高中数学-圆的标准方程教案

合集下载

高中数学圆的标准方程教案 高中数学圆与方程教案三

高中数学圆的标准方程教案 高中数学圆与方程教案三

高中数学圆的标准方程教案高中数学圆与方程教案三高中数学圆的标准方程教案高中数学圆与方程教案篇七一、具体目标:1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。

通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学……二、本学期要达到的教学目标1.双基要求:在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。

在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

2.能力培养:能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3.思想教育:培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

高中数学圆的标准方程教案高中数学圆与方程教案篇八高一下学期数学教学计划精选本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

高中数学学案 圆的标准方程

高中数学学案 圆的标准方程

4.1 圆的方程4.1.1 圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点) 2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点) 通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2. 点与圆的位置关系设点P到圆心的距离为d,半径为r.d与r的大小点与圆的位置d<r 点P在圆内d=r 点P在圆上d>r 点P在圆外1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D [由圆的标准方程可得圆心为(2,-3),半径为 2.] 2.以原点为圆心,2为半径的圆的标准方程是( ) A .x 2+y 2=2B .x 2+y 2=4 C .(x -2)2+(y -2)2=8D .x 2+y 2= 2B [以原点为圆心,2为半径的圆,其标准方程为x 2+y 2=4.] 3.点P(m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上D .不确定A [∵m 2+25>24,∴点P 在圆外.]4.点(1,1)在圆(x +2)2+y 2=m 上,则圆的方程是________.(x +2)2+y 2=10 [因为点(1,1)在圆(x +2)2+y 2=m 上,故(1+2)2+12=m,∴m =10.即圆的方程为(x +2)2+y 2=10.]求圆的标准方程【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程.思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解] 法一:设所求圆的标准方程为 (x -a)2+(y -b)2=r 2,由已知条件知⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a). 又∵该圆经过A,B 两点, ∴|CA|=|CB|.∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, 解得a =1.∴圆心坐标为C(1,1),半径长r =|CA|=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0), k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x-0), 即y =x.则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P(2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. [解] (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8.(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8),又r =5, ∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a,-2a), 设圆心到直线x -y -1=0的距离为r. ∴r =|a +2a -1|2,① 又圆过点P(2,-1),∴r 2=(2-a)2+(-1+2a)2,②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.点与圆的位置关系【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.[解] 因为圆心是C(-3,-4),且经过原点, 所以圆的半径r =(-3-0)2+(-4-0)2=5, 所以圆的标准方程是(x +3)2+(y +4)2=25.因为|P 1C|=(-1+3)2+(0+4)2=4+16=25<5, 所以P 1(-1,0)在圆内;因为|P 2C|=(1+3)2+(-1+4)2=5, 所以P 2(1,-1)在圆上;因为|P 3C|=(3+3)2+(-4+4)2=6>5, 所以P 3(3,-4)在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断. 2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A(1,2)不在圆C :(x -a)2+(y +a)2=2a 2的内部,求实数a 的取值范围. [解] 由题意,点A 在圆C 上或圆C 的外部, ∴(1-a)2+(2+a)2≥2a 2, ∴2a +5≥0,∴a ≥-52.∵a≠0,∴a 的取值范围为⎣⎢⎡⎭⎪⎫-52, 0∪(0,+∞).与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.2.若点P(x, y)是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?[提示] 可先求出圆心(2,-2)到直线x -y =0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.思路探究:首先观察x 、y 满足的条件,其次观察所求式子的几何意义,求出其最值.[解] 由题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14.1.本例条件不变,试求yx的取值范围.[解] 设k =y x ,变形为k =y -0x -0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k =y x ,可得y =kx,此直线与圆有公共点,圆心到直线的距离d≤r ,即|-k|k 2+1≤12,解得-33≤k≤33.即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.本例条件不变,试求x +y 的最值.[解] 令y +x =b 并将其变形为y =-x +b,问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.与圆有关的最值问题的常见类型及解法:(1)形如u =y -bx -a 形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.1.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25A[由题意,圆的半径r=(0-3)2+(4-0)2=5,则圆的方程为x2+(y-4)2=25.]2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2B[由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]4.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.[0,1)[由于点在圆的内部,所以(5a+1-1)2+(a)2<26,即26a<26,又a≥0,解得0≤a<1.] 5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.[解]易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=5,所以外接圆的方程为(x-2)2+(y-2)2=5.。

