理论力学典型例题答案及解析
理论力学(周衍柏第三版)习题答案
⑦--⑧
对⑦⑧俩式分别作如下处理:⑦ cos ,⑧ sin
即得
xcos ysin
ar ar
cos a sin cos sin a sin cos
⑨--⑩
⑨+⑩得
ar xcos ysin ⑾
把④⑥代入 ⑾得
ar r r2
3h 4
即午后 45 分钟时两船相距最近最近距离
1.3 解 1 如题 1.3.2 图
smin
15
3 2
15
3
15
3 2
km
4 4
2
y
A
r
a C
aB
O
x
第1.3题图
y
A r
O
C a B x
题1.3.2图
由题分析可知,点 C 的坐标为
v0
s t1
1 2
at1
a
2st2 t1t2 t1
t1 t2
1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题 1.2.1 图.
AO
B 题1.2.1图
设
ห้องสมุดไป่ตู้
A 船经过 t0
小时向东经过灯塔,则向北行驶的
B
船经
过
t
0
1 1 2
小时经过灯塔任意时刻
A
船的坐标
即
1 1 t cot
此即质点的速度随时间而变化的规律.
v v0 r
1.12 证 由题 1.11 可知质点运动有关系式
所以 dv dv d dv ,联立①②,有 dt d dt d
理论力学考试题及答案详解
理论力学考试题及答案详解一、选择题(每题2分,共10分)1. 牛顿第一定律又称为惯性定律,它指出:A. 物体在受力时,会改变运动状态B. 物体在不受力时,会保持静止或匀速直线运动C. 物体在受力时,会做圆周运动D. 物体在受力时,会保持原运动状态答案:B2. 根据胡克定律,弹簧的弹力与弹簧的形变量成正比,比例系数称为:A. 弹性系数B. 刚度系数C. 硬度系数D. 柔度系数答案:A3. 在理论力学中,一个系统动量守恒的条件是:A. 系统外力为零B. 系统外力和内力都为零C. 系统外力和内力之和为零D. 系统外力和内力之差为零答案:C4. 一个物体做自由落体运动,其加速度为:A. 0B. g(重力加速度)C. -gD. 取决于物体的质量答案:B5. 刚体的转动惯量与以下哪个因素无关?A. 质量B. 质量分布C. 旋转轴的位置D. 物体的形状答案:A二、填空题(每空2分,共10分)6. 一个物体受到三个共点力平衡,如果撤去其中两个力,而保持第三个力不变,物体的加速度将________。
答案:等于撤去的两个力的合力除以物体质量7. 根据动能定理,一个物体的动能等于工作力与物体位移的________。
答案:标量乘积8. 在光滑水平面上,两个冰球相互碰撞后,它们的总动能将________。
答案:守恒9. 一个物体在水平面上做匀速圆周运动,其向心力的方向始终________。
答案:指向圆心10. 刚体的角速度与角动量的关系是________。
答案:成正比三、简答题(共20分)11. 什么是达朗贝尔原理?请简述其在解决动力学问题中的应用。
答案:达朗贝尔原理是分析动力学问题的一种方法,它基于牛顿第二定律,用于处理作用在静止或匀速直线运动的物体上的力系。
在应用达朗贝尔原理时,可以将物体视为受力平衡的状态,即使物体实际上是在加速运动。
通过引入惯性力的概念,可以将动力学问题转化为静力学问题来求解。
12. 描述一下什么是科里奥利力,并解释它在地球上的表现。
《理论力学》静力学典型习题+答案
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
(完整版)理论力学习题集册答案解析
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆AB)a(球A )d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
《理论力学》习题三答案讲解
《理论⼒学》习题三答案讲解《理论⼒学》习题三答案⼀、单项选择题(本⼤题共30⼩题,每⼩题2分,共60分)1. 求解质点动⼒学问题时,质点的初始条件是⽤来( C )。
A 、分析⼒的变化规律; B 、建⽴质点运动微分⽅程; C 、确定积分常数; D 、分离积分变量。
2. 在图1所⽰圆锥摆中,球M 的质量为m ,绳长l ,若α⾓保持不变,则⼩球的法向加速度为( C )。
A 、αsin g ;B 、αcos g ;C 、αtan g ;D 、αtan gc 。
3. 已知某点的运动⽅程为2bt a S +=(S 以⽶计,t 以秒计,a 、b 为常数),则点的轨迹为( C )。
A 、是直线;B 、是曲线;C 、不能确定;D 、抛物线。
4. 如图2所⽰距地⾯H 的质点M ,具有⽔平初速度0v ,则该质点落地时的⽔平距离l 与( B )成正⽐。
A 、H ;B 、H ;C 、2H ;D 、3H 。
5. ⼀质量为m 的⼩球和地⾯碰撞,开始瞬时的速度为1v ,碰撞结束瞬时的速度为2v(如图3),若v v v ==21,则碰撞前后质点动量的变化值为( A )。
A 、mv ;B 、mv 2 ;C 、mv 3;D 、 0。
6. ⼀动点作平⾯曲线运动,若其速率不变,则其速度⽮量与加速度⽮量( B )。
A 、平⾏; B 、垂直; C 、夹⾓随时间变化; D 、不能确定。
