高中数学解题方法系列:函数中的隐形零点、设而不求
【高考】二轮复习导数中的隐零点问题ppt课件
分析.(1)当t 2,f ( x) x3 3x2 , f '( x) 3x2 6x,易于求单调区间;
(2)f ( x) x( x2 3x 2 t),其中 , 为方程x2 3x 2 t 0 两个不等的实根.对任意x [ , ],不等式f ( x) 16 t恒成立,
3
2
法1.直接求解x , 代入,降次,消元x 3x (2 t)x S2:以零点为分界点,说明导函数的正负1,原来函数的增减性,进而得到函数的极值;
1
1
1
(综xt 上1:11), t的即取(2t值1范t)x围11是(13141,26)t( 2,11(]t. 1) t 1 24 3 121的刚22(观5222当注SS注SS(S导-注注用31223..、502...难能学很区刚史点环函::2函::导:::::、.、古通)点源法多 别 的 料 三 境 数 ( ( 数 ( ( 数将先以以将我没之过进:部:时和活实:永的11零11解零求零零零宁有立分))行))明分活候发动证偏远零点决点导点点点可斗大析 确 确 代 确 确王:动,生中)颇不点虽函方,为为方做争事阿定定数定定朝知探人条,。会不然数程用分分程人就者拉隐隐式隐隐1政道究并件大全十易隐综适零界界适类没,伯性性的性性治天法不,家球全求形合当点点点当中有不国零零替零零制然、是懂看化十出,问变存,,变有功惟家点点换点点度气自因得见是美时但题形在说说形梦绩有产,,过,,变、主为燃水一,,只,,性明明,想,超生可可程可可3化石学失料中把消注要是整定导导整和没世、以以中以以的油习败的的双极意抓高体理函函体有有之伊由由,由由认、法而合筷刃的分住考代判数数代完功才斯零零尽零零识煤烦理子剑人析特的入定的的入成绩,兰点点可点点等恼安,受其征重“最导正正最梦就亦弯教的的能的的化全发环导(点;值函负负值想没而必折创存存将存存石使展境数零考式数,,式的有是有”立在在复在在燃了用中控的点察子零原原子愿奖因坚的性性杂性性料,、国制单方内;点来来;望赏为忍历定定目定定,硬灭家,调程容的函函的,失不史理理标理理认币1火面积性),存数数、而败拔背确确式确确识“和临极,,最在的的最没后升之景定定变定定燃防的的结判终性增增渺有找高志、,,形,,料爆既人合断都,减减小行不”。日也也为也也了完的有却零其会由性性的动到本可可常可可,全基机控点范归,,人就任大以以见以以这燃础遇制存围结进进,没何化由由的由由是烧知也环在(于而而而有借改函函整函函为的识有境定用函得得不生口新数数式数数什重。挑。理零数到到愿活而的的的或的的么要战,点的函函做。烦过图图分图图了性确存单数数并一—恼程象象式象象?;定在调的的结个—能。,特特,特特零性性极极合最别从初征征需征征点定的值值的伟林保步得得要得得的理判;;单大斯护学到到尽到到范)断调的基环习,,可,,围,,性、境运及及能及及最而得无的用题题将题题后函到梦角必 设 设 指 设 设整 数零想度要条条、条条体的点、选性件件对件件代单的无择与得得数得得入调大愿燃可到到函到到,性致望料能等等数等等化又范的,性等等式等等归与围人知的;;用;;为导;。道哲有常函—利学理见数—用范式函的纪氢畴替数零伯气,换形点伦、解,式有酒释这着.精、是密等分解切清析题的洁历能联燃史否系料事继,的件续可可和深以能历入说性史的导;认现关函识象键数缓的;的慢方零氧法点化。的、(求燃历解烧史或、解估爆释算炸)
高考数学专题一 微专题12 隐零点问题
f(x)=12x2-x+asin x,则 f′(x)=x-1+acos x, ∴f′(π)=π-1-a=π-2,∴a=1, 令φ(x)=x-1+cos x,则φ′(x)=1-sin x≥0恒成立, ∴φ(x)是增函数,当x>0时,φ(x)>φ(0)=0,即f′(x)>0恒成立, ∴f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=0, ∵λ≤f(x)恒成立,∴λ≤f(x)min=0, ∴λ的取值范围是(-∞,0].
当a=1时,f(x)+g(x)=bx+ln x-xex,
由题意 b≤ex-lnxx-1x在(0,+∞)上恒成立,
令 h(x)=ex-lnxx-1x,
则
1-ln h′(x)=ex- x2
x+x12=x2ex+x2 ln
x ,
令 u(x)=x2ex+ln x,则 u′(x)=(x2+2x)ex+1x>0,所以 u(x)在(0,+∞)
专题一 函数与导数
微专题12
隐零点问题
考情分析
隐零点问题是指一个函数的零点存在但无法直接求解出来.在 函数、不等式与导数的综合题目中常会遇到隐零点问题,一般 对函数的零点设而不求,借助整体代换和过渡,再结合题目条 件,利用函数的性质巧妙求解.一般难度较大.
思维导图
内容索引
典型例题
热点突破
PART ONE
当 x0∈e12,+∞时,h(x0)min=h(e)=-e, 综上,当x0∈(0,+∞)时,h(x0)min=h(e)=-e, 得b≥-e. 故b的取值范围是[-e,+∞).
考点三 与三角函数有关的“隐零点”问题
典例3 (2023·东北师大附中模拟)已知f(x)=12x2-x+asin x. (1)若在x=π处的切线的斜率是π-2,求当λ≤f(x)在[0,+∞)恒成立时的λ
利用隐零点设而不求解决导数问题(解析版)
利用隐零点设而不求解决导数问题1(2023秋·北京·高三统考开学考试)已知函数f(x)=ax-x+be x,曲线y=f(x)在(0,f(0))的切线为y=-x+1.(1)求a,b的值;(2)求证:函数在区间(1,+∞)上单调递增;(3)求函数f(x)的零点个数,并说明理由.【答案】(1)a=1,b=-1.(2)证明见解析(3)零点个数为0,证明见解析.【详解】(1)f (x)=a-1-x+be x,则有f0 =-b=1,解得b=-1,f 0 =a-1-b=a-2=-1,则a=1,b=-1.(2)由(1)知f(x)=x-x-1e x ,f (x)=1-2-xe x=e x+x-2e x,设h x =e x+x-2,因为h x 在1,+∞上单调递增,则h x >h1 =e-1>0,所以f (x)>0在1,+∞上恒成立,所以函数f x 在区间(1,+∞)上单调递增.(3)因为f (x)=1-2-xe x =e x+x-2e x,令f (x)=0,令f (x)=0,得e x+x-2=0,设h x =e x+x-2,由(2)知h x 在R上单调递增,且h0 =-1,h1 =e-1>0,故存在唯一零点x0∈0,1使得h x =0,即存在唯一零点x0∈0,1满足f (x0)=0,即得e x0+x0-2=0,则e x0=2-x0,且当x∈-∞,x0时,f (x)<0,此时f x 单调递减,当x∈x0,+∞时,f (x)>0,此时f x 单调递增,所以f x min=f x0=x0-x0-1e x0=x0e x0-x0+1e x0=x02-x0-x0+12-x0=-x20+x0+12-x0=-x0-122+542-x0,当x0∈0,1时,2-x0>0,-x0-1 22+54>-0-122+54=1,则f x min>0,则函数f(x)的零点个数为0.2(2023秋·河北张家口·高三统考开学考试)已知f x =ae x,g x =ln x+1 a.(1)当a=1时,证明:f x ≥g x +1;(2)若∀x∈-1,+∞,f x ≥g x +1恒成立,求a的取值范围.【答案】(1)证明见解析(2)a≥1【详解】(1)当a=1时,设h x =f x -g x -1=e x-ln x+1-1x>-1,h x =e x-1x+1,当x>0时,h x >0,-1<x<0时,h x <0,所以h x 在-1,0 单调递减,0,+∞ 单调递增,所以h x ≥h 0 ,而h 0 =0,∴h x ≥0,即f x ≥g x +1.(2)法一:若∀x ∈-1,+∞ ,f x ≥g x +1恒成立,即ae x ≥ln x +1a+1⇒ae x +ln a ≥ln x +1 +1,即ae x+ln ae x ≥x +1+ln x +1 ,构造函数m t =t +ln t ,易知m t 在0,+∞ 递增,则不等式为m ae x ≥m x +1 ,∴ae x ≥x +1⇒a ≥x +1e x ,设ϕx =x +1e xx >-1 ,ϕ x =-xex x >-1 ,则φx 在-1,0 递增,0,+∞ 递减,ϕx max =ϕ0 =1,∴a ≥1.法二:∀x ∈-1,+∞ ,f x ≥g x +1恒成立,即ae x +ln a -ln x +1 -1≥0.令F x =ae x -ln x +1 +ln a -1,F x =ae x -1x +1a >0 ,ae x =1x +1有唯一实数根,设为x 0x 0>-1 ,即ae x 0=1x 0+1,ln a +x 0=-ln x 0+1 ,则F x 在-1,x 0 递减,在x 0,+∞ 递增,∴F x min =F x 0 =ae x 0-ln x 0+1 +ln a -1≥0,即1x 0+1-x 0-2ln x 0+1 -1≥0,设h x =1x +1-x -2ln x +1 -1,显然h x 在-1,+∞ 单调递减,而h 0 =0,∴h x 0 ≥0,则-1<x 0≤0,ln a =-ln x 0+1 -x 0,x 0∈-1,0 ,∴ln a ≥0,a ≥1.3(2023春·新疆乌鲁木齐·高三校考阶段练习)已知函数f x =x cos x -sin x ,x ∈0,π2.(1)求证:f x ≤0;(2)若a <sin x x <b 对x ∈0,π2恒成立,求a 的最大值与b 的最小值.【答案】(1)证明见解析;(2)a 的最大值为2π,b 的最小值为1.【详解】(1)由f x =x cos x -sin x ,求导得f x =cos x -x sin x -cos x =-x sin x ,因为在区间0,π2 上f x =-x sin x <0,则f x 在区间0,π2上单调递减,所以f x ≤f 0 =0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx<b ”等价于“sin x -bx <0”,令g x =sin x -cx ,x ∈0,π2,则g x =cos x -c ,当c ≤0时,g x >0对任意x ∈0,π2 恒成立,当c ≥1时,因为对任意x ∈0,π2,g x =cos x -c <0,于是g x 在区间0,π2 上单调递减,则g x <g 0 =0对任意x ∈0,π2恒成立,当0<c <1时,存在唯一的x 0∈0,π2使得g x 0 =cos x 0-c =0,当x ∈(0,x 0)时,g (x )>0,函数g (x )单调递增,当x ∈x 0,π2时,g (x )<0,函数g (x )单调递减,显然g (x 0)>g (0)=0,g π2 =1-π2c ,则当g π2 ≥0,即0<c ≤2π时,g (x )>0对x ∈0,π2 恒成立,因此当且仅当c ≤2π时,g (x )>0对任意x ∈0,π2恒成立,当且仅当c ≥1时,g (x )<0对任意x ∈0,π2 恒成立,所以a <sin x x <b 对任意x ∈0,π2 恒成立时,a 的最大值为2π,b 的最小值为1.4(2023秋·浙江·高三浙江省春晖中学校联考阶段练习)已知函数f x =ae x -e (x -1)2有两个极值点x 1,x 2x 1<x 2 .