六年级奥数思维训练题集(八)容斥原理

合集下载

小学奥数《容斥原理》(同步语音)

小学奥数《容斥原理》(同步语音)

3



设三科都得满分者为x 全班人数 20 20 20 7 8 9 x 3 整理后:全班人数=39+x 39+x表示全班人数,当x取最大值时,全班人数 就最多,当x取最小值时,全班人数就最少。x是数 学、语文、英语三科都得满分的同学,因而x中的人 数一定不超过两科得满分的人数,即 x 7,x 8 且 x 9 ,由此我们得到 x 7 ,另一方面x最小可 能是0,即没有三科都得满分的。 当x取最大值7时,全班有(39 7 )46 人,当x取最小 值0时,全班有39人。 答:这个班最多有46人,最少有39人。
小学数学
容斥原理
在计数时,为了使重叠部分不被重复计
算,人们研究出一种新的计数方法,这 种方法的基本思想是:先不考虑重叠的 情况,把包含于某内容中的所有对象的 数目先计算出来,然后再把计数时重复 计算的数目排斥出去,使得计算的结果 既无遗漏又无重复,这种计数的方法称 为容斥原理。
容斥原理(第一讲)

5、全班有50人,不会骑车的有23人,不会 滑旱冰的有35人,两样都会的有5人。问: 两样都不会的有多少人? 50-5=45人 23+35-45=15人 6、六年级(2)班有48名学生,其中会骑自 行车的有27个,会游泳的有18人,既会骑自 行车又会游泳的有10人。问两样都不会的有 多少人? 27+18-10=35人 48-35=13人
容斥原理
试一试:
某班学生每人家里至少有空调和电脑
两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都 有的有27人,这个班有学生多少人? 41+34-27=48人

41
27
34

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

奥数训练专题容斥原理

奥数训练专题容斥原理

容斥原理1、某班学生手中分别拿红、黄、蓝三种颜色的小旗,手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?2、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?3、四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.〔6级〕4、五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.〔6级〕5、光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进展,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?〔6级〕6、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人?7、五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗读小组的人数是既参加绘画小组又参加朗读小组人数的倍,又是三项活动都参加人数的7倍,既参加朗读小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗读小组的人数.8、六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?9、在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:三种都带了的有几人?只带了一种的有几个?9、盛夏的一天,有10个同学去冷饮店,向效劳员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.10、全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动工程没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.假设全班有6个人数学不及格,那么,数学成绩优秀的有几个学生?有几个人既会游泳,又会滑冰?11、在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60100,你能答复以下问题吗?①有人摘了山莓;②有人同时摘了三种水果;③有人只摘了山莓;④有人摘了李子和草莓,而没有摘山莓;⑤有人只摘了草莓.12、五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,假设参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数一样,参加E组的人数最少,只有4人.那么,参加B组的有多少人?13、五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?14、某学校派出假设干名学生参加体育竞技比赛,比赛一共只有三个工程,参加长跑、跳高、标枪三个工程的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛工程,求这所学校一共派出多少人参加比赛?图形中的重叠问题1、 把长38厘米和53厘米的两根铁条焊接成一根铁条.焊接局部长4厘米,焊接后这根铁条有多长?2、把长23厘米和37厘米的两根铁条焊接成一根铁条.焊接局部长3厘米,焊接后这根铁条有多长?3、两张长4厘米,宽2厘米的长方形纸摆放成如下图形状.把它放在桌面上,覆盖面积有多少平方厘米?4、 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的局部是一个边长为4厘米的正方形,求这个组合图形的面积.5、一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的局部是一个边长4厘米的正方形,求这个组合图形的面积.图32厘米4厘米图36、三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影局部面积之和是多少?7、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影局部的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠局部的面积是多少平方厘米?8、如下图,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.假设A 与B 、B 与C 的公共局部的面积分别为8、7,A 、B 、C 这三张纸片的公共局部为3.求A 与C 公共局部的面积是多少?容斥原理在数论问题中的应用1、 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?2、 在自然数1100~中,能被3或5中任一个整除的数有多少个?3、 在前100个自然数中,能被2或3整除的数有多少个?4、 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个5、求在1至100的自然数中能被3或7整除的数的个数.5、 以105为分母的最简真分数共有多少个?它们的和为多少? CB A107、分母是385的最简真分数有多少个?并求这些真分数的和.8、在1至2021这2021个自然数中,恰好是3、5、7中两个数的倍数的数共有个.9、在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?10、50名同学面向教师站成一行.教师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向教师的同学还有多少名11、有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3, (2000)然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?12、写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?13、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规那么如下:〔1〕标签号为2的倍数,奖2支铅笔;〔2〕标签号为3的倍数,奖3支铅笔;〔3〕标签号既是2的倍数,又是3的倍数可重复领奖;〔4〕其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支14、在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,那么木棍总共被锯成________段.15、一根101厘米长的木棒,从同一端开场,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.16、一根1.8米长的木棍,从左端开场每隔2厘米画一个刻度,涂完后再从左端开场每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?容斥原理中的最值问题1、将1~13这13个数字分别填入如下图的由四个大小一样的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?2、如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个3、某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?4、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.5、60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?6、图书室有100本书,借阅图书者需在图书上签名.这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过7、甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开场,按顺序往后读.甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个8、在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?恰好被1个人浇过的花最多有多少盆?9、甲、乙、丙同时给100盆花浇水.甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆。