7. 三棱柱重P ,放在光滑的⽔平⾯上,重Q 的匀质圆柱体静⽌释放后沿斜⾯作纯滚动,则系统在运动过程中( A )。
A 、沿⽔平⽅向动量守恒,机械能守恒;B 、动量守恒,机械能守恒;C 、沿⽔平⽅向动量守恒,机械能不守恒;D 、均不守恒。
图1图2图38. 动点M 沿其轨迹运动时,下列⼏种情况中,正确的应该是( A )。
A 、若始终有a v⊥,则必有v 的⼤⼩等于常量;B 、若始终有a v⊥,则点M 必作匀速圆周运动; C 、若某瞬时有v ∥a ,则点M 的轨迹必为直线;D 、若某瞬时有a 的⼤⼩为零,且点M 作曲线运动,则此时速度必等于零。
理论力学课后题参考答案
1.1 沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为由题可知示意图如题1.1.1图: {{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得 11021at t s v +=再由此式得 ()()2121122t t t t t t s a +-=1.26一弹性绳上端固定,下端悬有m 及m '两质点。
设a 为绳的固有长度,b 为加m 后的伸长,c 为加m '后的伸长。
今将m '任其脱离而下坠,试证质点m 在任一瞬时离上端O 的距离为解 以绳顶端为坐标原点.建立如题1.26.1图所示坐标系.题1.26.1图设绳的弹性系数为k ,则有 kb mg = ① 当 m '脱离下坠前,m 与m '系统平衡.当m '脱离下坠前,m 在拉力T 作用下上升,之后作简运.运动微分方程为 ()ym a y k mg &&=-- ② 联立①② 得 b b a g y b g y +=+&& ③ 0=+y bg y &&齐次方程通解 t b g A t b g A Y sin cos 211+= 非齐次方程③的特解 b a Y +=0 所以③的通解b a t bg A t b g A Y +++=sin cos 211代入初始条件:0=t 时,,c b a y ++=得0,21==A c A ;故有 b a t b g c y ++=cos 即为m 在任一时刻离上端O 的距离.'1.39 一质点受一与距离23次方成反比的引力作用在一直线上运动。
试证此质点自无穷远到达a 时的速率和自a 静止出发到达4a 时的速率相同。
理论力学习题及解答1
理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
《理论力学》静力学典型习题+答案
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
理论力学练习册及答案同济
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
理论力学试题题目含参考答案【完整版】
理论力学试题题目含参考答案【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)理论力学局部第一章 静力学根底一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
〔 〕2.两端用光滑铰链连接的构件是二力构件。
〔 〕3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
〔 〕4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
〔 〕5.三力平衡定理指出:三力汇交于一点,那么这三个力必然互相平衡。
〔 〕6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
〔 〕二、选择题1.假设作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
那么其合力可以表示为 。
① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。
① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力假设平衡,必汇交于一点;③ 三力汇交于一点,那么这三个力必互相平衡。
3.在下述原理、法那么、定理中,只适用于刚体的有 。
① 二力平衡原理; ② 力的平行四边形法那么;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。
4.图示系统只受F 作用而平衡。
欲使A 支座约束力的作用线与AB 成30︒角,那么斜面的倾角应为________。
① 0︒; ② 30︒;③ 45︒; ④ 60︒。
5.二力A F 、B F 作用在刚体上且0=+B A F F ,那么此刚体________。
①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.力F沿直线AB作用,其中一个分力的作用与AB成30°角,假设欲使另一个分力的大小在所有分力中为最小,那么此二分力间的夹角为度。
3.作用在刚体上的两个力等效的条件是。
理论力学课后习题包括答案解析.