人教A版高中数学必修二《圆的标准方程》教学设计

人教A版高中数学必修二《圆的标准方程》教学设计
《圆的标准方程》教学设计
一、内容及其解析
本节课的教学内容是圆的标准方程,圆是平面解析几何中重要的几何模型,是研究圆锥曲线与方程的重要基础.
坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过建立平面直角坐标系,把点和坐标、曲线和方程联系起来.因此在教学过程中,要始终贯穿坐标法中一重要思想,在学习圆与方程这一章节后,使学生初步形成坐标法的基本思想和步骤.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后将代数运算结果“翻译”成相应的几何结论。
解此方程组,得
所以 的外接圆的方程是
练习2:已知圆心为 的圆经过点 ,且圆心 在直线 上,求圆心为 的圆的标准方程.
设计意图:进一步强化圆的标准方程的运用,使学生在不同的背景中熟悉常见的几何模型,能根据题设条件选择适当的方法来解决问题.
师生活动:激活学生思维,借助图形,让学生分析题设的几何特征,描述本题的算法,教师同步展示解答过程.启发引导学生思考教科书第120页的问题,归纳求圆的标准方程的两种方法.最后可以让学生尝试运用另一种方法解答问题7和问题8.
半径 的大小等于圆上任意一点 到圆心 的距离,
圆心为 的圆就是集合
由两点间距离公式,点 的坐标适合的条件可以表示为
式两边平方,得
(1)
若点 在圆上,则由上述讨论知,点 的坐标适合方程(1);反之,若点 的坐标适合方程(1),这说明点 与圆心 的距离为 ,即点 在圆心为 的圆上.我们把方程(1)称为圆心为 ,半径为 的圆的方程,把它叫做圆的标准方程.
3.能力素养:重点提升学生的数学抽象、数学建模、直观想象能力。通过具体事例,让学生在自己的操作与思考中,抽象并概括圆的标准方程的概念、建立圆的标准方程的代数模型,学会利用几何图形理解和解决数学问题.关注现代信息技术工具的运用.

人教版高中数学必修2-4.1《圆的标准方程》教学设计

人教版高中数学必修2-4.1《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。

人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。

2. 学会利用圆的标准方程解决实际问题。

3. 掌握圆的标准方程的推导和应用方法。

教学内容:1. 圆的标准方程的定义和意义。

2. 圆的标准方程的推导过程。

3. 圆的标准方程的应用实例。

教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。

1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。

1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。

第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。

2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。

2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。

第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。

3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。

3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。

教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。

2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。

3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。

教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。

2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。

3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。

最新人教版高中数学必修2第四章《圆的标准方程》教学设计

最新人教版高中数学必修2第四章《圆的标准方程》教学设计

教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。

高中数学必修二《圆的标准方程》优秀教学设计

高中数学必修二《圆的标准方程》优秀教学设计

4.1.1圆的标准方程教学设计1.内容和内容解析:内容:圆的标准方程。

内容解析:解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现数形结合的重要思想方法。

其中圆的标准方程的教学目标主要是:一是经历通过平面直角坐标系建立圆的代数方程的过程,在这个过程中进一步体会坐标法研究几何问题的思想和步骤;二是用两种方法求解圆的方程。

圆是解析几何中一类重要的曲线,在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,处于直线与方程和点,直线与圆的关系的结合点和交汇点上。