容斥原理_精品文档

容斥原理_精品文档

牛吃草问题专题训练一、牛吃草问题介绍在著名科学家牛顿写的《算术》一书中,有一道非常有名的题目:有一片牧场,已知牛27头,6天把草吃尽;牛23头,9天把草吃尽.如果有牛21头,几天能把草吃尽?后来人们把这道题叫做“牛顿问题”.表面上看,这似乎是归一问题,只要算出一头牛多少天草吃尽就可以了.其实不然,这里有一个很重要的不同:牧场上的草是不断地生长着的.解决“牛吃草”问题的基本步骤:1.把每头牛每天的吃草量看做一个单位;2.求出牧场上牧草每天生长出来的量为多少(以每头牛每天吃草量为标准);3.求出原来牧场上牧草的数量是多少(以每头牛每天吃草量为标准);4.安排固定数量的牛去吃新生长出来的草;5.剩下的牛吃掉牧场上原有的草所需要的时间(即全部牛吃掉牧场上草所需时间)。

二、例题精讲例1、牧场上长满牧草。

每天匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.问供25头牛可吃几天?解:设每头牛每天的吃草量为“1”.10头牛20天吃的草量:10×20=20015头牛10天吃的草量:15×1O=150每天新生的草量:(200-150)÷(20-10)=5原有草量:200-5×20=100可设想25头牛中有5头牛专吃新生的草,其他的牛吃原有的草,全部牧场的草可吃天数:100÷(25-5)=5(天) 答:可供25头牛吃5天.说明:本题的难点在于牧草总量未定,并且随着时间的增长而增长.第一步先求出每天生长量;第二步求出原有草量;第三步设想用几头牛去专吃新生的草;剩下的牛去吃原有的草.所用天数即为所求.例2、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如果5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?分析:前两步与例1的解法相同.最后算出2小时需淘出的水=原有水量+两小时漏进的水量.再除以2小时,即得需要安排的人数.解设每一个人每小时的淘水量为“1”.(1)每小时漏进船的水量:(5×8-10×3)÷(8-3)=2(2)船内原有的水量:10×3=2×3=24(3)安排淘水的人数:(24+2×2)÷2=14(人)答:需安排14人淘水.说明:从以上两个例题可以看出,解决问题的关键在于求出单位时间内增加的量和原有的量.例3、某车站在检票前若干分钟就开始排队,假如每分钟来的旅客人数一样多.若同时开4个检票口,从开始检票到等候检的队伍消失,需30分钟;同时开5个检票口,需20分钟.如果同时开7个检票口,那末需多少分钟?分析:等候检票的旅客人数在变化,“旅客”相当于“草”、“检票口”相当于“牛”,可用牛吃草问题的解法解决.解:设1个检票口1分钟检票的旅客人数为“1”.(1)每分钟新来旅客:(4×30-5×20)÷(30-20)=2(2)检票开始前排队人数:4×30-2×30=60(3)同时打开7个检票口检完票所需时间:60÷(7-2)=12(分)答:12分钟就无人排队了.小结牛吃草问题涉及三种数量,原有的草、新长出的草、牛吃的草.牛吃草问题解法上大体分三步.一、求新生草量;二、求有草量;三、给出问题的解.三、专题特训1.一个水池安装有排水量相等的排水管若干根,一根进水管不断地往池里放水,平均每分钟进水量相等.如果开放三根排水管,45分钟可把池中水放完.如果开放五根排水管,25分钟可把池中水排完.如果开放八根排水管,几分钟排完水池中的水?2.某火车站的检票口,在检票开始前已有一些人排队.检票开始后每分钟有10人前来排队检票.一个检票口每分钟能让25人检票进站.如果惟独一个检票口,检票开始8分钟后就没有人排队.如果有两个检票口。

