第3节`影响地下洞室围岩稳定性的地质因素第2节`洞室围岩的变形与破坏
第二节 洞室围岩变形及坡坏的主要类型
一. 围岩应力引起的变形与破坏 1. 围 岩:工程开挖后,应力变化范围内的岩体。 2. 二次应力:工程开挖后,岩体中一定范围内原始应力 发生变化,其改变后重新分布的应力叫二 次应力。又叫重分布应力或围岩应力。 (一) 围岩应力变化规律
地下洞室开挖后,破坏了岩体中原有地应力平衡状态,岩体 内各质点在弹性应变能作用下,力图沿最短距离向消除了阻力的 临空面方向移动,直到达到新的平衡,将这种位移现象叫做卸荷 回弹。随着岩体质点的位移,岩体内一些方向由原来的紧密状态 发生松弛,另一些方向反而挤压程度更大,岩体中应力的大小和 主应力方向也随之发生变化,并产生局部应力集中。这种岩体应 力变化,一般发生在地下洞室横剖面最大尺寸的5-6倍范围内。 在此范围以外,岩体基本处于原来的天然应力状态。
第二节 洞室围岩变形及破坏的基本类型
7. 膨胀内鼓:在膨胀岩地区,洞室开挖后水分向松动圈集 中,导致岩石吸水膨胀,并向洞内鼓出的现象。
洞室开挖后,由于围岩松动圈的存在,形成围岩低应力区,地下 水往往由围岩高应力区向围岩低应力区转移,当围岩内含大量膨胀矿 物时,易于吸水膨胀的岩体发生强烈的膨胀并导致围岩内鼓变形。常 造成洞室设计空间不足,围岩表部膨胀开裂。随着风化加深,围岩甚 至可以解体。除地下水的作用外,这类岩体开挖后也会从空气中吸收 水分而自身膨胀。 遇水后易于膨胀的岩石主要有两类,一类是富含蒙脱石、伊犁石 的粘土岩类;另一类是富含硬石膏的地层。隧道围岩中若遇到遇水体 积增加2.9%的岩石,就会给开挖造成困难。而有些富含蒙脱石的岩体, 遇水后体积可增加到14~25%。据挪威对水工隧洞的调查,有70%的隧 洞衬砌开裂和破坏均与此有关。与围岩塑性挤出相比,围岩吸水膨胀 是一个更为缓慢的过程,往往需要相当长的时间才能达到稳定。
围岩稳定性评价总结
◈
◈
(5)长引水隧洞的水力学问题研究
长引水隧洞水力过渡过程的试验研究;研究长引水 隧洞不衬砌或喷砼段减少糙率的措施;长引水隧洞 调压室的设计。
补充:洞室位址选择的地质论证
一、围岩稳定性分析 地 质 方 面 影 响 因 素 岩性-影响洞室稳定性最基本的因素 岩体结构-对岩体变形破坏起控制作用 天然应力状态-取决于垂直洞轴的水平应力 σH、天然应力比系数λ 地质构造-关注断层破碎带、裂隙密集带、 褶皱轴部 水文地质条件-影响围岩应力状态及围岩强度
建筑物特性--
施工方法--
调整与再分配。
支护方法— 临时支护、永久性支护;半衬、全衬。
影响—围岩中的应力重分布→变形→围压稳定性。
二、洞室位址选择论证
按工程特点与设计要求,考虑岩性、构造、地
形、水文等因素综合评判。
无需衬砌 自稳性好 易施工
选择稳定性好的岩体→
1、地形-
洞口-山体厚、施工条件好,岩坡 陡壁;避开地表径流;避开可能滑 动的坡体;避开断层破碎带。
第四章 地下工程
4.6 围岩稳定性评价
第四章 地下工程
第1节
概述
第2 节
第3节 第4节 第5节 第6节 第7节
围岩应力分布
围岩变形破坏 围岩分类 围岩压力 围岩稳定性评价 地下工程超前预报
第6节
围岩稳定性评价
围岩稳定性是地下建筑工程研究的核心 一般采用定性与定量结合的方法进行。
2、岩体结构⑴ 岩体性状-
对岩体变形破坏起控制作用。
松散结构及碎裂结构岩体稳定性最差;薄层状岩体次之; 厚层状岩体稳定性最好
第十章 地下硐室围岩稳定性
第十章 地下硐室围岩稳定性的工程地质分析1.围岩应力的重分布(1)一般特点硐室开挖引起的应力状态的重大变化:①范围:3~5D (围岩);②强烈的应力分异:a.与最大主应力σ1轴相切点:径向应力σr 向自由临空面逐渐减小,硐壁σr =0;切向应力σθ:向自由临空面逐渐增大,硐壁σr 达最大值;b.与最大主应力σ1轴垂直点:径向应力σr 向自由临空面逐渐减小,硐壁σr =0;切向应力σθ向自由临空面逐渐降低,硐壁处甚至出现拉应力;硐壁周边具有最不利的应力状态,出现强烈的应力分异现象(平面应力场中处于应力差最大的单向应力状态)。
(2)圆形、椭圆形硐室周边应力集中的一般规律 天然应力状态:σh =N σVN-天然应力比值系数,N=σh /σV洞壁上的两个特征点(其它点为过渡状态):A 、B最大拉应力集中:初始最大主应力轴σ1与周边垂直点; 最大压应力集中:初始最小主应力轴σ3与周边垂直点;圆形硐室:N=1(σh =σV ),不发生应力集中;N>1(σh >σV ),A 点压应力集中,B 点拉应力集中; N<1(σh <σV ),A 点拉应力集中,B 点压应力集中;拉应力的形成取决于硐形b/a与天然应力比值系数N。