学好圆的方程可以为圆锥曲线的学习奠定基础,有利于学生进一步体会数形结合的思想,形成用代数法解决几何问题的能力。

也是培养学生运用能力和运算能力的重要素材。

从知识的结构和内容上都起到相当重要的作用。

2.教学目标:知识与技能(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)能根据圆心坐标、半径及其特殊情况熟练地写出圆的标准方程;(3)会根据条件选择并求出圆的方程;过程与方法(1)通过平面直角坐标系建立圆的代数方程的过程,让学生进一步体会坐标法在研究几何问题的思想和步骤;(2)通过类比直线方程的学习,发现并理解圆的方程与直线方程学习中相同的知识结构,进一步体会类比的思想;(3)通过求解圆标准的方程,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想;情感态度与价值观通过与直线方程的对比,体会类比思想的应用,让学生学会用联系的观点分析问题,认识事物之间的相互联系与转化;3.教学重难点:重点:(1)类比直线方程的学习,掌握圆的标准方程;难点:(1)圆的代数方程的建立过程;(2)圆的标准方程的灵活应用;落实的途径:(1)通过表格,建立直线与方程,圆与方程的结构图,在复习旧知的同时帮助学生经历坐标法建立圆的代数方程的如下过程:首先将几何问题代数化,用代数语言描述几何要素及其关系,进而将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题。

高中数学《圆的方程》教案

高中数学《圆的方程》教案

高中数学《圆的方程》教案作为一位默默奉献的教育工作者,常常会需要准备好教案,通过教案准备可以更好地根据具体情形对教学进程做适当的必要的调剂。

优秀的教案都具有一些什么特点呢?这里给大家分享一些关于高中数学圆的方程教案,方便大家学习。

高中数学《圆的方程》教案1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌控圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。

(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的知道;3、增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交换的意识,在体验数学美的进程中激发学生的学习爱好。

2、教学重点、难点(1)教学重点:圆的标准方程的求法及其运用。

(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②挑选恰当的坐标系解决与圆有关的实际问题。

3、教学进程(一)创设情境(启发思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。

7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2。

7代入,得即在离隧道中心线2。

7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。

[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M合适的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)运用举例(巩固提高)I.直接运用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II.灵活运用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。

圆的标准方程(课时教学设计)-高中数学人教A版2019选择性必修第一册

圆的标准方程(课时教学设计)-高中数学人教A版2019选择性必修第一册