第一章偶,大小是260Nm,转向是逆时针。
习题 4- 1.求图示平面力系的合成结果,长度单位为m。
习题 4- 3.求以下各图中平行分布力的合力和对于 A 点之矩。
解: (1) 平行力系对 A 点的矩是:解: (1) 取 O 点为简化中心,求平面力系的主矢:取 B 点为简化中心,平行力系的主矢是:求平面力系对O 点的主矩:平行力系对 B 点的主矩是:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力向B点简化的结果是一个力R B和一个力偶MB,且:以下列图;向 A 点简化的结果是一个力R A和一个力偶M A,且:以下列图;将 R B向下平移一段距离 d ,使满足:最后简化为一个力R ,大小等于R B。
其几何意义是:R 的大小等于载荷分布的将 R A向右平移一段距离d,使满足:矩形面积,作用点经过矩形的形心。
(2)取 A 点为简化中心,平行力系的主矢是:最后简化为一个力R,大小等于R A。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点经过三角形的形心。
平行力系对 A 点的主矩是:列平衡方程:习题 4-4 .求以下各梁和刚架的支座反力,长度单位为m。
解方程组:反力的本质方向如图示。
校核:解: (1) 研究 AB 杆,受力解析,画受力求:结果正确。
(2) 研究 AB 杆,受力解析,将线性分布的载荷简化成一个集中力,画受力求:(3) 研究 ABC ,受力解析,将均布的载荷简化成一个集中力,画受力求:列平衡方程:解方程组:列平衡方程:反力的本质方向如图示。
校核:解方程组:结果正确。
反力的本质方向如图示。
校核:结果正确。
习题 4-5 .重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链 A 的拘束反力和杆 BC 所受的力。
列平衡方程:解方程组:解: (1) 研究整体,受力解析(BC 是二力杆),画受力求:反力的本质方向如图示。
列平衡方程:习题 4-8 .图示钻井架,G=177kN ,铅垂荷载P=1350kN ,风荷载,水平力 F=50kN ;求支座 A 的拘束反力和撑杆CD 所受的力。
理论力学题库及答案详解
理论力学题库及答案详解一、选择题1. 在经典力学中,牛顿第一定律描述的是:A. 物体在没有外力作用下,将保持静止或匀速直线运动状态B. 物体在受到外力作用时,其加速度与所受合力成正比,与物体质量成反比C. 物体的动量守恒D. 物体的角动量守恒答案:A2. 以下哪一项不是牛顿运动定律的内容?A. 惯性定律B. 力的作用与反作用定律C. 动量守恒定律D. 力的独立作用定律答案:C二、填空题1. 根据牛顿第二定律,物体的加速度 \( a \) 与作用力 \( F \) 和物体质量 \( m \) 的关系是 \( a = \frac{F}{m} \)。
2. 一个物体在水平面上以初速度 \( v_0 \) 滑行,摩擦力 \( f \) 与其质量 \( m \) 和加速度 \( a \) 的关系是 \( f = m \cdot a \)。
三、简答题1. 简述牛顿第三定律的内容及其在实际问题中的应用。
答案:牛顿第三定律,也称为作用与反作用定律,指出作用力和反作用力总是成对出现,大小相等、方向相反,作用在两个不同的物体上。
在实际问题中,如火箭发射时,火箭向下喷射气体产生向上的推力,这是作用力;而气体向下的反作用力则推动火箭向上运动。
2. 解释什么是刚体的转动惯量,并给出计算公式。
答案:刚体的转动惯量是描述刚体绕某一轴旋转时惯性大小的物理量,其计算公式为 \( I = \sum m_i r_i^2 \),其中 \( m_i \) 是刚体各质点的质量,\( r_i \) 是各质点到旋转轴的垂直距离。
