使用何种方法解比较适当: (1) 4 X 2+16X =5,应选用 法;(2)2( x +2)( x -1)=( x +2)( x +4),应选用 法;⑶2 x 2-3 x -3=0,应选用 ____________法.15、方程x 2=3x 的解是 ___________;方程(X - 2_ x *3)= 0的解是 ___________________18、( 2005 •山东济南市)用开平方法解方程:(x 1) 2 — 419、( 2005 •北京)用配方法解方程:x 2 — 4x +1=016、已知代数式 7x ( x +5)+10与代数式 9x -9的值互为相反数,则x =17、若一个等腰三角形的三边长均满足方程三、解答题(每小题6分,共18分)X 2-6 x +8=0,则此三角形的周长为.______20、用公式法解方程: 3 2+5(2 1)=021 、用因式分解法解方程: x x+3(-5) 2=2(5-)x x22、某校2005年捐款1万元给希望工程,以后每年都捐款,计划到2007年共捐款4.75万元,问该校捐款的平均年增长率是多少?23.有一面积为 150平方米的矩形鸡场,鸡场的一边靠墙(墙长 围成,如果竹篱笆的长为 35米。

求鸡场的长和宽。

五、综合题24、已知三角形的两边长分别是 根。

求此三角形的周长。

《第二十二章 一元二次方程》练习题选择题(每小题分,共分)B1. 若方程(m 2)x |m| 3mx 1~ 0是关于x 的一元二次方程,则()A. m ~2 B . m=2 C . m= — 2 D • m : 22. 若方程x 4 2 - a 有解,贝V a 的取值范围是( )A . a 0B . a 0C . a 0D .无法确定3. 如果关于x 的一元二次方程 x 2+px +q =0的两根分别为X 1= 3、X 2= 1,那么这个一元二次18米),另三边用竹篱笆3和8,第三边的数值是一元二次方程x 2— 17x + 66 = 0的8. (2005 •浙江杭州)若t 是一兀二次方程ax 2 bx b 0(a-0)的根,则判别式A -b 2-4ac 和完全平方式M - (2at b)2的关系是()A. △ =MB.△ >M C. △ <M D. 大小关系不能确定 9. 方程 x 2+ax+仁0和x 2 — x - -a=0有一个公共根,则 a 的值是( )A . 0B. 1C.2D.310.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2 16x 60 - 0的一个实数根,则该三角形的面积是()A . 24 B. 24 或 8 5C. 48D. 8 - 5二、 填空题(每小题分,共分) 11 . 一元二次方程(x+1 ) (3x - 2)=10的一般形式是 ____________ 。

相关文档
最新文档