①当N=1时,b/a为任何值均不出现拉应力;②当N=0时,b/a为任何值均可出现拉应力(A点);③当N=b/a时,应力集中系数相等,周边各点的切向应力相等。
压应力集中最小,不产生拉应力(最有利的情况)。
N>b/a,最大压应力集中在B点;N<b/a,最大压应力集中在A点。
④N<1--硐形应为立椭圆,N>1--硐形应为横椭圆。
注意:a.设计硐形时,调整硐室宽高比b/a~天然应力比值系数N,使得σθ>0;b.硐轴线平行于σ1(图示);但对于大跨度硐室,洞顶易产生较大的拉应力,应将硐轴线垂直于σ1。
(3)矩形硐形周边应力集中的一般规律①角点出现最大切向应力集中,并随B/H变化,方形硐形应力集中最小;②切向拉应力出现在与σ1垂直边的中点;2.地下围岩的变形破坏(1)围岩变形破坏的一般过程与特点变形破坏从硐室周边最大应力集中部位开始,逐步向围岩内部发展。
围岩稳定性的影响因素
围岩稳定性的影响因素一、地质因素的影响1.岩土体结构状态岩土体结构是在长时间的地质构造运动中形成的,是对围岩稳定性起主要作用的地质因素。
围岩的结构状态通常用其破碎程度或完整状态来表示。
原始状态的岩土体,在长期的地质构造运动的作用下,产生各种结构面、形变、错动、断裂等,趋于破碎,在不同程度上丧失了其原有的完整状态。
因此,结构状态的完整程度或破碎状态,可在一定程度上表征岩土体受地质构造运动作用的严重程度,对隧道围岩的稳定起着主导作用。
实践经验指出,在岩性相同的条件下,岩体越破碎,隧道就越易失稳。
因此在各种分级方法中,都把岩体的破碎程度作为基础指标。
岩体的完整状态或破碎程度有两个含义:一是构成岩体的岩块大小;二是这些岩块的组合形态。
前者一般采用裂隙的密集程度(裂隙率、裂隙间距、体裂隙率等)来表达,即结构面法线方向上单位长度内结构面的数目或结构面的平均间距,或采用单位体积中的裂隙数等;后者主要考虑构成岩体的完整状态的各种岩块的组合比例。
岩体结构状态的特征是相互联系的,构成了裂隙岩体的基本特性,是影响围岩分级的重要因素。
2.岩石的工程性质岩石的工程性质是多方面的,一般主要指岩石的强度或坚固性。
在岩体结构状态成为控制围岩稳定性的主要因素时,强调岩石强度意义是不大的。
例如,在碎块状岩体中,岩石强度再大也阻止不了隧道围岩的坍落。
但在较为完整的岩体结构中,如岩体具有整体的巨块状结构或大块状结构,岩石强度就具有一定的意义。
在这类围岩中,因裂隙少,结构面强度高,故岩石强度在一定程度上与岩体强度接近。
岩石强度在完整的岩体中是起主要作用的,此时岩石越硬,隧道越稳定。
完整岩体,一般都被认为是均质的连续介质。
隧道开挖后,围岩强度高,具有极大的稳定性,仅在个别情况下有局部的碎块、剥离现象。
在这种情况下进行理论分析,也是以岩石强度为依据。
此外,在判定某些裂隙岩体的强度时,也以岩石强度为基础。
在围岩分级中,岩石的坚固性或强度都以岩石的饱和单轴极限抗压强度为基准,这是因为它的试验方法简便,数据分散性小,且与其他物性指标有着良好的互换性。
(完整版)第八章地下洞室围岩稳定性分析
第八章地下洞室围岩稳定性分析第一节概述1.地下洞室(underground cavity):指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。
目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。
3.分类:按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等;按内壁有无水压力:有压洞室和无压洞室;按断面形状为:圆形、矩形或门洞形和马蹄形洞室等;按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类;按介质,土洞和岩洞。
4.地下洞室→引发的岩体力学问题过程:地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时)(洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系)第二节围岩重分布应力计算1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。
2.地下洞室围岩应力计算问题可归纳的三个方面:①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定;②开挖后围岩重分布应力(二次应力)的计算;③支护衬砌后围岩应力状态的改善。