四、计算题1. 一个质量为 \( m \) 的物体在水平面上以初速度 \( v_0 \) 滑行,受到一个大小为 \( \mu mg \) 的摩擦力作用,求物体滑行的距离\( s \)。
答案:首先应用牛顿第二定律 \( F = ma \),得到 \( \mu mg = ma \)。
解得加速度 \( a = \mu g \)。
理论力学静力学典型习题+答案
1-3试画出图示各结构中构件AB的受力图1-4试画出两结构中构件ABCD勺受力图1-5试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD勺铰链B和C上分别作用有力F i和F2,机构在图示位置平衡。
试求二力F1和F2之间的关系。
解:杆AB BC CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:由共点力系平衡方程,对B点有:F x 0 F2F BC COS45°0对C点有:F x 0 F BC F1COS300 0解以上二个方程可得:F12 6F 1.63F2解法2(几何法)分别选取销钉B和C为研究对象,根据汇交力系平衡条件,作用在B和C点上的力构成封闭的力多边形,如图所示。
对B点由几何关系可知:F2F BC COS450对C点由几何关系可知:F BC F1 COS300解以上两式可得:F1 1.63F22-3在图示结构中,二曲杆重不计,曲杆AB上作用有主动力偶M试求A和C 点处的约束力。
解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。
AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):M 0 F A 10a sin(450) M 0 F A 0.354M其中:tan -。
对BC杆有:F C F B F A 0.354M3 aA,C两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下 刚体的平衡条件,点 0,C 处的约束力方向也可确定,各杆的受力如图所示。
对1313 -6aFFi FjF 2 FiF 3- F i - —Fj2 222F RFi3Fj M A■-3 Fak F R M A V3 d a F R2Fi24d3 a F X 0 PsinFB X0 F y 0 F By P P cos0 F X 04F A X F B X 0F y 0F AyF By0 M A 0 MA F Byl 0求解以上三式可得:M 1 3N m , F ABF OF C 5N ,方向如图所示Psi nAF BxF AxBC 杆有:M 0对AB 杆有: F B F AF B BC sin300 M 2对OA 杆有:M 0 M i F AOA 0F By , MFA X,FAy, FBX, M A 0 N D aG -cos F l coscos2F y 0 N D cosG F 0N D ,arccosf 2(F (2FG)a 卡G)l ]F Ay F By P(1 COS ) M A P(1 cos )1M y O p eta n F BC cos c F BC sin eta n 0 F BC60.6N 2M x' 0 P 1 aF B c F BC S in2a 0 F B100N F y 0 F Z0F Ay,F A;z M x 0 M DE 0 F2COS4500 F20 M AO 0 F6COS45° a F COS450 COS450 a 0 F6 2 F M BH 02F4COS450 a F6COS450 a 0 F4 2F M AD 02F1 a F6COS450 a F sin450 a 0 £ 1 2 F M CD 02F1 a F3 a F sin45°a 0 F3 1F M BC 02F x 0F3 a F5 a F4COS450 a 0 F50 M 1500N