其中a ∈R ,e 为自然对数的底数.(1)求实数a 的取值范围;(2)若ex 1+e -2 x 2+21-e ≥λx 1-1 x 2-1 恒成立,求λ的取值范围.【答案】(1)0,2e (2)-∞,(e -1)2【详解】(1)由于f x =ae x -2e x -1 ,由题知f x=0有两个不同实数根,即a =2e x -1e x有两个不同实数根.令g x =2e x -1 e x ,则gx =2e 2-x ex≥0,解得x ≤2,故g x 在-∞,2 上单调递增,在2,+∞ 上单调递减,且x →-∞时,g (x )→-∞,x →+∞时,g (x )→0,g 2 =2e,故g x 的图象如图所示,当a ∈0,2e时,f x 有两个零点x 1,x 2且x 1<x 2.则f x ≥0⇔0<x ≤x 1或x ≥x 2,故f x 在0,x 1 上单调递增,在x 1,x 2 上单调递减,在x 2,+∞ 上单调递增,f x 的极大值点为x 1,极小值点为x 2.故f x =ae x -e (x -1)2有两个极值点时,实数a 的取值范围为0,2e.(2)由于ex 1+e -2 x 2+21-e ≥λx 1-1 x 2-1 ⇔e x 1-1 +e -2 x 2-1 ≥λx 1-1 x 2-1 若设t 1=x 1-1,t 2=x 2-10<t 1<t 2 ,则上式即为et 1+e -2 t 2≥λt 1⋅t 2由(1)可得ae t 1=2t 1>0ae t 2=2t 2>0 ,两式相除得e t 2-t 1=t 2t 1,即t 2-t 1=ln t 2t 1>0,由et 1+e -2 t 2≥λt 1⋅t 2得t 2-t 1 et 1+e -2 t 2 ≥λt 1t 2ln t2t 1所以λ≤2+e -2 t 2t 1-e ⋅t1t 2ln t2t 1,令t =t 2t 1>1,h t =2+e -2 t -e tln t(t >1),则λ≤h t 在1,+∞ 恒成立,由于ht =e -2 t2+e ln t -2t -e -2 t 2+et 2ln 2t,令φt =e -2 t 2+e ln t -2t -e -2 t 2+e ,则φ t =2e -2 t ln t -2-e -2 t +e t,φt =2e -2 ln t +2e -2 -et 2-e +2,显然φ t 在1,+∞ 递增,又有φ 1 =-2<0,φ e =3e -6-1e>0,所以存在t 0∈1,e 使得φ t 0 =0,且易得φ t 在1,t 0 递减,t 0,+∞ 递增,又有φ 1 =0,φ e =e 2-2e -1>0,所以存在t 1∈1,e 使得φt 1 =0,且易得φt 在1,t 1 递减,t 1,+∞ 递增,又φ1 =φe =0,则1<x <e 时,φt <0,h t <0,x >e 时,φt >0,h t >0,所以易得h t 在1,e 上递减,在e ,+∞ 上递增,则h (t )min =h e =(e -1)2,所以λ的取值范围为-∞,(e -1)2 .5(2023秋·湖南永州·高三校联考开学考试)已知函数f x =x 2-mx ln x +1,m ∈R 且m ≠0.(1)当m =1时,求曲线y =f x 在点1,f 1 处的切线方程;(2)若关于x 的不等式f x ≥2ex 恒成立,其中e 是自然对数的底数,求实数m 的取值范围.【答案】(1)x -y +1=0(2)1e -e ,0 ∪0,e -1e 【详解】(1)由题,当m =1时,f x =x 2-x ln x +1,f x =2x -ln x -1,f 1 =1,f 1 =2,所以切线方程为y -2=x -1,化简得x -y +1=0,即曲线f x 在点1,f 1 处的切线方程为x -y +1=0.(2)f x ≥2e x ,即x 2-mx ln x +1≥2e x ,即x +1x -m ln x -2e≥0在0,+∞ 上恒成立,令g x =x +1x -m ln x -2e ,则g x =1-1x 2-m x =x 2-mx -1x 2.对于y =x 2-mx -1,Δ=m 2+4>0,故其必有两个零点,且两个零点的积为-1,则两个零点一正一负,设其正零点为x 0∈0,+∞ ,则x 20-mx 0-1=0,即m =x 0-1x 0,且在0,x 0 上时y =x 2-mx -1<0,则g x <0,此时g x 单调递减,在x 0,+∞ 上,y =x 2-mx -1>0,g x >0,此时g x 单调递增,因此当x =x 0时,g x 取最小值,故g x 0 ≥0,即x 0+1x 0-x 0-1x 0ln x 0-2e ≥0.令h x =x +1x -x -1x ln x -2e ,则h x =1-1x 2-1+1x 2 ln x -1-1x 2 =-1+1x2ln x ,当x ∈0,1 时,h x >0,当x ∈1,+∞ 时,h x <0,则h x 在0,1 上单调递增,在1,+∞ 上单调递减,又h 1e=h e =0,故x 0∈1e ,e,显然函数m =x 0-1x 0在1e ,e 上是关于x 0的单调递增函数,则m ∈1e -e ,e -1e,所以实数m 的取值范围为1e -e ,0 ∪0,e -1e6(2023秋·江苏镇江·高三统考开学考试)已知函数f x =ln x -xe -x +1x(e 为自然对数的底数).(1)求函数f x 在x =1处的切线方程;(2)若f x +x -1x -1>ae -x +ln x 恒成立,求证:实数a <-1.【答案】(1)y =1-1e (2)证明见解析【详解】(1)由f x =ln x -xe -x +1x,定义域为0,+∞ ,则f x =x -1e x+1x -1x 2=x -1 1e x +1x2.所以f x 在x =1处的切线l 的斜率为k =f1 =0,又f 1 =1-1e ,则l 的方程为y =1-1e .(2)f x +x -1x -1>ae -x +ln x ⇔f x -ln x +x 2-x -1x >a e x ⇔-x e x +x -1>aex ⇔a <x -1 e x -x恒成立,令h x =x -1 e x -x ,则h x =xe x -1,令u x =xe x -1,x >0,则u x =x +1 e x >0所以u x 在0,+∞ 上单调递增,又u 0 =-1<0,且u 1 =e -1>0,则u x 在0,1 上存在零点x 0且u x 0 =x 0e x 0-1=0,即e x 0=1x 0.所以h x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,所以h x min =h x 0 =x 0-1 e x 0-x 0=1-x 0+1x 0,即a <h x 0 .h x 0 =1-x 0+1x 0,则h x 0 =1x 20-1=1+x 0 1-x 0 x 20又x 0∈0,1 ,所以h x 0 >0,则h x 0 =1-x 0+1x 0在0,1 上单调递增,因此h x 0 <h 1 =-1所以a <-1.7(2023秋·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知函数f (x )=2x 3+3(1+m )x 2+6mx (x ∈R ).(1)讨论函数f x 的单调性;(2)若f -1 =1,函数g (x )=a ln x +1 -f (x )x 2≤0在1,+∞ 上恒成立,求整数a 的最大值.【答案】(1)答案见解析(2)4【详解】(1)根据题意可得f (x )=6x 2+6(1+m )x +6m =6x +1 x +m ,若m =1,f (x )=6x +1 2≥0在x ∈R 上恒成立,此时函数f x 在R 上单调递增;若m >1,此时-m <-1,当x ∈-∞,-m ∪-1,+∞ 时,满足f (x )>0,此时函数f x 在-∞,-m ,-1,+∞ 上单调递增;当x ∈-m ,-1 时,满足f (x )<0,此时函数f x 在-m ,-1 单调递减;若m <1,此时-m >-1,当x ∈-∞,-1 ∪-m ,+∞ 时,满足f (x )>0,此时函数f x 在-∞,-1 ,-m ,+∞ 上单调递增,当x ∈-1,-m 时,满足f (x )<0,此时函数f x 在-1,-m 单调递减;综上可知,m =1时,f x 在R 上单调递增;m >1时,f x 在-∞,-m 和-1,+∞ 上单调递增,在-m ,-1 单调递减;m <1时,f x 在-∞,-1 和-m ,+∞ 上单调递增,在-1,-m 单调递减;(2)由f -1 =1可得-2+3(1+m )-6m =1,解得m =0;所以f (x )=2x 3+3x 2,则g (x )=a ln x +1 -2x -3,易知x ∈1,+∞ 时,ln x +1>0,若函数g (x )=a ln x +1 -f (x )x2≤0在1,+∞ 上恒成立,等价成a ≤2x +3ln x +1在x ∈1,+∞ 上恒成立;令h x =2x +3ln x +1,x >1 ,则hx =2ln x +1 -2x +3 ⋅1x ln x +1 2=2ln x -3x ln x +12;令φx =2ln x -3x x >1 ,则φ x =2x +3x2>0在x ∈1,+∞ 上恒成立,即函数φx 在x ∈1,+∞ 上单调递增,易知φ2 =2ln2-32=ln16-ln e 32,由于e 3>2.73=19.683,所以φ2 <0,而φ52 =2ln 52-65=25ln 52-ln e 3 5,且52 5>25=32>27=33>e 3,所以φ52>0;因此h x 在x ∈1,+∞ 有且仅有一个零点x 0,满足2ln x 0=3x 0,且x 0∈2,52 ;所以当x ∈1,x 0 时,h x <0,当x ∈x 0,+∞ 时,h x >0;因此函数h x =2x +3ln x +1,x >1 在1,x 0 上单调递减,在x 0,+∞ 上单调递增;所以h x 的最小值为h x 0 =2x 0+3ln x 0+1=2x 0+332x 0+1=2x 0,显然2x 0∈4,5 ,因此a ≤2x 0∈4,5 ,又a 是整数,所以a 的最大值为4.8(2023秋·陕西西安·高三校联考开学考试)已知函数f x =ln x -x +x -2 e x -m ,m ∈Z .