3.围岩的重分布应力状态(二次应力状态):指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。
一、无压洞室围岩重分布应力计算1.弹性围岩重分布应力坚硬致密的块状岩体,当天然应力()c v h σσσ21≤、,地下洞室开挖后围岩将呈弹性变形状态。
这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。
重点讨论圆形洞室。
(1)圆形洞室深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。
无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。
任取一点M (r ,θ)按平面问题处理,不计体力。
则:……………………①式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。
第二节洞室围岩变形及破坏的基本类型
R、K、J红层及T灰岩等中的含膏地层 泥炭、淤泥、沼泽等地 我国东南沿海有红树林残体的冲积层 我国长江以南的酸性红土 含硫矿床的地下水层 冶炼厂、化工厂、废渣场、堆煤场等地的地下水层
第三节 地下洞室特殊地质问题
T=T0 (H h)G
0.05 k
道的现象。地下洞室中,地下水影响可归纳为以下几个方面:
1.以静水压力的形式作用于同室衬砌。 2.使岩石和结构面软化,使其强度降低。 3.促使围岩中的软弱夹层泥化,减少层间阻力,造成岩体易于
滑动。
4.石膏、岩盐及某些以蒙脱石为主的粘土岩类,在地下水的作 用下将易发生剧烈的溶解或膨胀。随着膨胀的产生,将会出
v
v H
H H
v
第二节 洞室围岩变形及破坏的基本类型
三. 松散围岩的变形与破坏: 1. 重力坍塌:固结程度差的散体结构围岩,开挖后在重 力作用下自由坍落。
塑流涌出:当开挖饱水断层破碎带时,松散物质常形 成碎屑流涌出。
第三节 地下洞室特殊地质问题
一. 突水突泥: 突水突泥是指隧道开挖过程中,突然产生大量的水或泥涌入隧
第二节 洞室围岩变形及破坏的基本类型
隧道掌子面
隧道掌子面开挖
隧道掌子面开挖
隧道盾构施工
隧道盾构施工
隧道锚喷支护
隧道衬砌施工
建好的地下厂房(二滩电站)
第二节 洞室围岩变形及破坏的基本类型
一. 围岩应力引起的变形与破坏
1. 围 岩:工程开挖后,应力变化范围内的岩体。 2. 二次应力:工程开挖后,岩体中一定范围内原始应力
常温、常压下各种易爆炸气体与空气合成的混合物的爆炸界限值
气体名称 爆炸限度含量 气体名称 爆炸限度含量
甲烷(沼气)
洞室围岩稳定性
第七章地下洞室围岩稳定性的工程地质分析第一节围岩应力的重分布一、岩体初始应力状态——地应力地下洞室开挖前,岩体内的应力状态称为初始应力状态。
地应力的类型:自重应力构造应力变异及其他应力二、围岩应力的重分布特征(一)围岩应力:洞室周围发生应力重分布的这部分岩体叫围岩围岩中重分布的应力状态叫围岩应力(二)地下洞室围岩应力重分布特征1、圆形洞侧压力系数λ=1径向应力向洞壁内方向逐渐增大切向应力在洞壁处为2倍的自重应力,但向洞壁内逐渐减小,到5-6倍洞半径时径向应力=切向应力=自重应力即围岩应力重分布影响范围是6倍的洞半径2、圆形洞λ不等于1洞壁受剪应力最大3、其他形状洞室洞顶、洞底容易出现拉应力,转角处剪应力最大洞室高、宽对围岩应力影响最大三、开挖后围岩中出现塑性圈时的重分布应力围岩一旦松动,如不加支护,则会向深部发展,形成具有一定范围的应力松弛区,称为塑性松动圈。
在松动圈形成过程中,原来周边集中的高应力逐渐向深处转移,形成新的应力增高区,该区岩体被挤压紧密,称为承载圈。
此圈之外为初始应力区。
第二节围岩的变形破坏的特征1、坚硬完整结构:岩爆、开裂2.块断结构:块体滑移、掉块3、层状结构岩体:层面张裂、岩层弯曲折断4、碎裂结构、散体结构岩体以塌方、塑性挤入为主第三节地下工程位置选择的工程地质评价一、地形条件1、在地形上要求山体完整,洞室周围包括洞顶及傍山侧应有足够的山体厚度。
2、隧洞进出口地段的边坡应下陡上缓,无滑坡、崩塌等现象存在。
3、洞口岩石应直接出露或坡积层薄,岩层最好倾向山里以保证洞口坡的安全。
4、隧洞进出口不应选在排水困难的低洼处,也不应选在冲沟、傍河山嘴及谷口等易受水流冲刷的地段5、水工隧洞避免曲线或弯道,转弯角度大于60°,曲率半径大于5倍洞径。
二、岩性条件坚硬完整的岩体,围岩一般是稳定的,能适应各种断面形状的地下洞室。