cm Fy 0M O0以下几题可看一看!FA , F NA , FB , F NB ,tan3( f sif s2)FNB 0ta n 6002aM cf s2f si2 3F By 2a 0 F ByM H 0 F D y a Fa 0 F Dy FM BF DX a F 2a 0 F DX2FF y 0F AyF DyF By 0F AyF M A0 FD X a FB X 2aFB XFM BF AX 2aFD Xa0 FA XFM c 0 F D bF XF D-F M A0 F B bF XbF i F 2 (F i2Mpcos45° psin45° F 2)DF N 2 N iF i F 2f s N i f s N 2F i ,N i ,F 2,N 2, f s:s 2p D F e f 2M0 f siF By0.223, f s2 4.49 FB x N iP(i _f s2) _2( i —f ;2)f s%.223450F xF yM AT cosAC sinF N T sinF s T cos pT sin AC cosAB . sin 2FN , F s , T, fsf s 0.646a l . a几F NB a Pcos-Psi n 022 3F NA a P cos-Psin a 小 —— 02 2、3 F AF BPsi nM A 0M B 0 F x 0F A F Bf si F NAS 2F NBS24.49 i2MF D )b F ACAyD 2MF (bF 2x)F B F I F AAa b F A F 3 FxAy F i F 3 cos450F 1M2qa F yF 2aF2 Z M r ( 2qa) F x 0 FAXF 3 cos45(F AX(MaaF AyF 2 F 3si n450 P 4qa 0F AyP 4qa M A F 2 a P 2a 4qa 2a F 3S in450 '3aMM A 24qa 2 Pa M M A0 F By 2a F2a 0 F ByF Ay 2a F 2a 0 F A 『FF x 0 F AXFBx FF 32qa) F 0 F EF2 M C 0 F Bx a F By aV 2(MF AX2q x a) a F E sin450 a 0 F BxM eM BF By FF NDF 3 sin450F yM AM B0F BXM AN 13r P 3rcos60020 N i 6.93(N)F xFA XN 1 sin 60°F AX 6(N) F y 0F AyN 1cos600P 0 F Ay 12.5'(N) FN 1cos300 Tcos300 6.93(N)M A F N 2Lsin2P -cos2 M BF N LsinP Lcos F s Lcos2F S P F SFNtan100 F RC ,F RD F RC , F RD F RC , F RD2 2M A 0 F ND aI 0F ND44M A0F NC a F l 0F NC -FF NDaM O 0 F SC R F SD R 0FNCF X 0sinF — ----------- F----- FS D NCN D1 cos 1 cossin 1 costan —, f SD tanFRC,F2 221 cosF RCSDF NDF SD 0tan — 2 I FaFla cos —2PF RCsi n[180°(1800 2,sin ] ftanFl sinISD (Pa Fl )(1 cos )F yF NDP F SC sin F ND PFl ( (cosasin tan —)2f SD tanFl sin(Pa Fl )(1 cos )F B F ACFBF AC tan1 F3(F ND P) R MDF B \M E (P F NE )1RtanF NDM D M E!FRM DF