(1)当m =1时,求曲线y =f x 在点1,f 1 处的切线方程;(2)若关于x 的不等式f x <0在0,1 上恒成立,求m 的最小值.【答案】(1)y =-e -2(2)-3【详解】(1)由题当m =1时,f x =ln x -x +x -2 e x -1,f x =1x+x -1 e x -1,f 1 =0,f 1 =-e -2,所以切线方程为y +e +2=0x -1 ,化简得y =-e -2,即曲线f x 在点1,f 1 处的切线方程为y =-e -2.(2)由f x <0可得m >ln x -x +x -2 e x ,令g x =ln x -x +x -2 e x ,x ∈0,1 ,则g x =x -1 e x -1x,当0<x ≤1时,x -1≤0,设h x =e x -1x,易知h x 在0,1 上单调递增,又h 1 =e -1>0,h 12=e -2<0,则存在x 0∈12,1,使得h x 0 =0,即e x 0=1x 0,取对数得ln x 0=-x 0,当x ∈0,x 0 时,h x <0,g x >0,g x 单调递增,当x ∈x 0,1 时,h x >0,g x ≤0,g x 单调递减,∴g (x )max =x 0-2 ⋅e x 0+ln x 0-x 0=x 0-2 ⋅1x 0-2x 0=1-2x 0+2x 0,∵y =1-2x +2x在12,1 上单调递增,则g x 0 ∈-4,-3 ,又m >g x 对任意x ∈0,1 恒成立,m ∈Z ,所以m ≥g x 0 ,即m 的最小值为-3.9(2023春·江西萍乡·高二萍乡市安源中学校考期末)已知函数f x =ln x -mx 2+1-2m x +1.(1)若m =1,求f x 的极值;(2)若对任意x >0,f x ≤0恒成立,求整数m 的最小值.【答案】(1)极大值为f 12 =14-ln2,无极小值(2)1【详解】(1)当m =1时,f x =ln x -x 2-x +1x >0 ,f x =1x -2x -1=-x +1 2x -1 x.当0<x <12时,f x >0,则f x 在0,12 上单调递增;当x >12时.f x <0,则f x 在12,+∞ 上单调递减.所以f x 在x =12时取得极大值且极大值为f 12 =14-ln2,无极小值;(2)因为对任意x >0,f x ≤0恒成立,所以ln x +x +1≤m x 2+2x 在0,+∞ 上恒成立,即m ≥ln x +x +1x 2+2x在0,+∞ 上恒成立,设F x =ln x +x +1x 2+2x ,则Fx =-x +1 x +2ln x x 2+2x 2.设φx =-x +2ln x ,显然φx 在0,+∞ 上单调递减,因为φ1 =-1<0,φ12 =-12+2ln 12 =2ln2-12>0,所以∃x 0∈12,1 ,使得φx 0 =0,即x 0+2ln x 0=0,当x ∈0,x 0 时,φx >0,F x >0;当x ∈x 0,+∞ 时,φx <0,F x <0,所以F x 在0,x 0 上单调递增,在x 0,+∞ 上单调递减,所以F x max =F x 0 =ln x 0+x 0+1x 20+2x 0=12x 0,因为x 0∈12,1 ,所以12x 0∈12,1 ,故整数m 的最小值为1.10(2023·云南昭通·校联考模拟预测)设函数f x =e x -ln x +a ,a ∈R .(1)当a =1时,求f x 的单调区间;(2)若f x ≥a ,求实数a 的取值范围.【答案】(1)单调递增区间是(0,+∞),单调递减区间是(-1,0).(2)(-∞,1]【详解】(1)a =1时,函数f (x )=e x -ln (x +1)的定义域为(-1,+∞),因为f (x )=e x -1x +1,所以,当x >0时,f (x )>0,当-1<x <0时,f (x )<0,所以f (x )的单调递增区间是(0,+∞),单调递减区间是(-1,0).(2)函数f (x )=e x -ln (x +a )的定义域为(-a ,+∞),f (x )≥a ,等价于e x -ln (x +a )-a ≥0,设g (x )=e x -ln (x +a )-a ,则g (x )=e x -1x +a,设h (x )=g (x ),则h (x )=e x +1(x +a )2>0恒成立,所以h (x )在(-a ,+∞)上单调递增,即g (x )在(-a ,+∞)上单调递增,当x →-a ,g (x )→-∞,当x →+∞,g (x )→+∞,所以∃x 0∈(-a ,+∞),使得g x 0 =0,即e x 0=1x 0+a ,所以a =1ex 0-x 0,当x ∈-a ,x 0 时,g (x )<0,所以g (x )单调递减,当x ∈x 0,+∞ 时,g (x )>0,所以g (x )单调递增,所以g min (x )=g x 0 =e x 0-ln x 0+a -a =e x 0-1ex 0+2x 0≥0,设p (x )=e x -1e x +2x ,则p (0)=0,而p (x )=e x +1e x +2>0恒成立,所以p (x )=e x -1ex +2x 为增函数,由p x 0 ≥0=p (0),所以x 0≥0.因为y =1e x ,y =-x 均为减函数,所以a =1ex 0-x 0在0,+∞ 上为减函数,所以,当x 0≥0时,a ≤1,所以实数a 的取值范围为(-∞,1]。
导数零点不可求的四种破解策略
导数之零点不可求(隐零点)的四种破解策略在导数试题中,经常碰到导函数零点不可求的情况.对于此类试题,往往要绕开具体的零点值,转而判断导函数在给定区间上的单调性,再想办法证明导函数的零点存在.如何证明导函数的零点存在?在教学实践中总结了四种方法,现说明如下. 法一:利用零点存在性定理 零点存在性定理:如果函数()f x 在区间[]a b ,上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()f x 在区间()a b ,内有零点,即存在()0x a b ∈,,使得()0f x 0=.进一步,若()f x 在区间()a b ,内有具有单调性,则函数()f x 在区间()a b ,内有唯一的零点.在实际解题中,经常先判断出()/f x 在给定区间上的单调性(可以通过求二阶导或者直接观察导函数解析式进行判断),然后在给定区间内取两个特殊值,计算出相应的()/f x ,与零比较大小,再利用零点存在性定理得出()/f x 在给定的区间上存在唯一的零点.例1.已知函数()2ln x f x x e x =-,证明:当0x >时,不等式()1f x >.证明:()()/12xf x x x e x =+-,0x >.由()()//22142x f x x x e x=+++0>,得()/f x 在()0+∞,上单调递增. 又1/419=40416f e ⎛⎫-< ⎪⎝⎭,1/215=2024f e ⎛⎫-> ⎪⎝⎭,根据零点存在定理可知,存在01142x ⎛⎫∈ ⎪⎝⎭,,使得()/0f x 0=.当()00x x ∈,时,()/f x 0<,()f x 在()00x ,上单调递减;当()0x x ∈+∞,时,()/f x 0>,()f x 在()0x +∞,上单调递增. 故()()0minf x f x ==0200ln x x e x -. 由()/0f x 0=得()0000120x x x e x +-=,即()000012x x x e x +=,()020012x e x x =+. 故()0f x =0200ln x x e x -=001ln 2x x -+,其中01142x ⎛⎫∈ ⎪⎝⎭,.令()g x =1ln 2x x -+,1142x ⎛⎫∈ ⎪⎝⎭,. 由()/g x =()21102xx --<+得()g x 在1142x ⎛⎫∈ ⎪⎝⎭,上单调递减. 故()g x >12g ⎛⎫ ⎪⎝⎭21=ln 152->,即()0f x 1>.综上,有()min 1f x >,则当0x >时,不等式()1f x >.评析:要证()1f x >,等价于证()min1f x >.导函数()()/12xf x x x e x=+-,其零点无法求出.借助()//0f x >判断出()/f x 的单调性,结合零点存在性定理得出()/f x 存在唯一的零点0x 且01142x ⎛⎫∈ ⎪⎝⎭,.另一方面,0x 将()0+∞,分成两个区间,分别考查()f x 在这两个区间上的单调性.借助()/0f x 0=得到()020012x e x x =+,将指数式进行转化,从而判断出()min1f x >. 法二:利用函数与方程思想函数有零点等价于相应的方程有实根,然后将方程进行适当的变形,转化为两个函数图象有交点.交点的个数就是函数零点个数.在实际解题中,通常先求出()/f x ,然后令()/0f x =,移项,转化为判断两个函数图象的交点个数. 例2.已知函数()2ln x f x e a x =- .证明:当0a >时,()22lnf x a a a≥+. 证明:()/22x af x e x=-,0x >. ()/f x 有零点,等价于方程22=0x a e x -有实根,等价于方程22x ae x=有实根,等价于函数22xy e =与函数ay x=图象有交点.显然当0a <时,两个函数图象无交点;当0a >时,两个函数图象有一个交点;因此,当0a <时,()/f x 无零点,当0a >时,()/f x 只有一个零点.当0a>时,()/f x 在()0+∞,上单调递增,且只有一个零点,设为0x .即()/00f x =.当()00x x ∈,时,()/0f x <,()f x 在()00x ,上单调递减;当()0x x ∈+∞,时,()/0f x >,()f x 在()0x +∞,上单调递增. 故()()0min f x f x =020ln xea x =-. 由()/00fx =得,2020x a ex -=,20=2x a ex ,020ln =ln ln 2x e a x -,化简得00ln =ln ln 22x a x --.