而软弱岩体如粘土岩类、破碎及风化岩体,吸水易膨胀的岩体等,通常力学强度低,遇水易软化、崩解及膨胀等,不利于围岩的稳定。
地下洞室围岩的稳定性问题
由于地下洞室的开挖破坏了 岩土体中原有的应力状态(一次 应力状态),造成应力重分布 (二次重分布应力)。
1.1围岩应力的重分布
2.围岩与围岩压力 围岩是指地下洞室开挖后发生应力重分布的洞周围的
土体。洞室开挖后,为保证洞室的稳定需要经常进行支护 和衬砌,洞室支护和衬砌结构上必然受到围岩变形和破坏 的岩土体的压力,这种由于围岩的变形与破坏而作用于支 护和衬砌上的压力,称为围岩压力。围岩压力按其形成方 式主要有以下几种:
(3)冲击压力。冲击压力也 称“岩爆”,当建筑物埋深较大 ,或由于构造作用使初始应力很 高,开挖后洞体应力超过了围岩 的弹性界限时,这些能量突然释 放所产生的巨大压力,称为冲击 压力。
(4)膨胀压力。某些岩土体 由于遇水后体积膨胀而产生膨胀 压力。膨胀压力的大小取决于岩 土体的物理力学性质和地下水的 活动特征。
1.2地下洞室围岩的变形与破坏
(4)弯折内鼓。在薄层脆性 围岩中,当卸荷回弹或切向压应 力超过薄层岩层的抗弯强度时, 岩体变形、破坏将主要表现为层 状岩层以弯折内鼓的方式破坏。
当以垂直应力为主时,水平 岩层在洞顶易产生弯折;当以水 平应力为主时,竖直岩层在洞壁 易产生弯折。
Hale Waihona Puke 在卸荷回弹造成的破坏中, 破坏主要发生在地应力较高的岩 体内(如深埋洞室或水平应力高 的洞室),并且总是在与岩体内 初始最大应力垂直相交的洞壁上 表现最强烈。
(1)松动压力。松动压力也称“散体压力”,指由 于围岩松动或坍塌的岩土体以重力形式作用在支护结构 上的压力。
1.1围岩应力的重分布
(2)变形压力。变形压力是 指支护结构为抵抗围岩变形而承受 的压力。围岩变形是时间的函数, 变形压力与围岩变形和支护结构有 关,所以变形压力是时间和支护结 构特征的函数。洞室开挖后,一定 的支护结构应有一个合理的支护时 间;若同一支护时间采用不同的支 护结构,则变形压力也不同,一般 支护结构柔性越好,变形压力就越 小。
地下洞室围岩稳定性分析(DOC)
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
土木工程地质-第六章-洞室围岩变形及破坏的基本类型
次应力。又叫重分布应力或围岩应力。
(一) 围岩应力变化规律
1. 圆形洞室:
r r
二次应力在围岩中形成的塑性圈
第二节 洞室围岩变形及破坏的基本类型
2. 直墙圆拱型洞室:
侧压力系数较低 =Hv 侧压力系数较高
第二节 洞室围岩变形及破坏的基本类型
(二)围岩应力引起的变形和破坏类型 1. 张裂塌落:拱顶张应力超过岩石 抗拉强度,引起岩石 破裂,导至洞顶塌落 的现象。 2. 劈裂剥落: 切向应力导至洞室 周边岩石形成平行 洞壁的密集破裂, 并产生剥落的现象。
第二节 洞室围岩变形及破坏的基本类型
隧道掌子面
隧道掌子面开挖
隧道掌子面开挖
隧道盾构施工
隧道盾构施工
隧道锚喷支护
隧道衬砌施工
建好的地下厂房(二滩电站)
第二节 洞室围岩变形及破坏的基本类型
一. 围岩应力引起的变形与破坏 1. 围 岩:工程开挖后,应力变化范围内的岩体。 2. 二次应力:工程开挖后,岩体中一定范围内原始应力 发生变化,其改变后重新分布的应力叫二
第二节 洞室围岩变形及破坏的基本类型
3. 碎裂松动:碎裂状岩体开挖后,岩块沿结构面滑移并形 成松动圈的现象。
4. 弯折内鼓:径向应力挤压薄层围岩,使之向洞内弯折 内鼓,甚至坍倒的现象。
第二节 洞室围岩变形及破坏的基本类型
5. 岩爆:在高应力地区,洞室开挖后,围岩因弹性应变能 突然释放而发生的岩石弹射或抛出的现象。 岩爆特点:
隧道变型破坏
第二节 洞室围岩变形及破坏的基本类型
二. 围岩构造控制的变形与破坏 指围岩当结构面上剪应力超过抗剪强度而产生的 沿结构面剪切滑移。
v
v H
H H
v
第二节 洞室围岩变形及破坏的基本类型
地下工程围岩稳定性分析概要
各种 断面 形状 的洞 体应 力状 态比 较
二、开挖后围岩中出现塑性圈时的重分布应力
洞室开挖后围岩的稳定性,取决于二次应力与围 岩强度之间的关系。
如果洞周边应力小于岩体的强度,围岩稳定。 否则,周边岩石将产生破坏或较大的塑性变形。 围岩一旦松动,如不加支护,则会向深部发展, 形成具有一定范围的应力松弛区,称为塑性松动圈。 在松动圈形成过程中,原来周边集中的高应力逐渐向 深处转移,形成新的应力增高区,该区岩体被挤压紧 密,称为承载圈。此圈之外为初始应力区。