第1课时圆的标准方程课时教学设计(一)教学内容1.建立圆的标准方程;2.运用坐标法判断点与圆的位置关系;3.利用待定系数法及结合图形几何性质确定圆的标准方程.(二)教学目标1.通过掌握圆的标准方程及其推导过程,发展学生直观想象、数学抽象和数学逻辑推理的学科素养.2.通过掌握点与圆的位置关系的判定方法,进一步发展学生利用坐标法解决问题的能力,加深对数形结合思想的理解.3.通过求圆的标准方程并应用,发展学生数学建模和数学运算的学科素养. (三)教学重点及难点1.教学重点:圆的标准方程及其推导过程;2.教学难点:确定圆的标准方程.(四)教学过程设计问题1:在直线与方程的学习中,我们运用的研究方法是什么?在直线与方程的学习中,我们运用的研究方法是坐标法.追问1:建立直线的方程后,我们可以运用它研究多边形这些“直线形”图形,解决了哪些问题?解决边所在直线的平行或垂直、边与边的交点以及点到线段所在直线的距离等问题.追问2:多边形和圆是平面几何中的两类基本图形.那么类比直线方程的研究过程,我们如何研究圆的方程呢?类似地,为了研究圆的有关性质,解决与圆有关的问题,我们首先需要建立圆的方程.追问3:类比直线方程的研究过程,我们如何研究圆的方程呢?师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过类比直线方程的建立,以及研究方法与研究思路,使学生明确本单元教学内容,对所学知识有整体性与连贯性.问题2:在平面直角坐标系中,如何确定一个圆呢?追问1:在初中,圆的定义是什么?圆是平面上到定点的距离等于定长的点的集合.追问2:确定圆需要几个要素?在平面直角坐标系中,需要圆心坐标和半径.师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过回顾圆的定义,使学生明确确定圆的两个基本要素,对在平面直角坐标系中建立圆的标准方程做了铺垫.问题3:设圆心A的坐标是(a,b),半径为r,如何建立圆的方程?追问1:设M(x,y)为圆上任意一点,M满足的条件是什么?⊙A就是以下点的集合P={M||MA|=r}.根据两点间的距离公式,点M的坐标(x,y)满足的条件可以表示为√(x−a)2+(y−b)2=r,两边平方,得:(x−a)2+(y−b)2=r2.追问2:方程(x−a)2+(y−b)2=r2一定表示圆的方程吗?我们从哪个角度分析?若点M(x,y)在⊙A上,点M的坐标就满足方程;反过来,若点M的坐标(x,y)满足方程,就说明点M与圆心A间的距离为r,点M就在⊙A上.这时,我们就把方程称为圆心为A(a,b),半径为r的圆的标准方程.师生活动:学生以小组交流,讨论,师生共同研究,学生讲解,教师点拨.设计意图:通过设点M的坐标,利用两点间距离公式,写出M的坐标(x,y)满足的方程,进而写出圆的标准方程,培养学生的数学建模和数学运算的核心素养.问题4:与直线方程相比,圆的标准方程有什么特点?你能写出圆心在原点,半径为r的圆的标准方程是什么?直线方程圆的标准方程二元一次方程二元二次方程三个参数:定点坐标(a,b)和斜率k 三个参数:圆心(a,b)和半径r圆心在原点,半径为r的圆的标准方程x2+y2=r2.师生活动:学生以小组回答.设计意图:通过与直线方程的对比,使学生对于圆的标准方程形式更加明确,对于后续使用待定系数法确定圆的标准方程做好铺垫.例1.求圆心为A(2,-3),半径为5的圆的标准方程,并判断点M1(5,-7),M2(-2,-1)是否在这个圆上.分析:根据点的坐标与圆的方程的关系,只要判断一个点的坐标是否满足圆的方程,就可以得到这个点是否在圆上.解:圆心为A(2,-3),半径为5的圆的标准方程是(x−2)2+(y+3)2=25.把点M1(5,-7)的坐标代入方程(x−2)2+(y+3)2=25的左边,得(5-2)2+(-7+3)2=25,左右两边相等,点M1坐标满足圆的方程,所以点M1这个圆上.把点M2(-2-1)的坐标代人方程(x−2)2+(y+3)2=25的左边,得(一2-2)2+(-1+3)2=20,左右两边不相等,点M2的坐标不满足圆的方程,所以点M2不在这个圆上.探究:点M0(x0,y0)在圆x2+y2=r2内的条件是什么?在圆x2+y2=r2外的条件又是什么?如果点M。