故()0f x =()00ln ln 222a a a x x ---a a ax x a 2ln 2200++=22ln a a a ≥+. 故()min22ln f x a a a ≥+,即当0a >时,()22ln f x a a a≥+. 评析:利用函数与方程思想,将判断()/f x 的零点个数问题转化为图象交点问题.不难得出结论:当0a >时,()/f x 只有一个零点0x .对于()/22x af x e x=-,观察其结构特征容易发现其在()0+∞,上单调递增(也可以求出二阶导进行判断).要证()22ln f x a a a ≥+,等价于证()min22ln f x a a a≥+.0x 将()0+∞,分成两个区间,分别考查()f x 在这两个区间上的单调性.借助()/00f x =得到20=2x a e x ,00ln =ln ln 22x a x --,将指数式进行转化,从而得证. 法三:构造新的函数如果导函数的解析式具有分式特征,且容易判断出分母是正数,此时往往将分子看成一个新的函数,进而对该函数进行研究从而得到相应的结论.例3.已知函数()1ln(1)x f x x ++=,当0x >时,()1kf x x >+恒成立,求正整数k 的最大值.解析:由已知有()1[1ln(1)]x x k x+++<在0x >上恒成立.令()1[1ln(1)]()x x h x x+++=,0x >.只需()mink h x <.()/21ln(1)x x h x x--+=, 令()1ln(1)x x x ϕ=--+,由()/01x x x ϕ=>+得()x ϕ在()0+∞,上单调递增. 又()2=1ln30ϕ-<,()3=2ln 40ϕ->,根据零点存在定理可知,存在()023x ∈,,使得()00x ϕ=.当()00x x ∈,时,()0x ϕ<,()/0h x <,()h x 在()00x ,上单调递减;当()0x x ∈+∞,时,()0x ϕ>,()/0h x >,()h x 在()0x +∞,上单调递增. 故()()0minh x h x =()0001[1ln(1)]x x x +++=.由()00x ϕ=得,001ln(1)=0x x --+,即001ln(1)x x =++.则()0h x =01x +()34∈,. 故正整数k 的最大值为3.评析:导函数()/21ln(1)x x h x x--+=,分母显然是正数,将分子看成一个新的函数()x ϕ,借助法一考查()x ϕ的性质,从而得到()h x 的单调性.法四:利用极限思想法一中,对于给定的区间()a b ,,如果要通过取特殊值来判断()/f x 与零的大小比较困难,那么可以利用极限思想,考查当x a →时以及当x b →时()/f x 的取值情况.例 4.已知函数()()1210x a f x ae a x+=+-+≥对任意的()0x ∈+∞,恒成立,其中0a >.求a 的取值范围. 解析:由已知有()min 0f x ≥,其中0x >,0a >.()/21xa f x ae x +=-()221x ax e a x -+=. 令()()21xg x ax e a =-+,其中0x >,0a >.由()()/220x gx a x x e =+>得()g x 在()0+∞,上单调递增. 又()()010g a =-+<,当x →+∞时,()g x →+∞, 故存在()00x ∈+∞,,使得()00g x =.当()00x x ∈,时,()0g x <,()/0f x <,()f x 在()00x ,上单调递减; 当()0x x ∈+∞,时,()0g x >,()/0f x >,()f x 在()0x +∞,上单调递增.故()()0min f x f x =()00121x a ae a x +=+-+. 由()00g x =得,()0201=0x ax e a -+,即021=x a ae x +. 则()0f x =()00121xa ae a x ++-+201a x +=+()0121a a x +-+.令()20011210a a a x x +++-+≥,由00x >,0a >,解得001x <≤. 因为()()21xg x ax e a =-+在()0+∞,上单调递增,001x <≤,所以()()01g g x ≥=0. 故()10g ≥,即()10ae a -+≥,解得11a e ≥-.评析:导函数()/f x ()221x ax e a x-+=,分母显然是正数,利用法三的方法将分子看成一个新的函数()g x .在考查()g x 的性质时,先考虑左端点的函数值情况,即()()010g a =-+<,再考查当x →+∞时,()g x →+∞,从而确定故存在()00x ∈+∞,,使得()00g x =.。
高考数学之隐零点问题
高考数学之隐零点问题在高考数学中,隐零点问题是一类重要的问题,它涉及到函数的性质、不等式、方程等多个方面,是考查学生数学综合能力和计算能力的典型题型。
本文将从隐零点的定义、解题思路和常见问题三个方面来探讨隐零点问题。
一、隐零点的定义隐零点是指函数在某区间内存在零点,但无法直接通过零点定理或判别式等方法得出。
这类问题需要学生通过观察函数的性质、分析函数的值域、判断函数的单调性等方式来寻找隐零点。
二、解题思路解决隐零点问题的核心思路是“化归思想”,即将复杂问题转化为简单问题,将抽象问题转化为具体问题。
具体来说,解决隐零点问题的步骤如下:1、观察函数的性质,确定函数的可能零点区间;2、分析函数的值域,确定函数在可能零点区间的端点值的符号;3、判断函数的单调性,确定函数在可能零点区间的单调性;4、根据函数的性质、值域和单调性,得出函数在可能零点区间的端点值的符号,从而得出隐零点的存在性和位置。
三、常见问题解决隐零点问题时,学生常常会出现以下问题:1、对函数的性质、值域和单调性等概念理解不准确,导致解题思路错误;2、无法将复杂问题转化为简单问题,无法将抽象问题转化为具体问题,导致解题过程繁琐;3、无法灵活运用数学知识进行推理和计算,导致解题结果错误。
因此,学生在解决隐零点问题时,需要加强对函数性质、值域和单调性等概念的理解,提高对复杂问题和抽象问题的转化能力,同时加强数学知识和计算能力的训练,以提高解题的准确性和效率。
总之,解决隐零点问题需要学生具备扎实的数学基础、灵活的思维方式和熟练的计算技巧。
只有通过不断的训练和思考,才能真正掌握解决隐零点问题的技巧和方法。
高考导数综合应用中的“隐零点”在数学的学习中,我们常常遇到许多复杂的问题需要解决。
而在这些难题中,导数往往扮演着关键的角色。
特别是在高考数学中,导数的综合应用是一个重点也是一个难点。
其中,“隐零点”是一个特别需要的概念。
“隐零点”,顾名思义,这是一种不易被直接观察或找到的零点。
高三导数--隐形零点的一般策咯(一)
一、不含参函数的隐零点问题已知不含参函数f(x),导函数方程f’(x)=0的根存在,却无法求出,设方程f’(x)=0的根为x 0,则①有关系式f’(x 0)=0成立,②注意确定0x 的合适范围. 二、含参函数的隐零点问题已知含参函数f(x,a),其中a 为参数,导函数方程f(x,a)’=0的根存在,却无法求出,设方程f’(x)=0的根为0x ,则①有关系式f’(x 0)=0成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关.导数题目中求导后遇到隐零点问题:第一步,利用特殊点处函数值、零点存在性定理、函数单调性、函数图像等,判断零点是否存在以及取值范围。
第二步,把导数零点处导数值等于0作为条件,带回原函数,进行(a)化简或(b)消参这就是我们的导数隐零点两步处理法。
以后我们会反复用到这一方法。
隐形零点问题一般策咯(设而不求):1)、用零点存在定理(或二分法,进一步缩小零点的范围)或者利用单调性加上图像,尽量缩小零点范围(这个是难点)2)、以零点为分界点,说明导数f’(x)正负(在进行代数式替换过程中,尽可能将目标函数化为整式或分式,就是说尽量将指数,对数用有理式替换,这是很关键的),从而得到f(x)最值表达式 3)、求函数f(x)最值例题、函数f(x)=e 2x -alnx,a ∈(0,2e 2),x ∈(0,1),证明:f(x)≥2a+aln a2分析:要证明f(x)≥2a+alna2,自然会想到求f (x)最小值,那么必然要求导数,求极值,f ’ (x)=xaxe x -22,令导数=0,无法求根,从而影响我们求极值最值,不妨令分子=0,构造函数利用零点存在定理判断根,设而不求。
h(x)=2xe 2x -a, x ∈(0,1), x 无限趋向 0, h(x ) 无限趋向 -a<0 x=1,h(1)>0,所以存在x 0∈(0,1),h(x 0)=0, (代入得 2x 0e 2x0=a)1、f(x)=e x -ax -2,(1)求单调区间,(2)a=1,k 为整数,当x>0时,(x -k )f(x)+x+1>0,求K 最大值。
三种方法破解隐零点问题
=g(
x)
≥g(
x)
mi
n >0。
时 取 得 最 小 值,即 当 x ∈ (-1,+ ∞ )时,
:
证法二(
数形结合,
转化切线)
x)
=e -l
n(
x +1)≥f (
0)=1>0,所 以
f(
x
当 m ≤2 时,
x)=
f(
e -l
n(
x+1)
>0 恒成立。
x
x
x
e -l
n(
x+m ) ≥ e -
x
,
当 m ≤1 时,
。
知函数 f(
x)
=e -l
n(
x+m )
x
34
(
设 x=0 是 f(
1)
x)的 极 值 点,求 m 的
值,
并讨论 f(
的单调性;
x)
(
当 m ≤2 时,
证明 f(
2)
x)
>0。
x
(
,得
解析:
1)由 f (
x)=e -l
n(
x +m )
1
x
。
'(
x)
=e f
x+m
因 为 x =0 是 f (
x )的 极 值 点,所 以
解题篇 经典题突破方法
高二数学 2019 年 7-8 月
三种方法破解隐零点问题
■ 甘肃省白银市第一中学
导 数 是 探 究 函 数 性 质 的 利 器,求 导 函 数
的零点是 其 中 一 个 关 键 环 节,有 些 导 函 数 的
导数专题之隐零点问题