围岩失稳机制及破坏形式
围岩变形破坏的常见形式
2.块体滑移
块体滑移是块状结构围岩常见的破坏形式。 这类破坏常以结构面交切组合成不同形状的块体 滑移、塌落等形式出现。分离块体的稳定性取决 于块体的形状有无临空条件、结构面的光滑程度 及是否夹泥等。
坚硬岩体中的块体滑移
块 状 结 构 岩 体 的 块 体 滑 移
洞 室 围 岩 应 力 重 分 布 对 比 图
第三节 围岩稳定的工程地质分析
一、围岩稳定的概念 围岩稳定是指在一定时间内,在一定的地质力
和工程力作用下岩体不产生破坏和失稳。围岩在压 应力、拉应力及剪应力作用下能否破坏的判断:
1.围岩的抗压强度和抗拉强度是否适 应围岩应力。(公式略)
2.围岩的抗剪强度是否适应围岩的剪 应力。 (公式略)
三 类 典 型 的 分 离 体
3.层状弯折和拱曲
岩层的弯曲折断,是层状围岩变形失稳的 主要形式。
平缓岩层,当岩层层次很薄或软硬相间时, 顶板容易下沉弯曲折断。
在倾斜层状围岩中,当层间结合不良时, 顺倾向一侧拱脚以上部分岩层易弯曲折断,逆 倾向一侧边墙或顶拱易滑落掉块。
在陡倾或直立岩层中,因洞周的切向应力 与边墙岩层近于平行,所以边墙容易凸邦弯曲。
第二节洞室围岩变形及破坏的基本类型
7. 膨胀内鼓:在膨胀岩地区,洞室开挖后水分向松动圈 集中,导致岩石吸水膨胀,并向洞内鼓出 的现象。
隧道变型破坏
第二节 洞室围岩变形及破坏的基本类型
二. 围岩构造控制的变形与破坏 指围岩当结构面上剪应力超过抗剪强度而产生的 沿结构面剪切滑移。
造成地下洞室大量突水的条件是:
①洞室通过溶洞发育的石灰岩地段,尤其是遇到蓄水洞穴或 地下暗河系统时,可能有大量的突水,其突水量可达几百至几千 吨/小时。
②洞室通过厚层的含水砂砾石层,突水量可达几百吨/小时。 ③遇到富水的断层破碎带,特别是它又与地表水连通时,也 会发生大量的突水,突水量一般也在几十至几百吨/小时。 ④洞室通过节理发育的背斜、向斜轴部,当其富水时。
道的现象。地下洞室中,地下水影响可归纳为以下几个方面:
1.以静水压力的形式作用于同室衬砌。 2.使岩石和结构面软化,使其强度降低。 3.促使围岩中的软弱夹层泥化,减少层间阻力,造成岩体易于
滑动。
4.石膏、岩盐及某些以蒙脱石为主的粘土岩类,在地下水的作 用下将易发生剧烈的溶解或膨胀。随着膨胀的产生,将会出
第二节 洞室围岩变形及破坏的基本类型
岩爆分级 Ⅰ
fr /i
说明
>14.5 无岩爆发生、也无声发射现象
Ⅱ 14.5~5.5 低岩爆活动,有轻微声发射现象
Ⅲ 5.5~2.3 中等岩爆活动,有较强的爆裂声
Ⅳ
<2.5 高岩爆活动,有很强的爆裂声
注:fr—岩石单轴抗压强度:σ1-地应力的最大主应力。
第二节 洞室围岩变形及破坏的基本类型
4. 弯折内鼓:径向应力挤压薄层围岩,使之向洞内弯折 内鼓,甚至坍倒的现象。
第3节`影响地下洞室围岩稳定性的地质因素第2节`洞室围岩的变形与破坏
坚硬岩体中的块体滑移
层状弯折和拱曲
岩层的弯曲折断,是层状围岩变形失稳的主要形式。 平缓岩层,当岩层层次很薄或软硬相间时,顶板容易下沉弯曲折断。
在倾斜层状围岩中,当层间结合不良时,顺倾向一侧拱脚以上部分 岩层易弯曲折断,逆倾向一侧边墙或顶拱易滑落掉块。
在陡倾或直立岩层中,因洞周的切向应力与边墙岩层近于平行,所 以边墙容易凸邦弯曲。
岩应力和地下水作用下常产生冒落及塑性变形。常见的塑性变
形和破坏的形式有边墙挤入、底鼓及洞径收缩等。
水 电 站 引 水 隧 洞 的 塑 性 变 形 与 塌 方
第3节、影响地下地下洞室围岩稳定性的地质因素
地下建筑位置的选择,除取决于工程目的要求外,需 要考虑围岩的稳定、山体稳定及地形、岩性、地质构造、 地下水及地应力等因素的影响。 理想的建洞山体应具备以下条件: 1)建洞区地质构造简单,岩层厚、节理组数少,间距 大,无影响整个山捧稳定的断裂带; 2)岩体坚硬完整; 3)地形完整,没有滑坡、塌方等早期埋藏和近期破坏 的地形。无岩溶或岩溶很不发育; 4)地下水影响小; 5)无有害气体和异常影响围岩稳定的基本因素之一,洞室位置应尽量选在坚 硬完整岩石中。 岩浆岩、厚层坚硬的沉积岩及变质岩,围岩的稳定性好,适于 修建大型的地下工程。
凝灰岩、粘土岩、页岩、胶结不好的砂砾岩、千枚岩及某些片 岩,稳定性差,不宜建大型地下洞室。
松散及破碎岩石稳定性极差,选址时应尽量避开。
对地下洞室选址影响地质因素
地形条件(geographic conditions)
岩性条件(rock and soil engineering characters)