六年级上册奥数试题-第5讲:容斥原理_全国通用(含答案)

六年级上册奥数试题-第5讲:容斥原理_全国通用(含答案)

第5讲容斥原理知识网络我们经常会遇到这样一类问题,题目中涉及到包含与排除,也就是说有重叠部分。

解答此类问题的主要依据是容斥原理。

容斥原理一:设A、B是两类有重叠部分的量(如图1所示),若A对应的量为a,B对应的量为b,A与B重叠部分对应的量为ab,那么这两类量的总量可以用下面的公式进行计算:总量=a+b-ab容斥原理二:设A、B、C是三类有重叠部分的量(如图2所示),若A对应的量为a,B 对应的量为b,C以应的量为c,A与B重叠部分以应的量为ab,B与C重叠部分对应的量为bc,C与A重叠部分对应的量为ca,A、B、C三部分重叠部分对应的量为abc,则这三类量的总量可以用下面的公式进行计算:总量=a+b+c-ab-bc-ca+abc重点·难点容斥原理的表述虽然简单,但涉及容斥原理的题型很多,范围很广。

我们往往会遇到一些看似与容斥原理无关的问题,然而通过恰当的转化,便可利用容斥原理顺利求解。

如何分析题目,准确找到重叠部分,将问题转化成可用容斥原理解决的问题是本节的难点。

学法指导解决本节问题的最基本方法是示意图法,即通过示意图来表示题目中的数量关系,使分析、推理与计算结合起来,达到使题目的内容形象化,数量之间关系直观化的目的。

因此,这就要求我们在解题过程中,仔细分析,找出所需量并用示意图表示出来,进而通过观察示意图,确定几类量的重叠部分,然后运用容斥原理解决问题。

经典例题[例1]分母是1001的最简真分数,共有多少个?思路剖析分母是1001的真分数有共1000个,为了方便计算,增加一个分数在1001个分数中考虑问题。

由于1001=7×11×13,所心1~1001的分子里只要含有7、11、13的倍数的就一定能同分母约分,即不是最简真分数,应排除掉。

因此,首先应考虑1~1001中,有多少个7、11或13的倍数。

解答因为1001=7×11×13,所以在1~1001的自然数中,7的倍数共有(11×13)个,11的倍数共有(7×13)个,13的倍数共有(7×11)个;7、11年公倍数有13个,7、13的公倍数有11个,11、13的公倍数有7个;7、11、13的公倍数有1个(即1001)。

小学数学题型归纳:容斥原理练习题(附答案)_

小学数学题型归纳:容斥原理练习题(附答案)_

小学数学题型归纳:容斥原理练习题(附答案)_
学习方法网小编为各位同学整理了小学数学题型归纳,是我们平时学习中的一大难点,希望能对各位同学有所帮助。

更多学习材料尽在学习方法网。

小学数学题型归纳:容斥原理练习题(附答案)
【题目】
某大学的一间学生宿舍里居住着8名大学生,已知其中有6人会游泳,有5人会滑冰,有4人会打乒乓球.该宿舍内这两种运动都会的最多能有人。