导数解答题之隐零点问题一.什么是隐零点问题常规方法求解导数问题的步骤: ①写函数定义域,求导函数;②对导函数变形(通分,分解因式,配方等,变形到容易判断导函数正负为止); ③求导函数的零点,若导函数无零点或零点不在函数定义域内,说明导函数(或局部因式)的符号恒正或恒负;若导函数零点在函数定义域内,则导函数零点把函数定义域分成若干个区间,然后判断在这些若干个区间内导数的正负,可得函数的单调性;④求函数的极值以及区间端点的函数值,最终得最值和函数图像等.从上我们可知,导函数的零点影响着函数的单调区间的划分,也和函数的极值或最值有着直接关系,因此求导函数的零点在导数问题中是一个非常重要的环节,但很多时候我们是可以通过零点存在定理判断其存在,却无法直接求解出来的,像这类问题就称之为隐零点问题.二.隐零点问题的处理方法(设而不求)当导函数存在零点,又无法求解时,可虚设零点0x ,0x 满足等式()00f x '=.做题时只需把0x 看作是已知的一个数即可,其本质与能求出的导函数零点并无差别,只不过一个是显性的,一个是隐性的.隐性的零点用起来可能没有显性的零点方便,但我们可以抓住两点:①0x 的范围②0x 满足等式()00f x '=. 下面举例说明.例1.已知函数2()ln f x ax bx x x =++在()()1,1f 处的切线方程为320x y --=. (1)求实数a 、b 的值;(2)设2()g x x x =-,若Z k ∈,且(2)()()k x f x g x -<-对任意的2x >恒成立,求k 的最大值. 【解析】解:(1)()2ln 1f x ax b x '=+++,故213a b ++=且1a b +=,解得:1a =,0b =; (2)第一步:分离参数,转化为求函数的最值 由(1)得:()()ln 22f x g x x x x k x x -+<=--对任意2x >恒成立,设ln ()(2)2x x xh x x x +=>-,下求()h x 的最小值.第二步:求()h x '并变形,用零点存在性定理判断()h x '存在零点,虚设零点0x242ln ()(2)x x h x x --'=-,令()42ln (2)m x x x x =-->,则22()10x m x x x-'=-=>,故函数()m x 为(2,)+∞上的增函数,()842ln80m =-<,()1062ln100m =->,故()m x 在(8,10)上有唯一零点0x ,使0042ln 0x x --=成立.第三步:0x 参与划分定义域,判断()h x '在各个区间上的正负,得到()h x 的单调性 当02x x <<时,()0m x <,即()0h x '<;0x x <时,()0m x >,即()0h x '>. 故()h x 在0(2,)x 递减,在()0,x +∞递增;第四步:判断函数()h x 的最小值在0x 处取,得到()h x 最小值表达式,用等式0042ln 0x x --=整体代换求出最小值()0h x000min 004(1)2()()22x x x h x h x x -+∴===-,故02x k <,()08,10x ∈,0(4,5)2x ∴∈,Z k ∈,故k 的最大值是4. 解题说明:此题导函数的零点0x 是虚设的,0x 满足①()08,10x ∈②0042ln 0x x --=,用②0042ln 0x x --=代换求出0min 0()()2x h x h x ==,再用①()08,10x ∈估算出()min h x 的范围. 例2.已知函数3()ln (1)f x x a x bx =+-+,()()e ,R x g x x b a b =-∈,且()f x 在点()(),e f e 处的切线方程为11y x e ⎛⎫=+ ⎪⎝⎭. (1)求实数a ,b 的值; (2)求证:()()f x g x ≤. 【解析】(1)解:21()3(1)f x a x b x '=+-+,()()2131f e a e b e∴'=+-+,且()31(1)f e a e be =+-+,又()f x 在点()(),e f e 处的切线方程为11y x e ⎛⎫=+ ⎪⎝⎭,∴切点为(),1e e +,∴23113(1)11(1)1a e b e e a e be e⎧+-+=+⎪⎨⎪+-+=+⎩,解得:1a b ==;(2)证明:由(1)可知()ln f x x x =+,()1x g x xe =-,且()f x 的定义域为(0,)+∞,令()()()ln 1x F x f x g x x x xe =-=+-+,则()()111()111x x x x x F x e xe x e x e x x x +⎛⎫'=+--=-+=+- ⎪⎝⎭,令1()x G x e x =-,可知()G x 在(0,)+∞上为减函数,且11222G ⎛⎫=> ⎪⎝⎭,()110G e =-<,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得0()0G x =,即0010xe x -=.当0(0,)x x ∈时,()0G x >,()0F x ∴'>,则()F x 为增函数; 当()0,x x ∈+∞时,()0G x <,()0F x ∴'<,则()F x 为减函数. 00000()()ln 1x F x F x x x x e ∴≤=+-+,又0010x e x -=,∴001x e x =,即00ln x x =-,0()0F x ∴=,即()0F x ≤,()()f x g x ∴≤.解题说明:此题的导函数的零点0x 也是虚设的,0x 满足①01,12x ⎛⎫∈ ⎪⎝⎭②0010x e x -=,在求()()0max F x F x =时主要就是用②0010xe x -=进行代换运算.例3.已知函数()ln f x a x x =-,R a ∈. (1)讨论()f x 的单调性;(2)若关于x 的不等式()12f x x e≤-恒成立,求a 的取值范围. 解:(1)()()10aa xf x x xx-'=-=>, ①若0a ≤,则()0f x '<,()f x ∴在()0,+∞单调递减;②若0a >,()0,x a ∈时,()0f x '>,()f x 单调递增;(),x a ∈+∞,()0f x '<,()f x 单调递减. (2)方法一(隐零点)不等式()12f x x e ≤-等价于12ln 0a x x x e--+≤在()0,x ∈+∞恒成立.令()12ln g x a x x x e=--+,则()222111a x ax g x x x x --'=-+=-,方程210x ax --=有一负一正两个根,设正根为0x ,即2010x ax --=,001a x x =-. ()00,x x ∈时,()0g x '>,()g x ;()0,x x ∈+∞时,()0g x '<,()g x .()()000max 012ln g x g x a x x x e ∴==--+,又001a x x =-,()000000112ln g x x x x x x e ⎛⎫∴=---+ ⎪⎝⎭因为不等式12ln 0a x x x e --+≤在()0,x ∈+∞恒成立,所以等价于()000000112ln 0g x x x x x x e ⎛⎫=---+≤ ⎪⎝⎭,设()112ln h x x x x x x e ⎛⎫=---+ ⎪⎝⎭,()222211111ln 111ln h x x x x x x x ⎛⎫⎛⎫'=++--+=+ ⎪ ⎪⎝⎭⎝⎭.()0,1x ∈时,()0h x '<,()h x ;()1,x ∈+∞时,()0h x '>,()h x ,又()10h h e e ⎛⎫== ⎪⎝⎭,所以01,x e e ⎡⎤∈⎢⎥⎣⎦,又001a x x=-在01,x e e ⎡⎤∈⎢⎥⎣⎦上单调递增,11,a e e e e ⎡⎤∴∈--⎢⎥⎣⎦.用隐零点表示参数,得到参数与隐零点的函数关系,然后结合隐零点的范围求出参数的范围这是本题解法的基本思路.方法二(内点效应+变换主元)分析:令()12ln g x a x x x e =--+,由()()2212ln 010g x a x x x e x ax g x x ⎧=--+=⎪⎪⎨--⎪'=-=⎪⎩得,112ln 0x x x x x e ⎛⎫---+= ⎪⎝⎭,令()112ln h x x x x x x e ⎛⎫=---+ ⎪⎝⎭,()222211111ln 111ln h x x x x x x x ⎛⎫⎛⎫'=++--+=+ ⎪ ⎪⎝⎭⎝⎭.()0,1x ∈时,()0h x '<,()h x ;()1,x ∈+∞时,()0h x '>,()h x ,又()10h h e e ⎛⎫== ⎪⎝⎭,11x e a e e ⎧=⎪⎪∴⎨⎪=-⎪⎩或1x e a e e =⎧⎪⎨=-⎪⎩.解:不等式()12f x x e ≤-等价于12ln 0a x x x e--+≤在()0,x ∈+∞恒成立,令()12ln g x a x x xe=--+. ①取x e =,则()10g e a e e =-+≤,1a e e ∴≤-;取1x e =,则110g a e e e ⎛⎫=--+≤ ⎪⎝⎭,1a e e ∴≥-.11,a e e ee ⎡⎤∴∈--⎢⎥⎣⎦.②反过来,当11,a e e e e ⎡⎤∈--⎢⎥⎣⎦时,令()12ln F a x a x x e =⋅--+,下证()0,x ∈+∞时()0F a ≤.Ⅰ.若1x =,()220F a e=-<. Ⅱ.若()0,1x ∈,ln 0x <,则()F a ,()1112ln F a F e e x x e e x e ⎛⎫⎛⎫∴≤-=---+ ⎪ ⎪⎝⎭⎝⎭,令()()112ln 01x e x x x e x e τ⎛⎫=---+<< ⎪⎝⎭,()()222111x e x x x e e e x x x τ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭'=-=-, 10,x e ⎛⎫∈ ⎪⎝⎭时,()0x τ'>,()x τ;1,1x e ⎛⎫∈ ⎪⎝⎭时,()0x τ'<,()x τ.()10x e ττ⎛⎫∴≤= ⎪⎝⎭,()0F a ≤.Ⅲ.若()1,x ∈+∞,ln 0x >,则()F a ,()1112ln F a F e e x x e e x e ⎛⎫⎛⎫∴≤-=---+ ⎪ ⎪⎝⎭⎝⎭,令()()112ln 1x e x x x e x e ψ⎛⎫=---+> ⎪⎝⎭,()()222111x e x x e x e e x x x ψ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭'=-=-, ()1,x e ∈时,()0x ψ'>,()x ψ;(),x e ∈+∞时,()0x ψ'<,()x ψ.()()0x e ψψ∴≤=,()0F a ≤.综上,()0,x ∈+∞时()0F a ≤.由①②知11,a e e ee ⎡⎤∈--⎢⎥⎣⎦.