NDBPL FaM AM EF yF x 4 f sP 4f sP } f s ,1 3f s }F SC%F X0 F NC costa nFl sin (Pa Fl )(1 cos )F NCsinF SC cos F SD 0FNDFSDM E 1FFNE F NE F SD tan2FNDF min{ —P,」 P,R R 3 1 F SD F NE F SE F 02P R M DF SE RF SD 3FFSDf s F ND M FM GF SE;FF SE f s F NEF max 0.362.该系统的位置可通过杆OA 与水平方向的夹角B 完全确定,有一个自由度。
【精】理论力学经典例题
m2vB
(m1
vr 2ve 20 cm/s
vr C
O
M
w
ve va A
B
小环M的加速度分析如图所示 :
aa ae ar aC
O
aC 2wvr 2 0.5 20 w
B
20 cm/s2
aen M ar C
ac
a aA
y
aen w 2 OM
a 向y方向投影,有: a
0.52
cos
20
aen
5 cm/s2
2w
4ew
3
1
8ew 2
3
B h
aC aa
art
A
aen q
arn
C
O
w
aa cosq aen cosq arn aC
aa
2 (2ew2
3
3 16ew2 8ew2 ) 2 ew2
2 33
3
9
例13 图示曲杆OBC绕O轴转动,使套在其上的小环M沿固定直 杆OA滑动。已知OB=10 cm,OB与BC垂直,曲杆的角速度为 0.5rad/s,求当φ=60°时小环M的速度和加速度。
va ve vr
va
vr
A
ve
ve w OA
q
va ve tanq w OA
32 3
3ew
3
C O w
vr
ve
cosq
2ew
3
4
3ew
3
2
加速度分析如图
aa ae ar aC
aen OA w 2 2ew 2
arn
vr 2 R
16ew 2
33
aC
2wvr
《理论力学》章节典型例题(含详解)—精品文档
《理论力学》章节典型例题(含详解)A 卷1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不计,作用力D求各杆的内力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
《理论力学》考试试题解答解析
z
C
E
D
F
O
30°
By
A
x
2012~2013 学年第一学期《理论力学》考试试题及解答
2、圆盘以匀角速度ω 绕定轴 O 转动,如图所示,盘上动点 M 在半 径为 R 的圆槽内以速度 v 相对圆盘作等速圆周运动,以圆盘为动系, 求点 M 的科氏加速度。
M v
ω R
O
2012~2013 学年第一学期《理论力学》考试试题及解答
l2 R2
R l2 R2
轮
aB R
r 2
l2 R2
2011~2012 学年第二学期《理论力学》考试试题及解答
五、如图所示两均质圆轮质量均为 m ,半径为 R ,A 轮绕固定轴 O
转动,B 轮在倾角为θ 的斜面上作纯滚动,B 轮中心的绳绕到 A 轮
上。若 A 轮上作用一力偶矩为 M 的力偶,忽略绳子的质量和轴承
《理论力学》考试试题 及解答
2012~2013 学年第一学期《理论力学》考试试题及解答
一、简单计算题(每题5分,共15分) 1、正三棱柱的底面为等腰三角形,OA=OB=a,在平面ABED内
有一沿对角线AE作用的力F,F与AB边的夹角θ=30º,大小为F。 求该力在x、y、z 轴上的投影及对y、z 轴的矩。
五、图示纯滚动的均质圆轮与物块 A 的质量均为 m ,圆轮半径为 r , 斜面倾角为θ,物块 A 与斜面间的摩擦系数为 f 。 杆 OA 与斜面平 行,不计杆的质量。试求:⑴ 物块 A 的加速度;⑵ 圆轮所受的摩 擦力;⑶ 杆 OA 所受的力。(20分)
A
O
θ