地质构造条件(geologecal structure conditions) 褶皱(fold) 断裂(fault) 岩层产状(attitude of layer) 地下水(水文地质hydrogeological conditions) 地应力(natural stress)
第八章 地下洞室围岩稳定性分析
第八章地下洞室围岩稳定性分析第一节概述1.地下洞室(underground cavity):指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。
目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。
3.分类:按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等;按内壁有无水压力:有压洞室和无压洞室;按断面形状为:圆形、矩形或门洞形和马蹄形洞室等;按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类;按介质,土洞和岩洞。
4.地下洞室→引发的岩体力学问题过程:地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时)(洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系)第二节围岩重分布应力计算1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。
2.地下洞室围岩应力计算问题可归纳的三个方面:①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定;②开挖后围岩重分布应力(二次应力)的计算;③支护衬砌后围岩应力状态的改善。
3.围岩的重分布应力状态(二次应力状态):指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。
一、无压洞室围岩重分布应力计算1.弹性围岩重分布应力坚硬致密的块状岩体,当天然应力()c v h σσσ21≤、,地下洞室开挖后围岩将呈弹性变形状态。
这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。
重点讨论圆形洞室。
(1)圆形洞室深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。
无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。
任取一点M (r ,θ)按平面问题处理,不计体力。
则:……………………①式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。
地下洞室围岩稳定性
1)围岩应力条件
判断岩爆发生的应力条件有两种方法: 一是用洞壁的最大环向应力σθ与围岩单轴抗压强度σc
之比值作为岩爆产生的应力条件;
一是用天然应力中的最大主应力σ1 与岩块单轴抗压强 度σc之比进行判断。
经验公式:σ1 /σc大于0.165~0.35的脆性岩体最易发生 岩爆。
2)岩性条件
弹性变形能系数ω:加载到0.7σc后再卸载至0.05σc时, 卸载释放的弹性变形能与加载吸收的变形能之比的百分数。
(3)断层错动引起的岩爆
坑道以小角度逼近一个潜在的活动断层时,坑道的开 挖使作用于断层面上的正应力减小,从而使沿断层面的摩 阻力降低,引起断层突然再活动,形成岩爆,这类岩爆一 般发生在构造活动区的探矿井中,破坏性很大,且影响范 围较广。
3)岩爆的产生条件与发生机制
本质上,岩爆乃是洞室围岩的一种伴有突然释放大量 潜能的剧烈的脆性破坏。从产生条件方面来看,高储能体 的存在及其应力接近于岩体强度是产生岩爆的内在条件, 而某些因素的触发效应则是岩爆产生的外因。
围岩
按照森维南原理,由开挖洞室引起的应 力状态的重大变化局限在洞周一定范围之内。 通常此范围等于地下洞室横剖面中最大尺寸 的3—5倍,习惯上将此范围内的岩体称为“围 岩”
3.3 地下洞室围岩的变形破坏
3.2.1 围岩变形破坏的一般过程和特点
地下洞室开挖常能使围岩的性状发生很大变化,促使 围岩性状发生变化的因素,除上述的卸荷回弹和应力重分 布之外,还有水分的重分布。 一殷说来,洞室开挖后,如果围岩岩体承受不了回弹 应力或重分布的应力的作用,围岩即将发生塑性变形成破 坏。 这种变形或破坏通常是从洞室周边,特别是那些最大 压或拉应力集中的部位开始,而后逐步向围岩内部发展的。