【答案】
6+5+4=15,152=71,所以最多能有7人会两种。

今天就和大家就分享到这,祝各位同学学习愉快!。

6年级 奥数 容斥原理

6年级  奥数 容斥原理
5.小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家登记如下表:
姓名
居室
门厅
厨房
厕所
总面积
小明家
14
12
8
4
38
小龙家
20
12
8
4
44
他们住的这套房子共有多少平方米?
课后作业
1.100个小朋友做游戏,每人至少拿一面旗,其中56人拿小红旗,52人拿小黄旗。几人既拿小红旗又拿小黄旗?
容斥原理
专题解读:
在数学中,我们经常会碰到重复包含的现象。为了不重复计数,应从它们的和中减去重复部分,这一原理,我们称之为容斥原理,也称包含排除原理。正确运用这一原理,可以帮助我们解答血多抽象的数学问题。
例1.六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑自行车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?
5.某班学生进行短跑、游泳、篮球三个项目的测试。有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的人数如下表。求这个班的学生数?
短跑
游泳
篮球
短跑、游泳
游泳、篮球
短跑、篮球
短跑、游泳、篮球
17
18
15
6
6
5
2
课堂检测
1六一班有学生55人,每人至少参加赛跑和跳绳比赛中的一种,已知参加赛跑的有36人,参加跳绳的有38人。问两项比赛都参加的有几人?
例5.某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。
短跑
投掷
跳远
短跑、跳远
短跑、投掷

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

思维训练十、抽屉问题、容斥原理

思维训练十、抽屉问题、容斥原理

转帖请标注“比基尼哥哥出品思维训练十、抽屉问题、容斥原理A卷1、六年级共有205位学生,在这些学生当中,至少有位学生在同一月过生日.2、布袋里有5种不同颜色的球,每种都有20个,最少取出个球,才能保证其中定有3个颜色相同的球.3、一副扑克共54张,其中1~13点各有4张,还有两张王牌,至少要取出张牌,才能保证其中必有4张牌的点数相同.4、某袋内装有70只球,其中20只红球,20只绿球,20只黄球,其余是黑球和白球.如果要确保取出的球至少包含10只同色的球,那么最少必须从袋中取出只球.B卷5、学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本.那么,至少在个学生中一定有两个所借的图书属于同一种.6、强志小学国庆节举办三项游艺活动,每个学生至多参加两项、至少参加一项活动.那么只要有个学生就能保证至少有两人参加的活动相同.7、一排长椅共有90个座位,其中一些座位已有人就坐了.这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经坐的某个人相邻.原来,至少有人已经就坐.8、一个班有学生42人,参加体育代表队的有30人,参加文艺代表队的有25人,并且每个人都至少参加了一个队.那么,两队都参加的有个人.9、某班有40个学生,其中有16人参加科技小组,18人参加数学小组,有14人两个小组都不参加.那么,两个小组都参加的有人.10、在1至200的自然数中,不能被3整除又不能被7整除的数有个.C卷11、有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语.那么这100位旅客中既懂英语又懂俄语的有人.12、一次数学竞赛,甲答错题目总数的1/9,乙答对7道题,两人都答对的题目是题目总数的1/6.甲答对了道题.13、有一些数字卡片,上面写的数都是3的倍数或4的倍数.其中3的倍数卡片占三分之二,4的倍数的卡片占四分之三,12的倍数的卡片有15张.那么,这些卡片一共有张.14、某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球1718156652那么,这个班的学生人数是.15、南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔.那么,这家企业的“万元户”中至少有%是股民;打工仔中至少有(填一分数)是万元户.思考:☆从1、2、3、…、1994这些自然数中,最多可以取出个数,才能使这些数任意两个数的差都不等于9.☆在23×23的方格纸中(如图),将1至9这9个数安填入每个方格,并对所有形如“”的五个方格中的数求和.对于小方格中数字的任一种填法,找出其中相等的和数,则一定能保证至少有个相等的和出现.☆一次共有测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分;回答完全错误或不回答,得0分.那么,至少人参加这次测验,才能保证至少有3人的得分相同.☆50名学生面向老师站成一行,按老师的口令从左到右顺序报数:1、2、…、50.报完后,老师让所报数是4的倍数的同学向后转,接着又让所报的数是6的倍数的同学向后转.那么,现在仍然面向老师的学生有名.。