高中圆的标准方程教案文档

高中圆的标准方程教案文档

高中圆的标准方程教案文档一、教学目标1. 知识与技能:(1)理解圆的定义及相关概念;(2)掌握圆的标准方程及其推导过程;(3)能够运用圆的标准方程解决实际问题。

2. 过程与方法:(1)通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)运用数学符号、图形等工具,表示圆的位置和大小;(3)培养学生的逻辑思维能力和几何直观能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流的能力。

二、教学内容1. 圆的定义及相关概念:(1)圆的定义;(2)圆心、半径、直径等概念;(3)圆的性质。

2. 圆的标准方程:(1)圆的标准方程的推导;(2)圆的标准方程的形式;(3)圆的标准方程的应用。

三、教学重点与难点1. 教学重点:(1)圆的定义及相关概念的理解;(2)圆的标准方程的推导和应用。

2. 教学难点:(1)圆的标准方程的推导过程;(2)圆的标准方程在实际问题中的应用。

四、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生主动探究;(2)运用分组讨论法,培养学生的合作能力;(3)采用案例分析法,让学生感受数学与生活的联系。

2. 教学手段:(1)利用多媒体课件,直观展示圆的定义和性质;(2)运用几何画板,动态演示圆的标准方程的形成;(3)提供实际问题,引导学生运用圆的标准方程解决。

五、教学过程1. 导入新课:(1)复习相关概念:点、线、角等;(2)引入圆的定义,引导学生观察生活中的圆;(3)提出问题:如何用数学语言表示圆的位置和大小?2. 探究圆的标准方程:(1)引导学生通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)讲解圆的标准方程的推导过程,引导学生理解并掌握;(3)让学生运用圆的标准方程,解决实际问题。

3. 巩固练习:(1)提供一些有关圆的标准方程的练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解答练习题;(3)教师对学生的解答进行点评和指导。