第八章地下洞室围岩稳定分析及处理措施 公路工程地质课件(共13张PPT)
图8-1 天然拱
第返三页回,共(13f页ǎ。nhuí)目录
第八章 地下洞室围岩稳定分析(fēnxī)及处理措施
第二节 洞室围岩(wéi yán)的变形与破坏
洞室开挖后,地下形成了自由空间,原来处于挤压状态的围岩, 由于解除束缚而向洞室空间松胀变形,这种变形大小超过了围岩所 能承受的能力,便发生破坏,从母岩中别离、脱落,导致坍塌、滑 动和岩爆等。
第返一页回,共(13f页ǎ。nhuí)目录
第八章 地下洞室围岩稳定分析及处理措施
第一节 概述(ɡài shù)
一、 新奥法 二、 隧道围岩1 投资(tóu zī)学
第返二页回,共(13f页ǎ。nhuí)目录
第八章 地下洞室围岩稳定分析及处理(chǔlǐ)措施
第一节 概述(ɡài shù)
第三节 地下洞室(dònɡ shì)围岩稳定性的分析方法及处理措施
一、 影响围岩稳定的因素
〔二〕 施工方法和措施的影响
〔1〕 时间因素 〔2〕 坑道的尺寸和形状因素 〔3〕 坑道埋深因素 〔4〕 支护因素 〔5〕 爆破因素 〔6〕 超挖回填因素
返回(fǎnhuí)目录
第十页,共13页。
第八章 地下洞室围岩稳定(wěndìng)分析及处理措施
返回(fǎnhuí)目录
第十二页,共13页。
第八章 地下洞室围岩稳定分析(fēnxī)及处理措施
第三节 地下洞室围岩稳定性的分析方法及处理(chǔlǐ)措施
二、 保障围岩稳定的处理措施
〔二〕 支撑、衬砌与锚喷加固
支撑是临时性加固洞壁的措施,衬砌是永久性加固洞壁的措施。 此外还有喷射混凝土、锚喷支护等。
第三节 地下洞室(dònɡ shì)围岩稳定性的分析方法及处理措施
第八章 地下洞室围岩稳定性评价
• 3、冲击压力 • 在坚硬完整岩体中,地下建筑开挖后的洞体应 力,如果是在围岩的弹性界限之内,则仅在开 挖后的短时间内引起弹性变形,而不致产生围 岩压力。但当建筑物埋深较大,或由于构造作 用使初始应力很高,开挖后洞体应力超过了围 岩的弹性界限,这些能量突然释放所产生的巨 大压力,称为冲击压力。 • 4、膨胀压力 • 某些岩体由于遇水后体积发生膨胀,从而产生 膨胀压力。膨胀压力与变形压力的区别在于它 是围岩吸水膨胀引起的。其大小主要岩体的物 理力学性质和地下水的活动特征等。
• 洞室开挖前,岩体处在相对静止状态,其 中任何一点的岩土都受到周围地层的挤压, 称为初始应力状态或一次应力状态。它是 由上覆地层自重、地壳运动的构造应力以 及地下水流动等因素所决定的。洞室开挖 以后,解除了部分围岩的约束,原始的应 力平衡和稳定状态被破坏,围岩中出现了 应力的重分布,进入二次应力状态。围岩 向洞室内部空间变形,并力图达到新的平 衡。
• 围岩压力? • 洞室围岩由于开挖应力重新分布而形成塑 性变形区,在一定条件下,围岩稳定性便 可能遭到破坏,为保证洞室的稳定,常需 要进行支护和衬砌,洞室支护和衬砌上必 然受到围岩变形与破坏的岩土体的压力。 这种由于围岩的变形与破坏而作用于支护 和衬砌上的压力称为围岩压力。
• 一、围岩应力重新分布的一般特征 • 围岩应力重分布与岩体的初始应力状态及洞室 断面形状等因素有关。 • 地下开挖后由于应力重新分布,引起洞周产生 应力集中现象。当围岩应力小于岩体强度极限 (脆性岩石)或屈服极限(塑性岩石)时,洞 室围岩稳定;当围岩应力超过了岩体屈服极限 时,围岩就由弹性状态转化为塑性状态,形成 一个塑性松动圈,(如图7-2)。在此过程中, 原来洞室周边高应力逐渐向外转移,形成新的 应力升高区。该区岩体挤压得紧密,由如一圈 天然加固体,故称为承载圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-设计断面 2-破坏区 3-崩塌 4-滑动 5-弯曲、张裂及折断
层状结构围岩变形破坏特征
碎裂岩体的松动解脱
碎裂结构岩体在张力和振动力作用下容易松动、解脱,在 洞顶则产生崩落,在边墙上则表现为滑塌或碎块的坍塌。
碎裂结构围岩塌方示意图
碎裂岩体松动解脱及顶拱破裂
松软岩体
一般强烈风化、强烈构造破碎或新近堆积的土体,在重力、围
地形条件
在地形上要求山体完整,洞室周围包括洞顶及傍山侧应有足够的山体厚度。
坚硬岩体中的块体滑移
层状弯折和拱曲
岩层的弯曲折断,是层状围岩变形失稳的主要形式。 平缓岩层,当岩层层次很薄或软硬相间时,顶板容易下沉弯曲折断。
在倾斜层状围岩中,当层间结合不良时,顺倾向一侧拱脚以上部分 岩层易弯曲折断,逆倾向一侧边墙或顶拱易滑落掉块。