2012~2013 学年第一学期《理论力学》考试试题及解答
A
D
u O
理论力学第七版答案
8-5 杆OA 长l ,由推杆推动而在图面内绕点O 转动,如图所示。
假定推杆的速度为υ,其弯头高为a 。
试求杆端A 的速度的大小(表示为由推杆至点O 的距离x 的函数)。
题8-5图【知识要点】 点得速度合成定理和刚体的定轴转动。
【解题分析】 动点:曲杆上B ,动系:杆OA绝对运动:直线运动相对运动:直线运动牵连运动:定轴转动【解答】 取OA 杆为动系,曲杆上的点B 为动点v a = v e +v r大小: √ ? ?方向: √ √ √v a = v222222cos :a x vaa x v ax vav v v e e ea +=+=+==ωθη 8-10 平底顶杆凸轮机构如图所示,顶杆AB 可沿导轨上下移动,偏心圆盘绕轴O 转动,轴O 位于顶杆轴线上。
工作时顶杆的平底始终接触凸轮表面。
该凸轮半径为R ,偏心距OC =e ,凸轮绕轴O 转动的角速度为ω,OC 与水平线成夹角ϕ。
求当ϕ=0°时,顶杆的速度。
【知识要点】 点的速度合成定理【解题分析】 动点:点C ,动系:顶杆AB绝对运动:圆周运动相对运动:直线运动牵连运动:平行移动题8-10图【解答】 取轮心C 为动点,由速度合成定理有v a = v e +v r大小: √ ? ?方向: √ √ √解得: v a = v e , v r =0, v e =v a =ωe8-17 图示铰接四边形机构中,O 1A =O 2B =100mm ,又O 1 O 2=AB ,杆O 1A 以等角速度ω=2rad/s 绕O 1轴转动。
杆AB 上有一套筒C ,此筒与杆CD 相铰接。
机构的各部件都在同一铅直面内。
求当ϕ=60°时,杆CD 的速度和加速度。
题8-17图【知识要点】 点的运动速度和加速度合成定理【解题分析】 动点:套筒C,动系:杆AB绝对运动:直线运动相对运动:直线运动牵连运动:平行移动【解答】 取C 点为动点,杆AB 为动系(1)速度 v a =v e + v r , v e = v A =A O 1⋅ω s m v v e a /1.060cos 0=⋅=(2) 加速度 a a = a e +a r ,A O a a n A n e 12⋅==ω20/35.030cos s m a a n e a =⋅=8-20 图示偏心轮摇杆机构中,摇杆O ,A 借助弹簧压在半径为R 的偏心轮C 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点:滑块A 动系:杆O2B 绝对运动:定轴转动 相对运动:相对动系的直线运动 牵连运动:定轴转动
anAa=atAe+anAe
+aAr +ac
2020/5求/24 得O2B的角加速度
27
再以滑枕CD为动系,以滑块B 为动点求滑枕的加速度
动点:滑块B 动系:滑枕CD 绝对运动:定轴转动 相对运动:相对动系的直线运动 牵连运动:水平方向的直线运动
2020/5/24
29
取A点为基点,对B点作加速度分析
a
n B
atB
aA
a
n BA
atBA
大小:√ ? √ 0 0
y
aA
x
aBt
aBAt
aBn
方向:√ √ √
aBn vB2 / r 8 m/s 2
at 0 B
2020/5/24
C点同理,取B点为基点, 请自己分析
30
2020/5/24
课后习题讲解
2020/5/24
1
1.3(e)
P
A
C
D
FC
C
B
P
A
C
D
FA
F'C
2020/5/24
FB B
A
C
FAx
FAy F'C
P
D
2
1.4(d)
F2
D
C
F1
B
A
2020/5/24
FAy
FAx
A
FCy
F2
FCx C
B FB
D
F1
B
F'B
3
3.6
已知:在OA上作用力偶M,在滑块D上作用力F
–11
atBa+anBa=aBr+aBe
大小
√
√
?
?