高中数学 4.1.1圆的标准方程教案 新人教A版必修2

高中数学 4.1.1圆的标准方程教案 新人教A版必修2

4.1.1 圆的标准方程一、教学目标1、目标:(1)学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径;(2)会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力;(3)理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.2、解析:由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、预习导引1、圆的定义平面内到的距离等于()的点的集合(轨迹)是圆,定点是(),定常是()。

2、圆的标准方程圆心为C(a,b),半径为r 的圆的标准方程是()三、问题引领,知识探究问题一:我们知道直线可以用方程表示,那么,圆可以用方程表示吗?如果能圆的方程怎样来求呢?.问题2:具有什么性质的点的轨迹称为圆?问题3:图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1问题4:我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?问题5:如果已知圆心坐标为C(a ,b ),圆的半径为r ,我们如何写出圆的方程?问题6:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?问题7:根据圆的标准方程说明确定圆的方程的条件是什么?问题8:确定圆的方程的方法和步骤是什么?问题9:坐标平面内的点与圆有什么位置关系?如何判断?师生活动:学生思考,回答。

教学设计1:2.4.1 圆的标准方程

教学设计1:2.4.1 圆的标准方程

2.4.1圆的标准方程教材分析本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习圆的标准方程.在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前一章内容的基础上,在平面直角坐标系中建立圆的代数方程,它与其他图形的位置关系及其应用.在这一过程中,进一步体会数形结合的思想,形成用代数的方法解决几何问题的能力.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位.坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法.通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一.教学目标与核心素养重点难点重点:会用定义推导圆的标准方程,掌握点与圆的位置关系难点:根据所给条件求圆的标准方程课前准备多媒体教学过程一、情境导学 《古朗月行》 唐 李白小时不识月,呼作白玉盘. 又疑瑶台镜,飞在青云端.月亮,是中国人心目中的宇宙精灵,古代人们在生活中崇拜、敬畏月亮,在文学作品中也大量描写、如果把天空看作一个平面,月亮当做一个圆,建立一个平面直角坐标系,那么圆的坐标方程如何表示? 二、探究新知思考1 圆是怎样定义的?确定它的要素又是什么呢?各要素与圆有怎样的关系?定义:平面内到定点的距离等于定长的点的集合叫作圆,定点称为圆心,定长称为圆的半径.确定圆的因素:圆心和半径 圆心确定圆的位置,半径确定圆的大小.思考2 已知圆心为A(a,b),半径为你能推导出圆的方程吗?|MA |=r ,由两点间的距离公式,得22()()x a y b -+-=r ,化简可得:(x -a )2+(y -b )2=r 2. 一、 圆的标准方程通过古诗中关于月亮的描述,引出建立圆的方程的问题,同时类比直线方程的建立过程,帮助学生通过类比建立圆的标准方程.学会联系旧知,制定解决问题的策略.让学生进一步感悟运用坐标法研究几何问题的方法.较,二是代入圆的标准方程,判断与r 2的大小关系.通过点与圆的位置关系建立方程或不等式可求参数值或参数的取值范围.跟踪训练3 若点(1,1)在圆(x-a )2+(y+a )2=4的内部,则a 的取值范围是( ) A .a<-1或a>1B .-1<a<1C .0<a<1D .a=±1解析:由题意可知,(1-a )2+(1+a )2<4,解得a 2<1,故-1<a<1. 答案:B金题典例 1.若P (x ,y )为圆C (x +1)2+y 2=14上任意一点,请求出P (x ,y )到原点的距离的最大值和最小值.[提示] 原点到圆心C (-1,0)的距离d =1,圆的半径为12,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.2.若P (x ,y )是圆C (x -3)2+y 2=4上任意一点,请求出P (x ,y )到直线x -y +1=0的距离的最大值和最小值.[提示] P (x ,y )是圆C 上的任意一点,而圆C 的半径为2,圆心C (3,0),圆心C 到直线x -y +1=0的距离d =|3-0+1|12+(-1)2=22,所以点P到直线x -y +1=0的距离的最大值为22+2,最小值为22-2.3. 已知x ,y 满足x 2+(y +4)2=4,求(x +1)2+(y +1)2的最大值与最小值.思路探究:x ,y 满足x 2+(y +4)2=4,即点P (x ,y )是圆上的点.而(x +1)2+(y +1)2表示点(x ,y )与点(-1,-1)的距离.故此题可以转四、小结五、课时练教学反思在本节课的教学中,引导学生回顾确定直线的几何要素——两点(或者一点和斜率)的基础上,类比得到圆的几何要素——圆心位置和半径大小.由直线方程类比得到从圆心坐标和半径大小入手探究圆的标准方程.这一过程提升逻辑推理、数学抽样等数学素养.在求解圆的标准方程中,注意几何法与代数法的比较,提升学生数学运算素养.。