最后总结一下隐零点问题的基本解决思路就是:形式上虚设,运算上代换,数值上估算,策略上等价转化,方法上分离参数.练习1.已知函数()ln x f x ae b x =-在点()()1,1f 处的切线方程为()11y e x =-+. (1)求a ,b 的值; (2)求证:()2f x >. 【解析】(1)1a =,1b = (2)()ln x f x e x =-,()()10x f x e x x'=->,易知()f x '且()10f '>,102f ⎛⎫'< ⎪⎝⎭,1,12m ⎛⎫∴∃∈ ⎪⎝⎭,()0f m '=,即1m e m=. 0x m <<时,()0f x '<,()f x ;x m >时,()0f x '>,()f x .()()min 1ln 2m f x f m e m m m∴==-=+> 2.已知函数()ln()x f x e x m =-+.(1)设0x =是()f x 的极值点,求m 的值,并讨论()f x 的单调性; (2)证明:ln(2)0x e x -+>. 【解析】(1)1()x f x e x m'=-+,由题意可得,1(0)10f m '=-=,解可得1m =,1(1)1()11x xe xf x e x x +-'=-=++,令()(1)1x g x e x =+-,则()(2)0x g x x e '=+>,故()g x 在(1,)-+∞上单调递增且(0)0g =.当0x >时,()0g x >即()0f x '>,函数()f x 单调递增; 当10x -<<时,()0g x <即()0f x '<,函数()f x 单调递减. (2)证明:令()ln(2)x h x e x =-+,则1()2x h x e x '=-+在(2,)-+∞上单调递增,因为(1)0h '-<,(0)0h '>,所以()0h x '=在(2,)-+∞存在唯一实数根0x ,且0(1,0)x ∈-, 当0(2,)x x ∈-时,()0h x '<,()h x ;0(x x ∈,)+∞时,()0h x '>,()h x .当0x x =时,函数取得最小值,因为0012xe x =+,即00ln(2)x x =-+,故02000000(1)1()()ln(2)022x x h x h x e x x x x +≥=-+=+=>++,所以ln(2)0x e x -+>. 3.已知函数()1x f x xe ax =--的图像在1x =处的切线方程为(21)y e x b =-+. (1)求实数a ,b 的值; (2)若函数()ln ()f x xg x x-=,求()g x 在(0,)+∞上的最小值. 【解析】(1)因为()(1)xf x e a x +=-',所以()12f e a '=-.于是由题知221e a e -=-,解得1a =.因此()1x f x xe x =--,而()12f e =-,于是2(21)1e e b -=-⋅+,解得1b e =--.(2)l ln 11(0)n 1()x x xe x x g x e x x x x =---=+->-,222ln ln ()x xx x e x g x e x x +'=+=. 记2()ln x h x x e x =+,21()20xxh x x e xe x'=++>,故()h x 在(0,)+∞上单调递增. 又211211110e e h e e e e -⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭,()10h e =>,∴存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得0()0h x =,且0(0,)x x ∈,()0h x <,0,)(x x ∈+∞,()0h x >.()g x ∴在0(0,)x 上单调递减,在0(,)x +∞上单调递增,∴00min 00ln 1()()1xx g x g x e x +==--,又0()0h x =,∴0200ln x x e x =-,∴01ln 001ln x x x e e x =,∴001ln x x =.∴000000min000ln 1ln 111()1110x x x x e x x g x e x x x +--+-=--=-=-=,所以()g x 的最小值为0.4.已知函数()()()ln 1cos 1xf x ae x a =-+--,R a ∈.(1)当1a =时,求()f x 的零点; (2)若()0f x ≥,求a 的取值范围.【解析】(1)由题知:当1a =时,()ln(1)1x f x e x =-+-,1()1x f x e x '=-+,令1()()1x g x f x e x='=-+,所以()21()01x g x e x '=+>+,所以()g x 在(1,)-+∞上单调递增,且()00g =.所以,当(1,0)x ∈-时,()0f x '<,()f x 在(1,0)-上单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 在(0,)+∞上单调递增. 所以()(0)0f x f ≥=,所以()f x 的零点为0x =. (2)必要性探路:取0x =,由()00f ≥得cos(1)0a a --≥,令()()cos 1h a a a =--,因为()()1sin 10h a a '=+-≥,所以()h a在(,1)-∞上单调递增,又()10h =,1a ∴≥,即()01f x a ≥⇒≥. 证明充分性: 当1a ≥,1()1x f x ae x'=-+,21()0(1)xf x ae x ''=+>+,所以()f x '在(1,)-+∞上单调递增,且(0)10f a '=-≥, 11110a f ae a a a a -⎛⎫'-=-≤-= ⎪⎝⎭,(]01,0x ∴∃∈-,使得0()0f x '=,即00101x ae x -=+,00ln(1)ln x x a +=--. 当0(1,)x x ∈-时,设()0f x '<,()f x 在0(0,)x ;当()0,x x ∈+∞时,设()0f x '>,()f x 在()0,x +∞.所以000001()()ln(1)cos(1)ln cos(1)1xf x f x ae x a x a a x ≥=-+--=++--+ 0011ln cos(1)11ln cos(1)01x a a a a x =+++---≥+--≥+. 综上,所求a 的取值范围为1a ≥.5.已知函数()21f x x ax =++,()()ln R g x x a a =-∈.(1)当1a =时,求函数()()()h x f x g x =-的极值;(2)若存在与函数()f x ,()g x 的图像都相切的直线,求实数a 的取值范围. 解:(1)12x =时,()h x 取得极小值11ln 24+,无极大值,过程略.(2)设直线与函数()f x ,()g x 分别相切于点()()11,P x f x ,()()22,Q x g x ,以点P 为切点的切线方程为:()()()111y f x f x x x -='-,即()()()2111112y x ax x a x x -++=+-,化简得()21121y x a x x =+-+,同理以点Q 为切点的切线方程为:221ln 1y x x a x =+--,12212121ln 1x a xx x a ⎧+=⎪∴⎨⎪-+=--⎩,消去1x 得: 222221ln 20424a a x a x x -++--=,设()221ln 2424a a F x x a x x =-++--,则问题转化为:若()F x 存在零点,求a 的范围.首先,x →+∞时,()F x →+∞.下面只需()min 0F x <即可.()()232311210222a x ax F x x x x x x+-'=-++=>,2210x ax +-=存在一正根,不妨设为t ,t 满足2210t at +-=,易知0x t <<时,2210x ax +-<,()0F x '<,()F x ;x t >时,2210x ax +->,()0F x '>,()F x .()()22min 1ln 2424a a F x F t t a t t ∴==-++--,又2210t at +-=,12a t t ∴=-,()()2min12ln 2F x F t t t t t∴==++--.由①知,若01t <≤时,()()min 0F x F t =≤;若1t >时()()min 0F x F t =>. 01t ∴<≤,[)121,a t t∴=-∈-+∞.。
导数隐零点的常规解题方法
导数隐零点的常规解题方法作者:***
来源:《中学生数理化·自主招生》2020年第05期
函数的零点与函数的单渊性、极值、最值及函数的图像密切相关,因其蕴含的函数与方程、等价转化的数学思想而备受命题人的青睐,成为高考考查的重点和热点。
而对隐零点问题的考查也经常…现在各类联考中。
因此同学们需要掌握隐零点问题的两种常规题型的解题方法。
题型一:特值试根,借助二次求导加以验证
题型二:设而不求,借助零点存在性定理加以说明
题型二有两类:
(l)根据单调性确定极值点的个数。
解题的两个关键步骤为:步骤一,因g'(x)的零点不可求,需二次求导判断g'(x)的单渊性(此时g'(x)必须具有严格的单调性);步骤二,设g'(x)=0的根为x0。
,试值找到区间(a,b),使、x0∈(a,b),且g'(a)g'(b)
(2)求极值、最值的取值范围。
解题的三个关键步骤为:步骤一,同类型一的步骤一;步骤二,南g'(x)=0得到关于x0的等式,即为(*)式,然后同类型一的步骤二;步骤三,在求极值或最值范围时,要根据(*)式进行恰当的等量替换,从而得到我们所熟悉的求函数值域的模型,使問题得以解决。
作者单位:辽宁省本溪市第一中学。
高中必会系列之隐零点问题课件-2025届高三数学一轮复习
当
在
时,令
,解得
(舍去)
上,g´(x) <0 ,g(x)单调递减;
在
上,g´(x) >0 ,g(x)单调递增;
所以当
时,g(x)取极小值,也是最小值,故
当
,即
此时,在
1 1
1
g x min g
ln
2a
2a 2
时,由于当x→ 0 时,g(x) →+∞
上,g(x)必定存在唯一的零点x1
高中必会系列之
隐
零
点
问
题
隐零点问题是指函数的零点存在但无法直接求解出来的问题,
在函数、不等式与导数的综合题目中常会遇到涉及隐零点的问题,
处理隐零点问题的基本策略是判断单调性,合理取点判断符号,
再结合函数零点存在定理处理.