2020/5/2求4 出滑枕B的加速度
28
7.15
轮只滚不滑,I点为瞬心
求B点与C点的速度
vA
分析可知:AB杆为瞬时平动,则有
vB vA w OA 2 m/s
vB
vC
wB
I
wB vB / BI 4 rad/s
vC wB CI 2.83 m/s
分析:先研究曲柄OA,再研 究铰链B,然后研究滑块D
2020/5/24
4
2020/5/24
5
3.11
考查知识:平面任意力系的平衡 问题及应用,分布载荷的简化
2020/5/24
6
2020/5/24
7
平面固定端约束
一物体的一端完全固定在另一物体上所构成的约 束称为固定端或插入端支座。
A
2020/5/24
大小:√ 方向:√ √
va v
?? √
ve va cosj
2 sin j
2
w ve
2v 2
v
OA l 2l
2020/5/24
c osj
av vc w • OC 2l
20
ve
2020/5/24
6.20
求小环M的速度和加速度
知识要点:点的速度合成 和加速度合成(科氏加速度 什么情况下存在)
ae w 2 OM 0.05 m/s 2
aC 2wevr 0.2 m/s 2
2020/5/24
aM 0.35 m/s 2
23
2020/5/24
6.21
求滑枕CD的速度和加速度
知识要点:点的速度合成 和加速度合成(科氏加速度 什么情况下存在)
先以杆O2B为动系,滑块A为动点求 的杆O2B的速度和加速度,从而求出 其角速度和角加速度;再以滑枕CD 为动系,以滑块B为动点求滑枕的速 度和加速度
31
解:取圆柱分析。
9.10
求圆盘中心的加速度。
ma A F1
FN1 mg 0
1 2
mr 2
F1r
aA a r
2020/5/24
A
aA
F
A
aA
mg a
F1
FN1
32
取板分析
14
6.7
求 vB的C 速度,就是求牵 连运动的速度
知识要点:点的速度合成
动点:滑块A 动系:BCE,
ve
w
j
vA
vr
绝对运动:圆周运动 相对运动:铅垂方向上直线运动 牵连运动:水平方向上直线平移
2020/5/24
15
va= ve + vr
大小:√ ? ? 方向:√ √ √
va w AO 2 m/s
MA
FAy
FAx
A
8
4.
2020/5/24
9
5.4
求火箭的运动方程
2020/5/24
10
5.11
求摇杆的运动方程
2020/5/24
11
5.12
求飞轮的转动方程以及 角速度与转角间的关系
分析:将a分解为两个分量, 由微分关系求解
2020/5/24
12
2020/5/24
13
5.13
2020/5/24
ve va sin j 2 sin j
ve
w
j
vA
vr
ve vBC
解得当j 30 vBC 1m/ s
2020/5/24
j 90 vBC 2 m/s
16
2020/5/24
6.8
求 v的BC 速度,就是 求牵连动的速度
知识要点:点的速度合成
动点:滑块A
动系:滑槽 DE
绝对运动:圆周运动 相对运动:沿DE的直线运动 牵连运动:水平方向上直线平移
24
先以杆O2B为动系,滑块A为动点求 的杆O2B的速度和加速度角速度W2 和角加速度
动点:滑块A 动系:杆O2B 绝对运动:定轴转动 相对运动:相对动系的直线运动 牵连运动:定轴转动
vAa= vAe + vAr
va
ve
vr
大小:√ 方向:√ √
? √
v v ? 求出 Ae与 Ar,从
而求得w2
2020/5/24
25
再以滑枕CD为动系,以滑块B为动点求滑枕的速度和加速度
动点:滑块B 动系:滑枕CD 绝对运动:定轴转动 相对运动:相对动系的直线运动 牵连运动:水平方向的直线运动
vBa= vBe + vBr
大小:√ ? ? 方向:√ √ √
2020/5/24
求出vBe
26
先以杆O2B为动系,滑块A为动点求
17
va = ve + vr
大小:√ 方向:√ √
?? √
2020/5/24
18
6.10
va
求C点的速度
ve
vr
知识要点:刚体的定轴转动,
点的速度合成
v
2020/5/24
动点:滑块A 动系:摇杆OA 绝对运动:铅垂方向的直线运动 相对运动:相对动系的直线运动 牵连运动:定轴转动
19
va= ve + vr
vr动
va
相对运动:相对动系的直线运动
牵连运动:定轴转动
21
va= ve + vr
大小:? √ ? 方向:√ √ √
ve w OM 0.1m/s
vr
va ve
vr ve / cosj 0.2 m/s
va vM ve tanj 0.173 m/s
2020/5/24
22
由于其牵连运动为定轴转动
ay e
,所以存在科氏加速度
aM
=aa
a= e
+
a r
+
aC
= aet+ aen+ art+ arn+aC
由于其牵连运动的角加速度为O,所以 t为O。
ae
a 同时,相对运动为直线运动,所以 r只有一项
ar
j
aC
aM
在y方向投影 aM cosj aC ae cosj