圆的标准方程教案高中数学

圆的标准方程教案高中数学

圆的标准方程教案高中数学
一、教学目标:
1. 熟练掌握圆的标准方程的概念和计算方法;
2. 能够根据给定的信息,求解圆的标准方程;
3. 进一步理解圆的性质和应用。

二、教学内容:
1. 圆的标准方程的定义和示例;
2. 求解圆的标准方程的步骤;
3. 圆的相关性质和应用。

三、教学步骤:
1. 引入:通过举例说明圆的标准方程的重要性和应用场景;
2. 讲解:介绍圆的标准方程的定义和推导过程;
3. 演示:通过实例演示如何求解圆的标准方程;
4. 练习:让学生进行练习,巩固所学知识;
5. 总结:总结圆的标准方程的相关性质和应用。

四、教学材料:
1. 教科书《高中数学》;
2. 白板和彩色粉笔;
3. 课件PPT。

五、教学评估:
1. 学生通过练习题的答题情况;
2. 学生对于圆的标准方程的理解和应用程度。

六、拓展延伸:
1. 让学生自主探究圆的标准方程的推导过程;
2. 引导学生应用圆的标准方程解决实际问题。

通过以上教学方案,相信学生能够更好地掌握圆的标准方程的相关知识和技巧,为今后学习和工作打下坚实的基础。

《圆的标准方程》说课稿和教案

《圆的标准方程》说课稿和教案

《圆的标准方程》的说课稿各位评委、老师们,大家好!今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、和从纵、横两条主线分别阐述我的教学过程与设计.首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明.【一】教学背景分析1、教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求r、的过程.ba、下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?0x y r M(x,y)C(a,b)通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD 的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为r 的圆的方程?2.如果圆心在),(b a ,半径为r 时又如何呢? 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点)1,5(P ,圆心在点)3,8( C . yx0B A 2.74C D2.写出圆222)2()2(-=++y x 的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II .灵活应用 提升能力问题四 1.求以点)3,1(C 为圆心,并且和直线0743=--y x 相切的圆的方程.2.求过点)4,1(C ,圆心在直线03=-y x 上且与y 轴相切的圆的方程.3.已知圆的方程为2522=+y x ,求过圆上一点)3,4(-A 的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是什么? 我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到0.01m ).我选用了教材的例3,它是待定系数法求出圆的三个参数r b a 、、的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点),(11P ,且圆心在直线0132=++y x 上的圆的标准方程.2.求圆1322=+y x 过点)3,2(-P 的切线方程.3.求圆2522=+y x 过点)2,5(-B 的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为),(b a C ,半径为r 的圆的标准方程为:222)()(r b y a x =-+- ;圆心在原点时,半径为r 的圆的标准方程为:222r y x =+.②已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:200r y y x x =+.2.分层作业 (A )巩固型作业:教材P81-82:(习题7.6)1,2,4.(B )思维拓展型作业:试推导过圆222)()(r b y a x =-+-上一点),(00y x M 的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程0208622=++-+y x y x 表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.谢谢大家!《圆的标准方程》教案一、教学目标(一)知识教学点使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.(二)能力训练点通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.(三)学科渗透点圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.二、教材分析1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.(解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.)2.难点:运用圆的标准方程解决一些简单的实际问题.(解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.)三、活动设计问答、讲授、设问、演板、重点讲解、归纳小结、阅读.四、教学过程(一)复习提问前面,大家学习了圆的概念,哪一位同学来回答?问题1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明.其中步骤(1)(3)(4)必不可少.下面我们用求曲线方程的一般步骤来建立圆的标准方程.(二)建立圆的标准方程1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).2.写点集根据定义,圆就是集合P={M||MC|=r}.3.列方程由两点间的距离公式得:4.化简方程将上式两边平方得:(x-a)2+(y-b)2=r2.(1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.这时,请大家思考下面一个问题.问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.(三)圆的标准方程的应用例1写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.教师纠错,分别给出正确答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(x+4)2+(y+3)2=7;(3)(x+2)2+ y2=4教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径.例3 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解(1):分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决.解法一:(学生口答)设圆心C(a,b)、半径r,则由C为P1P2的中点得:又由两点间的距离公式得:∴所求圆的方程为:(x-5)2+(y-6)2=10分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决.解法二:(给出板书)∵直径上的四周角是直角,∴对于圆上任一点P(x,y),有PP1⊥PP2.化简得:x2+y2-10x-12y+51=0.即(x-5)2+(y-6)2=10为所求圆的方程.解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内.这时,教师小结本题:1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.3.以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0(证明留作作业)例4图2-10是某圆拱桥的—孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m).此例由学生阅读课本,教师巡视并做如下提示:(1)先要建立适当直角坐标系,使圆的标准方程形式简单,便于计算;(2)用待定系数法求圆的标准方程;(3)要注意P2的横坐标x=-2<0,纵坐标y>0,所以A2P2的长度只有一解.(四)本课小结1.圆的方程的推导步骤;2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.五、布置作业1.求下列条件所决定的圆的方程:(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;(2)过点A(3,2),圆心在直线y=2x上,且与直线y=2x+5相切.2.已知:一个圆的直径端点是A(x1,y1)、B(x2,y2).证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.赵州桥的跨度是37.4m,圆拱高约为7.2m,求这座圆拱桥的拱圆的方程.作业答案:1.(1)(x-3)2+(y+5)2= 322.因为直径的端点为A(x1,y1)、B(x2,y2),则圆心和半径分别为所以圆的方程为化简得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0即(x-x1)(x-x2)+(y-y1)(y-y2)=04.如图2-11建立坐标系,得拱圆的方程:x2+(y+27.88)2=27.882(-7.2≤y≤0)六、板书设计。