勘根定理(零点存在定理):
假设函数f(x)在闭区间[a, b]上连续,且函数值f(a)与
当a>1时,
因为f(x)=aex-ln(x+1)-1(x>-1),
x
ae
x+1-1
1
x
所以 f′(x)=ae -
=
,
x+1
x+1
令g(x)=aex(x+1)-1(x>-1),
则g′(x)=aex(x+2),
因为a>1,x>-1,所以g′(x)>0,
所以g(x)在(-1,+∞)上单调递增,
又g(-1)=-1<0,g(0)=a-1>0,
所以当-1<β<0时,
2
1
β
f(β)=aeβ-ln(β+1)-1=
+β-1+ln a=ln a+
导数中的隐零点问题(虚设零点设而不求)(高阶拓展、竞赛适用)(学生版)-25版高中数学一轮复习考点帮
第14讲导数中的隐零点问题(虚设零点设而不求)(高阶拓展、竞赛适用)(3类核心考点精讲精练)1.5年真题考点分布【命题规律】本节内容是新高考卷的载体内容,设题稳定,难度较大,分值为15-17分【备考策略】1能用导数求解函数基本问题2掌握函数零点存在性定理及其应用3能设而不求进行隐零点的相关替换求值或范围【命题预测】零点问题是高考的热点问题,隐零点的代换与估计问题是函数零点中常见的问题之一,其源于含指对函数的方程无精确解,这样我们只能得到存在性之后去估计大致的范围,高考中曾多次考查隐零点代换与估计,所以本节我们做一个专门的分析与讨论,方便学生高考综合复习在求解导数问题时,我们一般对函数的零点设而不求,通过一种整体代换和过渡,再结合题目条件最终解决问题,我们称这类问题为“隐零点问题”.1.解题步骤第1步:用零点存在性定理判定导函数零点的存在性,列出零点方程()00f x '=,并结合()f x 的单调性得到零点的范围;第2步:以零点为分界点,说明导函数()f x '的正负,进而得到()f x 的最值表达式;第3步:将零点方程()00f x '=适当变形,整体代入()f x 最值式子进行化简:(1)要么消除()f x 最值式中的指对项(2)要么消除其中的参数项;从而得到()f x 最值式的估计.2.隐零点的同构实际上,很多隐零点问题产生的原因就是含有指对项,而这类问题由往往具有同构特征,所以下面我们看到的这两个问题,它的隐零点代换则需要同构才能做出,否则,我们可能很难找到隐零点合适的代换化简方向.我们看下面两例:一类同构式在隐零点问题中的应用的原理分析()()()()2ln ln ln 1ln 1ln ln ln 0x x x x x xe x x f x x e f x x x e x x x x f x xe f x x e x x ⎧⎧⎪⎪=+⇒=+⎨⎨⎪⎪----⎩⎩=⇒-=-⇒+=所以在解决形如1ln 0x e x x x =⇔+=,这些常见的代换都是隐零点中常见的操作.3.解题感悟1.隐零点指对于超越方程或者是一些带参数的方程,无法直接求得确切的零点,但是零点确实存在的问题。
2025高考数学一轮复习隐零点问题
当x∈(x0,+∞)时,g(x)>0,h′(x)>0.
故h(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,从而h(x)的最小值 为h(x0). 考虑到x0∈(2,3)为g(x)的零点,故ln(x0+1)=x0-1, 故 h(x)min=h(x0)=(x0+1)ln(xx00+1)+x0+1 =(x0+1)(xx00-1)+x0+1=x20+x0 x0=x0+1∈(3,4). 又k<h(x)min=x0+1,故满足条件的整数k的最大值为3.
1234
3.已知实数 a 满足 a≥ e+ 1e-2,且函数 f(x)=ln x+x22-(a+2)x 恰有一 个极小值 m 和极大值 M,求 m-M 的最大值.
由于 f′(x)=1x+x-(a+2)=x2-(a+x 2)x+1,x>0, 设正数 x1,x2 是 x2-(a+2)x+1=0 的两个相异实根,即方程 a+2=x+x1, x>0有两个相异正根,不妨设x1<x2, 由于当0<x<x1时,f′(x)>0, 当x1<x<x2时,f′(x)<0, 当x>x2时,f′(x)>0,
规律方法
已知含参函数f(x,a),其中a为参数,导函数方程f′(x,a)=0的根存在, 却无法求出,设方程f′(x)=0的根为x0,需根据题意对参数进行分类讨 论.
训练2
(2023·福州质检节选)已知函数f(x)=(x+1)ln x-ax+a.若x>1,f(x)>0恒成立, 求a的取值范围.
由题意得,f′(x)=ln x+1x+1-a, 令 h(x)=ln x+x1+1-a,x∈(1,+∞),则 h′(x)=x-x21, 因为x∈(1,+∞),所以h′(x)>0,所以f′(x)在(1,+∞)上单调递增, 所以当x>1时,f′(x)>f′(1)=2-a. ①当a≤2时,f′(x)>0在(1,+∞)上恒成立, 所以f(x)在(1,+∞)上单调递增,
高考数学复习 《导数中的隐零点问题》
衢州三中微专题系列之《导数中的隐零点问题》衢州三中 李娜 知识要点求解导数题时,经常会碰到导函数存在零点但求解比较繁杂甚至无法求解的情形,我们将这类问题称为“隐零点”问题。
这类问题我们一般采用设而不求,通过整体代换和过渡,再结合其他条件,从而使问题得到解决。
解隐零点问题的一般策略:第一步:用零点存在性定理(或用二分法进一步缩小零点的范围)判断导函数零点的存在性。
列出零点方f ′(x 0)=0,并结合f(x)的单调性得到零点的范围。
第二步:将零点方程f ′(x 0)=0适当变形,整体代入最值式子中进行化简证明、求最值、解不等式等。
典例分析【类型一】不含参函数的隐零点问题(构造关于隐零点的单一函数进行求解)已知不含参函数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,②注意确定的合适范围.例1 已知函数f (x )=(ae x﹣a ﹣x )e x(a ≥0,e=2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立. (1)求实数a 的值;(2)证明:f (x )存在唯一极大值点x 0,且.【解答】(1)a=1,证明略;(2)证明:由(1)f (x )=e x(e x﹣x ﹣1),故f'(x )=e x(2e x﹣x ﹣2),令h (x )=2e x﹣x ﹣2,h'(x )=2e x﹣1, 所以h (x )在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h (0)=0,h (ln )=2eln ﹣ln ﹣2=ln2﹣1<0,h (﹣2)=2e ﹣2﹣(﹣2)﹣2=>0,∵h (﹣2)h (ln)<0由零点存在定理及h (x )的单调性知,方程h (x )=0在(﹣2,ln)有唯一根,)(x f 0)('=x f 0)('=x f 0x 0)('0=x f 0x设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.例2 已知函数.(1)讨论的最值;(2)若,求证:..【解析】(1)依题意,得.①当时,,所以在上单调递减,故不存在最大值和最小值;②当时,由得,.当变化时,与的变化情况如下表(2)当,,设,则,设,由,可知在上单调递增.因为,,所以存在唯一的,使得.当变化时,与的变化情况如下表:由上表可知,在上单调递减,在上单调递增,故当时,取得极小值,也是最小值,即.由可得,所以.又,所以,所以,即,所以不等式成立.[来源:]【类型二】含参函数的隐零点问题对于含参数的隐零点问题,在整体代换时,需要利用零点方程得出参数与零点的关系,将参数用零点表示,再结合具体问题进行求解、已知含参函数,其中为参数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,该关系式给出了的关系,②注意确定的合适范围,往往和的范围有关. 例3已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.),(a x f a 0),('=a x f 0)('=x f 0x 0)('0=x f a x ,00x a解:(Ⅰ)因为+3()ex mf x x =-,所以+2()e 3x m f x x '=-.………………………1分因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ) 设()()+eln 12x mh x x =-+-,则()+1e 1x m h x x '=-+. 设()+1e 1x m p x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x m h x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥,所以()()1e+1e 1e e e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e 1x m h x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …8分因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分例4 已知函数f (x )=e x+a﹣lnx (其中e=2.71828…,是自然对数的底数). (Ⅰ)当a=0时,求函数a=0的图象在(1,f (1))处的切线方程; (Ⅱ)求证:当时,f (x )>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.巩固练习1.已知函数.(1)求的极值点;(2)证明:.2.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.3.已知函数的导函数为,且.(1)求函数的极值.(2)若,且对任意的都成立,求的最大值.4.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.参考答案1.(2)设,则,设,则方程在区间内恰有一个实根.设方程在区间内的实根为,即.所以,当时,,此时单调递减;当时,,此时单调递增.所以由在上是减函数知,,故.综上.`2. 【解答】(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x (0,x0)x0(x0,∞)g′(x)﹣0 +g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.3.(2)由(1)及题意知,对任意的都成立.令,则.令,则,所以函数在上为增函数,因为,,所以方程存在唯一实根,且,.故当时,,即;当时,,即.所以函数在上单调递减,在上单调递增,所以,所以,,又,故的最大值为.4.【解答】(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.。
高三数学复习微专题《隐零点问题》
为超越方程,无法求出其根(即导函数 g( x)的零点无法求出),故先运用零点存在性定理
确定导函数有零点,并对其零点设而不求,然后采取整体代换的策略进行处理,在处理过程
中最好是将超越式用普通式的代数式替代,化为较容易研究的函数(如基本初等函数等),
随后问题也就会得到很好的解决.