小学奥数之容斥原理

小学奥数之容斥原理

容斥原理(一)【例题分析】例1. 有长8厘米,宽6厘米的长方形与边长5厘米的正方形。

如图放在桌面上,求这两个图形盖住桌面的面积?分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:(平方厘米)方法一:(平方厘米)方法二:(平方厘米)方法三:(平方厘米)答:盖住桌面的面积是67平方厘米。

例2. 六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。

也可以这样解:(人)或(人)答:两组都参加的有5人。

例3。

六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数。

(人)(人)答:既不会骑车又不会游泳的有9人。

例4. 某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分.(人)答:这个年级参加课外小组的有60人。

例5。

某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数.短跑投掷跳远跑跳跑投跳投三项19 21 20 9 10 6 3分析与解:根据题意画出如下图要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数。

容斥原理奥数原题

容斥原理奥数原题

容斥原理在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+B类元素个数—既是A类又是B类的元素个数。

例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。

试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。

)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数1、某艺术团的小演奏家们每人都至少会演奏小提琴和钢琴中的一种。

他们中有32人会拉小提琴,27人会弹钢琴,小提琴和钢琴都能演奏的有11人。

这个团共有多少个小演奏家?2、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且全班每人至少参加一个队。

问:这个班两队都参加的有多少人?3、京华小学五年级学生采集标本。

采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人。

全班学生共有40人,没有采集标本的有多少人?4、有100位旅客,其中有10人既不懂英语又不懂日语,有75人懂英语,83人懂日语。

小学奥数 容斥原理 知识点+例题+练习 (分类全面)

小学奥数 容斥原理 知识点+例题+练习 (分类全面)
4、少年乐团学生中有170人不是五年级的,有135人不是六年级的,已知五、六年级的共有205人,少年乐团中五、六年级以外的学生共有多少人?
5、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?不是6的倍数或不是5的倍数的数有几个?
6、某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
巩固:刘老师、夏老师和胡老师共有书90本,其中刘老师和夏老师一共有70本,夏老师和胡老师共有50本,三位老师各有书多少本?
例5、在1至10000中不能被5或7整除的数共有多少个?既不能被5整除又不能被7整除的有多少个?
巩固:在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?不是5的倍数或不是8的倍数的数有几个?
巩固:某校的每个学生至少爱好体育和文娱中的一种活动,已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。这个学校共有学生多少人?
例3、学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
课后作业
1、五年级有112人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有65人,数学得优的有87人,问语文、数学都得优的有多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?
3、五(1)班有学生50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人,90分以下的有多少人?

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。

参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七容斥原理
姓名:
例1、五年级二班40名同学,其中有25人没参加数学小组,有18人参加航模小组,有10人两个小组都参加.那么只参加了一个小组的学生有多少人?
例2、渔乡小学举行长跑和游泳比赛,共305人参加。

有150名男生和90名女生参加长跑比赛,有120名男生和70名女生参加游泳比赛,有110名男生两项比赛都参加了。

请问:只参加游泳而没参加长跑的女生有多少人?
例3、在1至1000的自然数中,不能被5或7整除的数有多少个?
例4、如图所示,A、B、C分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A与B,B与C,C与A公共部分的面积分别是5、3、4,求A、B、C三个图形公共部分(阴影部分)的面积。

1、李老师出了两道题,全班40 人中,第一题有30 人做对,第2 题有12 人未做对,两题都做对的有20 人。

第1 题不对、第2 题对的有几个人?两题都不对的有几个人?
2、某校参加数学竞赛的有120 名男生、80 名女生,参加语文竞赛的有120 名女生、80 名男生.已知该校共有260 名学生参加竞赛,其中75 名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?
3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
4、如图,桌面上放有两本书,A的面积是56,B的面积是48,桌面面积是200,书本未覆盖部分面积是116,求两本书重叠部分的面积。


A
B
5、有一根长为180 厘米的绳子,从一端开始每隔3 厘米作一记号,每隔4 厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
1、在1到2004的所有自然数中,既不是2的倍数,也不是3、5的倍数的数有多少个?
2、如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.
3、某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:
这个班的学生共有多少人?
4、有2008盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2008,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?
投掷156562
1817投掷短跑游泳游泳投掷投掷游泳短跑短跑游泳短跑。

相关文档
最新文档