在陡倾或直立岩层中,因洞周的切向应力与边墙岩层近于平行,所 以边墙容易凸邦弯曲。
第七章 地下洞室围岩稳定性的工程地质研究
第1节、地下洞室开挖前后的应力特征
第2节、洞室围岩的变形与破坏 第3节、影响地下洞室围岩稳定性的地质因素 第4节、围岩压力 第5节、水工隧洞围岩的承载力 第6节、地下洞室围岩工程地质分类 第7节、改善地下洞室围岩稳定性的措施
地下洞室
为各种目的修建在地层之内的通道或空洞。包括矿 山坑道、铁路隧道、水工隧洞、地下发电站厂房、 地下铁道及地下停车场、地下储油库、地下导弹发 射井、以及地下飞机库等。
对地下洞室选址影响地质因素
地形条件(geographic conditions)
岩性条件(rock and soil engineering characters)
地质构造条件(geologecal structure conditions) 褶皱(fold) 断裂(fault) 岩层产状(attitude of layer) 地下水(水文地质hydrogeological conditions) 地应力(natural stress)
第2节、洞室围岩的变形与破坏
围岩这类变形破坏的发展进程
当围岩应力已经超过岩体的极限强度时,围岩发生破坏。 当围岩应力的量级介于岩体的极限强度和长期强度之间时, 围岩需经瞬时的弹性变形及较长时期蠕动变形的发展方能达到 最终的破坏,通常可根据围岩变形历时曲线变化的特点而加以 预报。 当围岩应力的量级介于岩体的长时间强度及蠕变临界应力之 间时,围岩除发生瞬时的弹性变形外,还要经过一段时间的蠕 动变形才能达到最终的稳定。 当围岩应力小于岩体的蠕变临界应力时,围岩将于瞬时的弹 性变形后立即稳定下来。
岩爆产生的爆坑
锦 屏 二 级 水 电 站 排 水 洞 岩 爆
爆坑附近边墙下部破坏情况
右侧拱顶位置塌方情况
第二次岩爆塌方左侧拱架破坏情况
块体滑移
块体滑移是块状结构围岩常见的破坏形式。这类破坏常以结
构面交切组合成不同形状的块体滑移、塌落等形式出现。分
离块体的稳定性取决于块体的形状有无临空条件、结构面的 光滑程度及是否夹泥等。
2 v
v
r0 2 r0
3 r0 4 r0
5 r0
6 r0 7 r0
8 r0
圆形洞室周边应力重分布
开挖后围岩中出现塑性圈时的重分布应力
洞室开挖后围岩的稳定性,取决于二次应力与围岩 强度之间的关系。 如果洞周边应力小于岩体的强度,围岩稳定。 否则,周边岩石将产生破坏或较大的塑性变形。
围岩一旦松动,如不加支护,则 会向深部发展,形成具有一定范 围的应力松弛区,称为塑性松动 圈。 在松动圈形成过程中,原来周边 集中的高应力逐渐向深处转移, 形成新的应力增高区,该区岩体 被挤压紧密,称为承载圈。此圈 之外为初始应力区。
大型古地下工程
第1节、地下洞室开挖前后的应力特征
圆 形 洞 室 围 岩 重 分 布 应 力 计 算 简 图
洞室周边围岩应力弹性重分布计算公式
1 r0 2 1 3r0 4 4r0 2 r 为径向应力 1 2 1 4 2 cos 2 r v 2 r 2 r r 为切向应力 1 r0 2 1 3r0 4 1 2 1 4 cos 2 v 2 r 2 r 2r0 1 3r0 r v 1 4 2 2 r r
岩应力和地下水作用下常产生冒落及塑性变形。常见的塑性变
形和破坏的形式有边墙挤入、底鼓及洞径收缩等。
水 电 站 引 水 隧 洞稳定性的地质因素
地下建筑位置的选择,除取决于工程目的要求外,需 要考虑围岩的稳定、山体稳定及地形、岩性、地质构造、 地下水及地应力等因素的影响。 理想的建洞山体应具备以下条件: 1)建洞区地质构造简单,岩层厚、节理组数少,间距 大,无影响整个山捧稳定的断裂带; 2)岩体坚硬完整; 3)地形完整,没有滑坡、塌方等早期埋藏和近期破坏 的地形。无岩溶或岩溶很不发育; 4)地下水影响小; 5)无有害气体和异常地热。
围岩变形破坏的常见形式
坚硬完整岩体的脆性破裂
在坚硬完整的岩体中开挖地下洞室,围岩一般是稳定的。
但是在高地应力地区,经常产生岩爆现象。岩爆是储存有
很大弹性应变能的岩体,在开挖卸荷后,能量突然释放所 形成的,它与岩石性质、地应力积聚水平及洞室断面形状 等因素有关。 岩爆的产生需要具备两方面的条件 高储能体的存在及其应力接近于岩体强度是产生岩爆的 内在条件,而某些因素的触发效应则是岩爆产生的外因。
4 2
r 为剪应力
sin 2
r0为隧洞半径 r为质点至洞轴线的距离
r0 2 r v 1 r 2 r0 2 v 1 2 r r 0
当天然应力比λ=1时,洞室周边围 岩应力弹性重分布计算公式