二、整体代换,构造关于隐零点的单一函数进行卡根
x
2a
x 恒成立?若存在,求出满足条件的实数 a ;若不存在,请说明理由.
【总结】解隐零点问题的一般策略: 第一步:用零点存在性定理(或用二分法进一步缩小零点的范围)判定导函数零点的存在性,
列出零点方程 f (x0 ) 0 ,并结合 f (x) 的单调性得到零点的范围; 第二步:以零点为分界点,说明导函数 f (x) 的正负,进而得到 f (x) 的最值表达式;
x
a 0 ,求 a 的取值范围.
解析:由已知得 ( f x)min 0 (a 0, x 0)
f(' x)
aex
a 1 x2
aex
x2 (a x2
1)
令
g(x)=
aex
x2
(a
1) , (a
0, x
0)
由 g( x)= a(2x x2)ex 0 得 g(x)在(0,+∞)上递增,
x0
e
【评析】上述两题的本质是通过整体代换建立不等式求隐零点的范围,其中求参数范围有两
种策略:(1)直接解不等式求之(2)研究函数的单调性求之,此知识点在压轴题中经常考
查,最后回眸一笑,以隐零点的范围作为函数的定义域,求出参数的范围.
练习 1.已知函数 (f x) lnx ( a x﹣1)(2 a>0),若 (f x)在区间(0,1)内有唯一的零点 x0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题方法系列:函数中的隐形零点、设而不求在利用导数探究函数性质的过程中,我们常常需要求出函数的极值点,如遇到某些难以确定的极值点或某些难以计算的代数式,我们往往束手无策,那么我们如何处理这类问题呢?我们通过本专题,让这些隐形的零点不再隐形。
例题1.证明:当[0,1)a ∈时,函数()2e =(0)x ax ag x x x -->有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.分析:求函数的最小值,难度的上升是因为含有参数,从而的最小值也将是参数的函数,自然想法是求出函数的表达式,再进一部求其值域,基于这种想法我们利用导数工具来处理,通过求导3(2)(2)()(0)x x e a x g x x x-++'=>,要讨论()g x '的符号,我们只需要研究()(2)(2)x x x e a x ϕ=-++的符号,在此我们发现无法求出()(2)(2)x x x e a x ϕ=-++的零点,此时我们该如何处理呢?我们研究函数()(2)(2)xx x e a x ϕ=-++,根据零点存在性定理可以判断(2)(2)0x x e a x -++=存在零点,但是我们无法求出其精确值,我们可以设(2)(2)0xx e a x -++=的一个实根是1x ,且满足111()(2)(2)0xx x e a x ϕ=-++=于是函数()g x 的最小值()11121e (1)=x a x g x x -+,解析:()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.隐零点问题解决方法大致分为三步:第一步,用零点存在性定理判定导函数零点的存在性,列出零点方程0()0f x '=,并结合()f x 的单调性得到零点的范围;第二步:以零点为分界点,说明导函数()f x '的正负,进而得到()f x 的最值表达式;第三步,将零点方程适当变形,整体代人最值式子进行化简证明;有时候第一步中的零点范围还可以适当缩小,我们将其称为隐形零点三部曲。
导函数零点虽然隐形,但只要抓住特征(零点方程),判断其范围(用零点存在性定理),最后整体代入即可。
1.设函数()ln f x x =,()()(0)1m x n g x m x +=>+.(1)当1m =时,函数()y f x =与()y g x =在1x =处的切线互相垂直,求n 的值;(2)若函数()()y f x g x =-在定义域内不单调,求m n -的取值范围;(3)是否存在实数a ,使得2()()()02ax a xf f e f x a⋅+≤对任意正实数x 恒成立?若存在,求出满足条件的实数a ;若不存在,请说明理由.1.解:(1)当1m =时,21()(1)n g x x -'=+,∴()y g x =在1x =处的切线斜率14nk -=,由1()f x x '=,∴()y f x =在1x =处的切线斜率1k =,∴1114n-⋅=-,∴5n =.(2)易知函数()()y f x g x =-的定义域为(0,)+∞,又[]222212(1)2(1)11(1)()()(1)(1)(1)x m n x m n x m n x y f x g x x x x x x +--++--+-'''=-=-==+++,由题意,得12(1)x m n x+--+的最小值为负,∴(1)4m n ->(注:结合函数[]22(1)1y x m n x =+--+图象同样可以得到),∴2((1))(1)44m n m n +-≥->,∴(1)4m n +->,∴3m n ->(注:结合消元利用基本不等式也可)(3)令()x θ2=(()()ln 2ln ln ln 22ax a xf f e f ax a ax x x a x a⋅+=⋅-⋅+-,其中0,0x a >>则()x θ'=1ln 2ln a a a x a x ⋅--+,设1()ln 2ln x a a a x a xδ=⋅--+2211()0a ax x x x xδ+'=--=-<∴()x δ在(0,)+∞单调递减,()0x δ=在区间(0,)+∞必存在实根,不妨设0()0x δ=即0001()ln 2ln 0x a a a x a x δ=⋅--+=,可得001ln ln 21x a ax =+-(*)()x θ在区间0(0,)x 上单调递增,在0(,)x +∞上单调递减,所以max 0()()x x θθ=,0000()(1)ln 2(1)ln x ax a ax x θ=-⋅--⋅,代入(*)式得0001()2x ax ax θ=+-根据题意0001()20x ax ax θ=+-≤恒成立.又根据基本不等式,0012ax ax +≥,当且仅当001ax ax =时,等式成立所以0012ax ax +=,01ax =01x a ∴=.代入(*)式得,1ln ln 2a a =,即12,a a=2a =4.已知函数221()ln ,(),,2f x x mxg x mx x m R =-=+∈令()()()F x f x g x =+.(Ⅰ)当12m =时,求函数()f x 的单调递增区间;(Ⅱ)若关于x 的不等式()1F x mx ≤-恒成立,求整数..m 的最小值;4.解:⑴21(),0,2f x lnx x x =->211()(0)x f x x x x x-'=-=>由()0,f x '>得210,x ->又0,x >所以01x <<.所以()f x 的单增区间为(0,1).(2)方法一:令21()()(1)(1)1,2G x F x mx lnx mx m x =--=-+-+所以21(1)1()(1)mx m x G x mx m x x-+-+'=-+-=.当0m ≤时,因为0x >,所以()0G x '>.所以()G x 在(0,)+∞上是递增函数,又因为213(1)11(1)120,22G ln m m m =-⨯+-+=-+>所以关于x 的不等式()1G x mx ≤-不能恒成立.当0m >时,21()(1)(1)1()m x x mx m x mG x x x-+-+-+'==-.令()0,G x '=得1x m =,所以当1(0,)x m ∈时,()0;G x '>当1(,)x m∈+∞时,()0G x '<.因此函数()G x 在1(0,)x m ∈是增函数,在1(,)x m∈+∞是减函数.故函数()G x 的最大值为2111111()()(1)1ln .22G ln m m m m m m m m =-⨯+-⨯+=-令1()ln ,2h m m m =-因为11(1)0,(2)20,24h h ln =>=-<又因为()h m 在(0,)m ∈+∞上是减函数,所以当2m ≥时,()0h m <.所以整数m 的最小值为2.方法二:⑵由()1F x mx ≤-恒成立,得2112lnx mx x mx -+≤-在(0,)+∞上恒成立.问题等价于2112lnx x m x x ++≥+在(0,)+∞上恒成立.令21()12lnx x h x x x ++=+,只要max ()m h x ≥.因为221(1)()2(),1()2x x lnx h x x x +--'=+令()0,h x '=得102x lnx --=.设1()2x x lnx ϕ=--,因为11()02x x ϕ'=--<,所以()x ϕ在(0,)+∞上单调递减,不妨设102x lnx --=的根为0x .当0(0,)x x ∈时,()0;h x '>当0(,)x x ∈+∞时,()0h x '<.所以()h x 在0(0,)x x ∈上是增函数;在0(,)x x ∈+∞上是减函数.所以000max020*********()()11(1)22x lnx x h x h x x x x x x +++====++.因为111()20,(1)0242ln ϕϕ=->=-<所以01 1.2x <<此时max 0112,()(1,2).g x x <<∈所以2,m ≥即整数m 的最小值为2。