人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念及其意义。

2. 学会运用圆的标准方程解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:圆的标准方程的概念及其运用。

教学难点:理解圆的标准方程的推导过程。

教学准备:圆的模型、黑板、粉笔、PPT。

教学过程:一、导入(5分钟)1. 利用圆的模型,引导学生回顾圆的定义。

2. 提问:我们已经学过圆的哪些性质和公式?3. 引导学生思考:如何用数学公式来表示圆的性质?二、新课讲解(15分钟)1. 引入圆的标准方程的概念,给出圆的标准方程的定义。

2. 通过PPT展示圆的标准方程的推导过程。

3. 解释圆的标准方程中的各个符号的含义。

4. 举例说明如何运用圆的标准方程解决实际问题。

三、课堂练习(10分钟)1. 让学生独立完成教材上的练习题。

2. 引导学生思考如何将实际问题转化为圆的标准方程问题。

四、巩固提高(10分钟)1. 让学生分组讨论,思考圆的标准方程在实际应用中的拓展。

2. 邀请学生分享他们的思考成果。

五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结圆的标准方程的概念和运用。

2. 强调圆的标准方程在数学和实际生活中的重要性。

教学反思:本节课通过导入、新课讲解、课堂练习、巩固提高和总结等环节,让学生掌握了圆的标准方程的概念和运用。

在教学过程中,注意引导学生思考,激发学生的学习兴趣,培养学生的逻辑思维能力和解决问题的能力。

通过课堂练习和巩固提高环节,让学生将所学知识运用到实际问题中,提高了学生的应用能力。

总体来说,本节课达到了预期的教学目标。

六、实例分析(10分钟)1. 展示几个实际问题,让学生运用圆的标准方程解决。

2. 引导学生分析问题,列出方程,并求解。

3. 让学生分享解题过程和答案,讨论解题方法。

七、练习与拓展(15分钟)1. 让学生独立完成教材上的练习题。

2. 鼓励学生尝试解决更复杂的相关问题,进行拓展训练。

八、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结圆的标准方程的应用。

高中数学 第四章 圆与方程 4.1.1 圆的标准方程教案 新

高中数学 第四章 圆与方程 4.1.1 圆的标准方程教案 新

圆的标准方程教学目标(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜率求切线等.教学重点和难点重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;已知切线斜率求切线).难点:从圆外一点引切线,求切线方程,已知切线斜率求切线.教学过程设计(一)导入新课,教师讲授.同学们,前面我们研究了直线(特殊的曲线)的方程及其有关问题,今天我们研究圆及与圆有关的问题.什么是“圆”.想想初中我们学过的圆的定义.“平面内与定点距离等于定长的点的集合(轨迹)是圆”.定点就是圆心,定长就是半径.根据圆的定义,我们来求圆心是c(a,b),半径是r的圆的方程.(引导学生推导)设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.则│CM│=r,两边平方. (x-a)2+(y-b)2=r2,我们得到圆的标准方程,这就是圆心为C(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程.如果圆的圆心在原点.O(0,0).即a=0.b=0.问题1.说出下列圆的方程:(1)圆心在点C(3, -4), 半径为7.(2) 经过点P(5,1),圆心在点C(8,-3).问题2 说出下列方程所表示的圆的圆心坐标和半径:(1) (x + 7)2 + ( y- 4)2 = 36(2) x2 + y2 - 4x + 10y + 28 = 0(3) (x- a)2 + y2 = m2例1.写出圆心为C(2,-3),半径长等于5的圆的方程,并判断点 m1(5.-7),m2(-5,-1) 是否在这个圆上。

跟踪训练已知两点M(3,8)和N(5,2).(1)求以MN为直径的圆C的方程;(2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在圆内,还是在圆外?探究:在平面几何中,如何确定点与圆的位置关系?点与圆的位置关系:(x0-a)2+(y0-b)2>r2时,点M在圆C外(x0-a)2+(y0-b)2=r2时,点M在圆C上(x0-a)2+(y0-b)2<r2时,点M在圆C内例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.(二)学生课堂练习1.点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数a 的取值范围.2.根据下列条件,求圆的方程:(1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.1 圆的标准方程教案
教学目标:
知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆
的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。

情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情
和兴趣。

教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:
1、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:
2、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。

(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条
件r = ①
化简可得:222
()()x a y b r -+-= ②
引导学生自己证明222
()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3.练习
1、圆心为
,半径长等于5的圆的方程为( )B A (x – 2 )2+(y – 3 )2=25 B (x – 2 )2+(y + 3 )2=25
C (x – 2 )2+(y + 3 )2=5
D (x + 2 )2+(y – 3 )2=5
2、圆 (x -2)2+ y 2=2的圆心C 的坐标及半径r 分别为( )D
A C (2,0) r = 2
B
C ( – 2,0) r = 2
C C (0,2) r =
D C (2,0) r = 3、已知 和圆 (x – 2 )2+(y + 3 )2=25 ,则点M 在( )B
A 圆内
B 圆上
C 圆外
D 无法确定 4. 典型例题
例1 AB C ∆的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程.
解:设所求圆的方程是 (1) 因为A (5,1), B (7,-3),C (2, -8) 都在圆上,所以它们的坐标都满足方程(1).于是
所求圆的方程为 例2 AB C ∆的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程.
解:设圆方程代数求解方程可得
P121练习3 解:设点C (a ,b )为直径的中点,则 所以圆心坐标为(5,6)
圆的方程为 )3,2(-A 22
)7,5(-M 2
22)()(r b y a x =-+-⎪⎩⎪⎨⎧=--+-=--+-=-+-222222222)8()2()3()7()1()5(r b a r b a r b a 235a b r =⎧⎪⇒=-⎨⎪=⎩22(2)(3)25
x y -++=5264=+=a 6239=+=b 1
22459610
r CP ==-+-=()()10
6522=-+-)()(y x
因此点M 在圆上,点N 在圆外,点Q 在圆内。

提炼小结:
1、 圆的标准方程。

2、 点与圆的位置关系的判断方法。

3、 根据已知条件求圆的标准方程的方法。

作业:P120 练习 1、2、3、4, 习题A 组1、2
10=CM 1013>=CN 103<=CQ。

相关文档
最新文档